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Abstract

While functional diversity (FD) has been shown to be positively related to a

number of ecosystem functions including biomass production, it may have a

much less pronounced effect than that of environmental factors or species-

specific properties. Leaf and wood traits can be considered particularly relevant

to tree growth, as they reflect a trade-off between resources invested into

growth and persistence. Our study focussed on the degree to which early forest

growth was driven by FD, the environment (11 variables characterizing abiotic

habitat conditions), and community-weighted mean (CWM) values of species

traits in the context of a large-scale tree diversity experiment (BEF-China).

Growth rates of trees with respect to crown diameter were aggregated across

231 plots (hosting between one and 23 tree species) and related to environmen-

tal variables, FD, and CWM, the latter two of which were based on 41 plant

functional traits. The effects of each of the three predictor groups were analyzed

separately by mixed model optimization and jointly by variance partitioning.

Numerous single traits predicted plot-level tree growth, both in the models

based on CWMs and FD, but none of the environmental variables was able to

predict tree growth. In the best models, environment and FD explained only 4

and 31% of variation in crown growth rates, respectively, while CWM trait val-

ues explained 42%. In total, the best models accounted for 51% of crown

growth. The marginal role of the selected environmental variables was unex-

pected, given the high topographic heterogeneity and large size of the experi-

ment, as was the significant impact of FD, demonstrating that positive diversity

effects already occur during the early stages in tree plantations.

Introduction

One of the most important aims in functional biodiver-

sity research is to predict the importance of different

facets of biodiversity to ecosystem functions (EFs). It has

been shown that many different EFs are positively related

to producer diversity (Loreau et al. 2001; Hooper et al.

2005; Balvanera et al. 2014). A meta-analysis (Cardinale

et al. 2011) revealed that 414 of the 574 independent

experimental manipulations of species richness had a pos-

itive effect on producer biomass. This also applies to for-

ests, which represent the most important ecosystems

globally because of their broad geographical cover and the

unique ecosystem services they provide (Quijas et al.

2012). A review of worldwide inventories demonstrated

positive relationships between forest growth and standing
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biomass and tree species richness in the majority of pub-

lished studies (Scherer-Lorenzen 2013). For example, it

was shown that biomass production in Swedish forests

increases with tree species richness (Gamfeldt et al. 2013).

Such biodiversity-focused research has often tried to

minimize environmental variation, which can lead to an

underestimation of other major determinants of tree

growth such as climate or soil conditions. An analysis of

the pan-European tree-ring network showed that forest

productivity in central and southern Europe is driven by

temperature in high-elevation and high-latitude areas,

and moisture at low elevations (Babst et al. 2013). Cli-

mate also determines tree growth at the microsite scale

with respect to differences in slope, aspect, and inclina-

tion (Chen et al. 1999; Geiger et al. 2003). In the North-

ern Hemisphere, south-facing slopes receive more solar

irradiation than north-facing slopes (Warren 2010),

resulting in positive effects on individual tree growth

(Fralish 1994; Li et al. 2014). As a consequence, each sin-

gle variable, such as slope aspect, inclination, or altitude,

has the potential to significantly affect tree growth (Sar-

emi et al. 2014). In addition, soil conditions have a strong

impact on forest productivity (Grier et al. 1989), making

soil type a key predictor in forest growth models (Lands-

berg and Waring 1997; Pinjuv et al. 2006). Such strong

dependence of forest productivity on climate and soil

conditions indicates that any attempt to detect biodiver-

sity signals on tree growth needs to be separated from

effects of the abiotic environmental setting. Accordingly,

for the current study, we analyzed a large forest biodiver-

sity experiment on the assumption that the biodiversity

treatments only induced broad variation in functional

diversities of tree communities across a heterogeneous

landscape, and we ignored all other design aspects of the

experiment. It is considered that analyzing a designed

experiment as if it were a sample survey of plots across

the landscape (Snedecor and Cochran 1989) is justified,

when the aim is to maximize the environmental impact

on ecosystem functioning.

The selected set of environmental variables were related

to topography (slope, aspect, and elevation) and soil (pH

value, carbon, and nitrogen content in the topsoil), both

of which were considered to be relevant to tree growth

when the experiment had been established. During the

early stage of the experiment, we assumed that the envi-

ronmental variables had not yet been, or had only been

minimally, affected by the experimental biodiversity treat-

ments. This assumption may clearly not apply over a

longer term, in particular, given that as microclimate and

soil conditions respond to biodiversity in feedback loops,

and depending on plot productivity and tree richness,

organisms modify their environment (Bruelheide et al.

2014).

Further key determinants of forest production include

the particular tree species, as it is well documented that

tree growth can vary by an order of magnitude among

different tree species (Lieberman et al. 1985; Lambers and

Poorter 1992). It is generally assumed that early succes-

sional species outperform late successional ones because

of higher rates of photosynthesis (Bazzaz 1979). This

applies to our study as deciduous species generally grow

faster than evergreen ones, and early successional species

are often deciduous (e.g., Budowski 1965); however, spe-

cies growth rates can also differ within successional cate-

gories. One approach to better understanding such

species identity effects is to relate species-specific differ-

ences in growth rates to the species’ functional traits

(D�ıaz et al. 2007). It has been shown that a few key traits

that describe the leaf economics spectrum (LES) (Wright

et al. 2004), such as specific leaf area (SLA) or leaf nitro-

gen content, can successfully predict tree growth of 53

rainforest species in Bolivia (Poorter and Bongers 2006).

At the plot scale, productivity should depend on the mix-

ture of species in the community. According to the mass

ratio hypothesis (Grime 1998), the most abundant or

dominant species are expected to exert the highest impact

on EF. This hypothesis provides the basis for using com-

munity-weighted means (CWMs) of trait values, which

are obtained from averaging traits at the community level

by weighting the species’ traits with the species’ relative

abundance in the given community (Ackerly et al. 2002).

In grasslands, this approach has been successfully

employed for predicting EF from CWM trait values (Gar-

nier et al. 2004; Roscher et al. 2012). Thus, as one impor-

tant EF indicator, tree growth may be predicted in

relation to the CWM of a single key trait or from a

combination of CWMs of different uncorrelated traits.

As CWM represents the overall plot mean, it does not

account for trait variation within plots and it fails to cap-

ture the effect of functional diversity (FD), both in terms

of selection and complementarity effects (Loreau and

Hector 2001). In particular, functional diversity may

increase resource complementarity and facilitation among

species in species-rich plots and thus increase forest pro-

ductivity (Spasojevic and Suding 2012; Dias et al. 2013).

For example, in southern New Zealand, nutrient-rich for-

est sites were not only characterized by species with high

relative growth rates, but also showed higher variation in

growth rates related to a high variation in species-specific

shade tolerances, resulting in greater complementarity of

light use (Coomes et al. 2009). As such, within defined

forest age classes, FD has been found to be positively

related to aboveground biomass (Bu et al. 2014). Simi-

larly, in the Cedar Creek experiment, functional comple-

mentarity of grassland species resulted in higher C and N

accumulation in soils (Fornara and Tilman 2007). Com-
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plementarity in resource use is expected to emerge in trait

space and be reflected by a higher variation and disper-

sion of values of relevant traits (Lavorel et al. 2008). In

principle, a trait can contribute to complementarity of a

particular EF in the community, either spatially via

above- or belowground resource partitioning (Bessler

et al. 2009; von Felten et al. 2009), or temporally via dif-

ferential resource use in different seasons (Dedeyn and

Vanderputten 2005). Trait value distribution in the com-

munity can be expressed mathematically by FD measures,

such as in the regularity of the distribution of trait abun-

dances (Vill�eger et al. 2008), as designated by Rao’s quad-

ratic entropy (FDQ) (Rao 1982). It should be noted that

in communities, the FD of a particular trait is not inde-

pendent of the CWM of the same trait, as trait variation

is constrained by the mean (Dias et al. 2013). In conse-

quence, both the FD and CWM of a single trait explain

some degree of variation in EF. Thus, separating FD from

CWM poses a similar problem as separating environmen-

tal variables from biodiversity effects.

In summary, variation in productivity as an important

ecosystem function (EF) in forests may be largely

explained by variation in environmental variables, varia-

tion in community-weighted mean (CWM) trait values,

and variation in functional diversity (FD). The contribu-

tion of each of these components on a certain EF can be

visualized as a triangle, where environmental variables,

CWM, and FD represent the three corners. The location

of a particular plant community in this triangular space

will depend on the relative impact of the abiotic environ-

ment, species-specific properties, and biotic interactions.

For example, aboveground net primary production

(ANPP) in alpine grasslands was found to be dependent

on both nutrient supply (quantified by a nitrogen nutri-

tion index) and FD in vegetative height (which reflects

light acquisition complementarity), but not by the CWM

of any particular trait (D�ıaz et al. 2007). Taking all pre-

dictors together, 44% of the total variation in ANPP was

explained by abiotic conditions alone, and inclusion of

FD did not improve the model’s explanatory power.

However, to our knowledge, no attempt has been made

to quantify the contribution of environmental variables,

CWM, or FD in forest communities. One important

caveat that must be considered in the above context is

that it would be unusual for all of the three explanatory

corners in the aforementioned triangle to have the same

range of variation in any particular study, making it unli-

kely for any of the factors to have the same chance to

influence variation in the dependent variable. In this

study, variation was particularly high in CWM and FD

because the plots originated from a biodiversity experi-

ment that ensured a large range of species richness levels

and, as a consequence, resulted in a large variation in

CWM and FD. Nevertheless, the very large topographic

and hydrological variation at the experimental site also

ensured a high environmental variation.

It might be argued that partitioning the effect of envi-

ronment, CWM, and FD is only necessary in natural

communities but not in designed experiments, where bio-

diversity is manipulated and environmental variation

should be accounted for. To control environmental varia-

tion, experimental plots are often established in homoge-

neous environments, such as a flat piece of land with

uniform land-use history and soil properties. However,

even comparatively low environmental heterogeneity can

strongly affect EF, as was demonstrated in the Sardinilla

forest experiment in Panama (Healy et al. 2008). Under

environmental heterogeneity, fully randomized experi-

ments cannot prevent certain plots from exhibiting excep-

tional site conditions. For example, in the Sardinilla

experiment, all six-species diversity plots were located at

sites with low water drainage (Healy et al. 2008). As

homogeneity declines with increasing study size, many

experiments have employed blocking techniques, for

example, with respect to distance from the river in the

Jena Experiment (Roscher et al. 2004). However, blocking

is only useful when there are few and clear gradients

across the experimental site (Bruelheide et al. 2014), and

in very heterogeneous environments, blocking may not be

feasible. In many regions of the world, forests mainly

occur in topographically heterogeneous environments, as

the often more fertile flat lands are used for agriculture

(Sandel and Svenning 2013). As such, in field-based forest

biodiversity–EF experiments, such environmental effects

are often confounded with biodiversity and have to be

accounted for in the same way as in natural communities.

The aim of our study was to partition the effects of 11

environmental variables and CWM and FD variables cal-

culated from 41 species traits to one key ecosystem func-

tion in the early stage of a large forest-based biodiversity

experiment in subtropical China (Bruelheide et al. 2014).

A set of 40 broadleaved tree species native to the natural

vegetation was planted in richness levels of 1, 2, 4, 8, 16,

and 24 tree species. We used results from one of two

sites, which had been planted in 2009 with 1-year-old

saplings (Yang et al. 2013; Bruelheide et al. 2014). To

measure tree productivity, we chose mean annual crown

width growth between 2011 and 2012, as it best reflected

tree growth at the early growth stage of the experiment

(Li et al. 2014). We expected forest growth at this early

stage to be mainly dominated by abiotic conditions, based

on the finding of Li et al. (2014) that growth of individ-

ual trees is related to aspect and soil nitrogen content but

not to Shannon diversity of the local tree neighborhood.

Crown width growth rate data referred to Li et al. (2014),

and data were aggregated at the plot level, with plot mean
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values being subjected to the analysis framework of D�ıaz

et al. (2007). A stepwise approach was used to disentangle

the effects of the three groups of predictor variables men-

tioned above, as suggested by D�ıaz et al. (2007) and by

sequentially fitting the influence of different predictors of

the environment, CWM, and FD. The objective of our

study was to identify the single environmental, CWM,

and FD predictors that best predicted plot-level tree

growth. In particular, we hypothesized 1) that there are

single variables from the three predictor groups (environ-

mental variables, CWM, and FD) that significantly explain

tree growth and 2) that, comparing the best predictors

from the three groups, the environmental variables have

the highest explanatory power for tree growth rate at the

early stage of the experiment. To our knowledge, our

study is the first to disentangle the effect of environmen-

tal variables, CWM, and FD in a biodiversity functioning

experiment with trees. Our results are the first ones on

trait–EF relationships from all forest diversity experiments

worldwide.

Materials and Methods

Study site

We conducted our study on a field experiment (BEF-

China) in southeast subtropical China (29.08–29.11 N,

117.90–117.93 E). BEF-China is a large-scale biodiversity

and ecosystem functioning study on subtropical tree spe-

cies (Yang et al. 2013; Bruelheide et al. 2014), which was

established on the site of former Pinus massoniana and

Cunninghamia lanceolata conifer plantations that were

harvested at ~20-year intervals. After clear-cutting the

conifer plantations, aboveground plant biomass was

removed from the study site (Yang et al. 2013) and a

pool of 40 species native to the regional broadleaved for-

est was established across 38 ha in 2008/2009. The diver-

sity gradient employed comprises monocultures and plots

with 2, 4, 8, 16, and 24 species. Here we present the

results of one of the two experimental sites (Site A), for

which we evaluated data on tree growth measurements

from 231 plots (25.8 9 25.8 m) and 23 species planted at

the site. We analyzed annual increment of crown diame-

ter as the response variable, which was calculated from

two monitoring sessions undertaken in 2011 and 2012 (Li

et al. 2014). We used data on 23 species, of which 14 and

9 species were deciduous and evergreen, respectively.

Accordingly, the majority of species was classified as early

successional (Li et al. 2014), and none of the species were

N2-fixing. All growth data were aggregated at the plot

level by taking the arithmetic mean of the absolute crown

diameter increment across all individuals measured in

each plot.

Assessment of environmental variables

A 5 m digital elevation model (DEM) was established

based on differential GPS measurements carried out in

2009. The DEM was used to derive plot mean values for

elevation, aspect, mean slope, solar insolation, profile cur-

vature, and plan curvature as descriptions of the environ-

mental conditions (Evans 1979; Zevenbergen and Thorne

1987; Dietrich and Montgomery 1998; Shary et al. 2002).

Sine and cosine transformations of the aspect were used

to express eastness and northness, respectively (Roberts

1986). All calculations were made using ArcGIS 9.0 (ESRI

Corp., Redlands, CA).

Soil variables were based on nine soil samples per plot,

collected in 2010 by taking soil cores at a depth of 0–
5 cm. The nine soil samples per plot were thoroughly

mixed, and one bulk sample per plot was analyzed for

total carbon (C) and total nitrogen (N) content. Prior to

the chemical analysis, soil samples were air-dried and

sieved (<2 mm). For the C and N analyses, dry soil sam-

ples were ground with a ball mill and subjected to total

C/N analysis based on gas chromatography (Vario EL,

Elementar, Hanau, Germany). Minimum, maximum, and

mean values and standard deviation of all environmental

variables is shown in Table S1.

Assessment of leaf traits

All traits were used to calculate community-weighted

means (CWMs) and functional diversity (FD) as predic-

tive variables. These included the following: (1) traits

connected to the leaf economics spectrum, such as speci-

fic leaf area (SLA) and leaf nitrogen content (LNC); (2)

traits related to stomatal conductance, such as maximum

and mean stomatal conductance; (3) traits related to

xylem properties, such as specific hydraulic conductivity

of the xylem (KS) and the xylem pressure at which 50%

loss of the maximum specific hydraulic conductivity

occurred (Ψ50); and (4) leaf microscopic traits, such as

stomata density and thickness of the palisade parench-

yma. In assessing leaf traits, only sun-exposed, fully

developed, and nondamaged leaves were sampled, with at

least five individuals per species being sampled. Traits

related to stomatal conductance were extracted from

diurnal measurements on tree individuals from the same

experiment. Traits directly related to stomatal conduc-

tance, such as stomata density and size, were assessed on

the same leaves from which measurements of stomatal

conductance were taken. Three individuals per species

were sampled to generate the xylem dataset. The wood

traits were measured on the same wood samples that

were assessed for xylem hydraulic measurements. The

complete trait datasets and the specific measurement pro-
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tocols were provided by Kr€ober and Bruelheide (2014);

Kr€ober et al. (2014a,b).

Statistics

To test for spatial autocorrelation between the plots, Mor-

an’s I was calculated, using the ape package in R (http://

cran.r-project.org/web/packages/ape/index.html). To test

for interrelationships between all traits, we calculated

Gower’s distance between traits, which allows for the pro-

cessing of traits of different scales using the ade4 package

of R (Dray & Dufour 2007). Thereafter, a principal coor-

dinate analysis (PCoA) was carried out, and the correla-

tions between traits and PCoA axes were obtained by post

hoc correlation using the envfit function in the vegan

package (Oksanen et al. 2013).

CWM values of traits were calculated according to Gar-

nier et al. (2004) and FDQ (Rao’s quadratic entropy)

according to Botta Duk�at (2005). Both CWM and FDQ

were weighted by the frequency of the tree species in each

plot. According to the design of the BEF-China experi-

ment, all tree species in each plot were represented by the

same number of trees. However, due to mortality, the

number of trees per species on which growth rates were

measured varied somewhat, so we made sure that the

same proportions of trees that were used to calculate plot

means of crown diameter growth rates were also used for

calculating CWM and FD. All predictor variables were

scaled by mean and standard deviation, which allowed for

the interpretation of the effect sizes with regard to their

importance on crown width growth rate. In a first step,

we analyzed the impact of each single predictor on crown

diameter increment using separate linear models. We

then tested the trait complexes in combination according

to D�ıaz et al. (2007) for their explanatory power in

predicting crown growth. As many different trait combi-

nations can equally explain plant growth (Marks and

Lechowicz 2006a,b), we tested all possible combinations

of the predictor variables and then selected the best

model that had a maximum of five predictor variables

based on Akaike’s information criterion, corrected for

small sample sizes (cAIC) using the MuMIn package in R

(Barton 2014). The independent effect of each predictor

variable in the final model on crown growth was assessed

by plotting the residuals of crown width growth rates

against this predictor variable. The residuals were

obtained from a model that contained all predictors

except the focus variable. Finally, to test the impact of the

three predictor groups (environment, CWM and FD), we

applied variance partitioning with all the significant pre-

dictors using the vegan package in R (Oksanen et al.

2013). For all statistical analyses, we used the software R

version 3.1.0 (R Core Team 2014).

Results

The analysis of spatial autocorrelation of tree crown

diameter increment showed a Moran’s I value of 0.0059,

which was not significantly different (P = 0.1128) from

the expected value (�0.0044). Contrary to our expecta-

tions, environmental factors had no significant effects on

plot means of annual crown width growth rates (Table 1).

The best environmental predictor was slope inclination

(SLOPE), which nonetheless only had a marginally signifi-

cant effect on crown width (CW) growth rates

(P = 0.091). Testing for combinations of all environmen-

tal variables in all possible multipredictor models, the

minimal model only retained altitude and eastness, both

of which had a negative impact on tree growth (Table 3).

This means that the plot mean of tree crown diameter

Table 1. Impact of environmental variables on crown growth.

Abbreviation Predictor Source Estimate r2 P

ALT Altitude DEM �0.05 0.01 0.11

SLO Slope DEM �0.38 0.01 0.09

SOLAR Solar radiation DEM 0.00 0.00 0.31

CURV X Profile curvature DEM 0.02 0.00 0.50

CURV Y Plan curvature DEM 0.00 0.00 0.94

NORTH Aspect northness DEM, cosine of slope �0.47 0.00 0.81

EAST Aspect eastness DEM, sine of slope �3.62 0.01 0.11

PH Soil pH (KCl) Soil sampling, pH electrode 0.80 0.00 0.92

N Soil nitrogen content Soil sampling, total CN analyzer 13.99 0.00 0.71

C Soil carbon content Soil sampling, total CN analyzer �0.28 0.00 0.88

CN Soil carbon nitrogen ratio Soil sampling, total CN analyzer �0.31 0.00 0.62

The effect of environmental predictors on crown width growth rate, assessed as plot mean values between 2011 and 2010. All environmental

variables are scaled by mean and standard deviation; as such, the estimates show the direction and magnitude of impact on CW growth rates.

DEM: digital elevation model.
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growth at the plot level was larger at low elevations (val-

leys and foot slopes) and on west-facing slopes than high

elevations and east-facing slopes (Fig. 1). However, the

minimal environmental model only explained 3.8% of the

total variation in crown width growth rates (Table 3).

The results of the principal coordinate analysis (PCoA)

of all 41 traits are shown in Figure 2A,B for axis one ver-

sus two and one versus three, respectively. The first axis

reflected the leaf economics spectrum with leaf toughness

and C/N ratio versus SLA, while the second axis was

characterized by wood density and LDMC and the third

axis by leaf hydraulics. Numerous traits had significant

effects on plot tree growth, which was also evident by the

inclusion of many CWM and FD predictors in the mini-

mal multiple regression models (Table 3). In total, 25 and

15 of the 41 variables produced significant single predic-

tor models for CMW and FD, respectively (Table 2). The

best single CWM predictor for CW growth rates was

number of palisade parenchyma layers (PALSTR,

r2 = 0.24), while the best FD predictor was the presence

of extra-floral nectaries (EXTRAFLORAL, r2 = 0.10), a

trait only encountered in four of the 23 species (i.e.,

Diospyros japonica, Melia azedarach, Triadica cochinchi-

nensis, and T. sebifera, Table S2). Many significant CWM

predictors were typical traits of the LES, such as specific

leaf area (SLA), leaf nitrogen, potassium and magnesium

content (LNC, K, MG), and the leaf carbon to nitrogen

ratio (CN). However, except for magnesium, these vari-

ables had lower estimates compared to morphological and

anatomical variables such as leaf toughness, leaf dry mat-

ter content (LDMC), leaf thickness, the presence of a

subepidermis, number of palisade parenchyma layers, and

the presence of a column of sclerenchyma cells through

the leaf (Table 2). In the minimal multipredictor model

(Table 3), some of these variables, such as water potential

(WPOT), stomata size (STOMSIZE), or wood density

(WOODDENS), had positive effects on crown width

growth rates, while leaf toughness (LEAFT) and leaf mag-

nesium content (MG) had negative effects (Fig. 3). A

principal component analysis revealed that trait interrela-

tionships did not influence the final minimal model (see

PCA scores in Table S3A, S3B, S3C).

Significant FD variables were essentially a subset of the

significant CWM variables, except for wood density, leaf

area (LA), leaf calcium content (CA), the ratio of palisade

to mesophyll layer thickness (LOG10RATIO), and the

presence of extra-floral nectaries (EXTRAFLORAL), for

which only FD but not CWM had a significant effect on

CW growth rate. In addition, there were two variables,

hydraulic conductance (KS) and vein length (VEIN-

LENGTH), for which FD had a higher explanatory power

than CWM.

Interestingly, the minimal multipredictor model for the

FD–growth relationship included variables with both pos-

itive (WPOT, VEINLENGTH, EXTRAFLORAL) and neg-

ative effect sizes, such as stomata index (STOIND) and

number of palisade layers (PALSTR, Fig. 4).

In combination, the three best multipredictor models

of environment, CWM, and FD explained 51% of varia-

tion of plot-level crown width growth rates (Fig. 5).

CWM explained most variation, both in terms of exclu-

sive impact on tree growth that was not captured by envi-

ronment or FD and in terms of shared variance with

environment and FD. For example, of the 31% variance

in crown diameter growth explained by FD, two thirds

(i.e., 22%) were also shared by CWM predictors. There

was almost no variation left that was exclusively explained

by environment (1%).

Discussion

Using the combined information of selected environmen-

tal variables, community-weighted means, and functional

diversity, we could account for 51% variability of crown

width growth rates. Contrary to expectations, no single

variable explained crown diameter growth to a sufficient

(A) (B)

Figure 1. Mean annual crown width growth

rate as predicted by the environment

multipredictor model. The residuals from all

other terms in the model are plotted against

(A) slope aspect (East) and (B) altitude. Each

dot represents a single plot. All predictor

variables are scaled by mean and standard

deviation; as such, the slope of the regression

shows the direction and magnitude of impact

on CW growth rates. The panels have been

arranged in the sequence of decreasing order

of effect sizes. For statistical details, see

Table 3.
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degree. The largest proportion of variance explained by a

single variable was 24% (number of palisade parenchyma

layers). Nevertheless, our first hypothesis was confirmed

as we identified some single key variables for tree growth,

albeit with the most powerful ones being based on com-

munity mean trait values. In contrast, environmental vari-

ables turned out to be weak predictors for crown growth

and explained less than 4%, while functional diversity

explained up to 31% and community-weighted means up

to 42% of crown growth. Thus, we have to reject our sec-

ond hypothesis of a dominant impact of environment on

tree growth at this early stage of the experiment.

The low importance of environment was unexpected,

given the high topographic heterogeneity and large size of

the experiment. Altitude had a negative impact on tree

growth, which was opposite to the findings on initial tree

survival at the same site (Yang et al. 2013). Altitude

affected productivity in a similar way in the Sardinilla

study from central Panama (Healy et al. 2008). In Sar-

dinilla, the single environmental variable with the highest

impact on productivity was slope inclination, followed by

water drainage quality. Total variance of productivity

explained by environment in Sardinilla was 35%. However,

the Sardinilla plots only differed by 8 m in altitude, while

our site varied by 170 m, but with a total experiment size

of 26.7 vs. 8 ha in Sardinilla (Bruelheide et al. 2014).

Interestingly, many environmental variables with reported

effects in the literature did not have any significant impact

on plot mean crown diameter growth in the BEF-China

experiment, such as pH. Soil pH is well-known to limit

nutrient availability (Lambers et al. 2008) and was found

to limit tree growth in primeval forests in the Changbais-

han in northeastern China (Yang et al. 2009). Increasing

soil pH, in addition to increasing elevation, showed nega-

tive effects on aboveground biomass increment in tropical

Andean forests (Unger et al. 2012).

The negative effect of higher elevation might be

explained by a temperature gradient, with lower tempera-

tures at higher elevations being disadvantageous in winter

and spring, or lower slope locations being more sheltered

from wind. However, there is no indication that elevation

has indirect effects via differing soil conditions, as all

these did not result in significant models. The fact that

higher crown width growth rates were observed in plots

on west-facing slopes may be due to the longer lasting

effects of morning dew in summer, which might result in

lower values of vapor pressure deficit (vpd) in the morn-

ing, which in turn would allow trees to have a prolonged

period of gas exchange and, consequently, higher rates of

carbon assimilation before stomata closure occurs at

increasing vpd values. We have to consider that the selec-

tion of environmental variables included in this study

might not have captured the key environmental drivers

for tree growth. For example, direct microclimate mea-

surements would have been desirable; however, we expect

that microclimate reflects topography and would show

strong differences between north- and south-facing slopes.

Similarly, further nutrients would be expected to covary

with total soil C concentration, which had no effect on

tree growth.

(A) (B)

Figure 2. Principal coordinate analysis (PCoA) biplots of the traits listed in Table 2. (A) PCoA axes 1 and 2, and (B) PCoA axes 1 and 3. See

Table 2 for coding of trait names. Eigenvalues: axis 1 = 0.352, axis 2 = 0.236, axis 3 = 0.208, with cumulative proportion of explained variance

20.9, 34.9, and 47.2%, respectively. Species abbreviations refer to genus and species epithet; see supplementary material Table S2 for full species

names.
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Table 2. Impact of CWM and FD on crown growth.

Abbreviation Predictor Source

CWM FD

Estimate r2 P Estimate r2 P

PSI50 Loss of 50% initial flowrate Scholander pressure bomb 0.84 0.00 0.50 �0.40 0.00 0.75

KS Maximum flowrate Laboratory measurements 2.46 0.02 0.05 5.19 0.08 0.00

B Parameter b (Sigmoid Regression) Scholander pressure bomb �6.20 0.11 0.00 �3.44 0.03 0.01

CONMEAN Average stomatal conductance Steady state porometer 5.27 0.08 0.00 2.66 0.02 0.03

CONMAX Maximum stomatal conductance Steady state porometer 3.99 0.05 0.00 1.21 0.00 0.33

VPDMAX Vpd at CONMAX Steady state porometer �0.82 0.44 0.51 �0.32 0.00 0.80

CONMAXFIT Relative fitted Max.

stomatal conductance

Steady state porometer 2.32 3.57 0.06 1.62 0.01 0.19

CONMAXFITA Absolute fitted Max.

stomatal conductance

Steady state porometer 5.00 0.07 0.00 2.73 0.02 0.03

VPDMAXFIT Vpd at CONMAXFIT Steady state porometer 1.73 0.01 0.16 0.25 0.00 0.84

VPDPOI Vpd at point of inflection of

fitted stomatal conductance

Steady state porometer 0.50 0.00 0.69 0.29 0.00 0.81

WOODDENS Wood density Laboratory measurements 0.42 0.00 0.74 4.42 0.06 0.00

WPOT Water potential Scholander pressure bomb 7.74 0.17 0.00 4.68 0.06 0.00

LA Leaf area Laboratory measurements 1.10 0.00 0.38 4.55 0.06 0.00

LDMC Leaf dry matter content Laboratory measurements �7.24 0.15 0.00 2.09 0.01 0.09

SLA Specific leaf area Laboratory measurements 4.05 0.05 0.00 0.66 0.00 0.59

LEAFT Leaf toughness Leaf toughness device �7.65 0.17 0.00 �0.40 0.00 0.75

STOMDENS Stomata density Microscope �3.40 0.03 0.01 1.80 0.01 0.15

STOMSIZE Stomata size, ellipse from

stomata length and width

Microscope 1.87 0.01 0.13 1.24 0.00 0.31

STOIND Stomata index Microscope �2.95 0.02 0.02 1.82 0.01 0.14

LNC Leaf nitrogen content CN analyzer 2.88 0.02 0.02 �1.99 0.01 0.11

LCC Leaf carbon content CN analyzer 0.62 0.00 0.62 0.73 0.00 0.56

CN Leaf carbon nitrogen ratio CN analyzer �3.48 0.03 0.00 �0.80 0.00 0.52

CA Leaf calcium content Atom absorption

spectrometer

�1.55 0.01 0.21 3.35 0.03 0.01

K Leaf potassium content Atom absorption

spectrometer

4.30 0.05 0.00 �0.19 0.00 0.88

MG Leaf magnesium content Atom absorption

spectrometer

6.78 0.13 0.00 1.27 0.00 0.31

DIAMVEIN1 Diameter veins 1st order Microscope 2.41 0.02 0.05 0.79 0.00 0.53

DIAMVEIN2 Diameter veins 2nd order Microscope 3.88 0.04 0.00 2.75 0.02 0.03

VEINLENGTH Length of first-order veins per cm2 Microscope �3.09 0.03 0.01 4.49 0.06 0.00

UPPEREPI Upper epidermis thickness Microscope �1.28 0.00 0.30 0.78 0.00 0.53

PALIS Palisade parenchyma thickness Microscope �3.73 0.04 0.00 2.70 0.02 0.03

SPONGY Spongy parenchyma thickness Microscope �3.88 0.04 0.00 1.42 0.01 0.25

LOG10RATIO Log ratio of the palisade to

spongy parenchyma thickness

Microscope 0.28 0.00 0.82 2.81 0.02 0.02

LEAFTHICK Leaf thickness Microscope �5.33 0.08 0.00 1.57 0.01 0.21

SUBEPID Presence of a subepidermis Microscope �5.32 0.08 0.00 �3.96 0.04 0.00

EPICELLSIZ Ratio of the cell size of

upper and lower epidermis

Microscope 4.58 0.06 0.00 �2.37 0.02 0.05

PALSTR Number of palisade

parenchyma layers

Microscope �9.10 0.24 0.00 �1.01 0.00 0.41

EXCRET Presence of excretory glands Electron microscope �0.11 0.00 0.93 0.05 0.00 0.97

DENSINTCEL Density of spongy parenchyma Microscope 1.33 0.01 0.28 2.35 0.02 0.06

COLSCLER Presence of a column of

sclerenchyma cells through the leaf

Microscope �5.30 0.08 0.00 �3.93 0.04 0.00

PAPILL Presence of papillae Electron microscope �3.06 0.03 0.01 0.36 0.00 0.77

EXTRAFLORAL Presence of extra-floral nectaries Observation 1.85 0.01 0.13 5.96 0.10 0.00

The effect of community-weighted mean (CWM) values and functional diversity (FD) of single traits on crown width (CW) growth rate, assessed

as plot mean values between individual differences crown width in 2011 and 2010. All variables are scaled by mean and standard deviation; as

such, the estimates show the direction and magnitude of impact on CW growth rates.
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With respect to community-weighted means (CWMs),

we found traits of the leaf economics spectrum (LES) to

affect tree growth, with a positive effect shown for specific

leaf area (SLA) and leaf magnesium content (MG).

Nonetheless, morphological and anatomical traits, such as

leaf toughness and thickness, number of palisade parench-

yma layers, and the presence of a subepidermal layer, had

a higher explanatory power than typical LES traits. The

number of palisade parenchyma layers had already been

identified as a good proxy for maximum stomatal con-

ductance (CONMAX) (Kr€ober et al. 2014a), and thus,

increasing tree growth would have been expected with

increasing number of palisade parenchyma layers. The

best 5-predictor model for CWM variables comprised two

traits of leaf morphology (leaf toughness and stomata

size) and one of plant hydraulics (water potential), while

only Mg concentration (MG) was included as a typical

LES trait and wood density as a key trait of the wood

economics spectrum (Baraloto et al. 2010; Freschet et al.

2010; Mart�ınez-Cabrera et al. 2011). This complex of

morphological, anatomical, and physiological traits sup-

ports the idea that integrating more and novel functional

traits might increase the predictability of ecosystem func-

tioning and, consequently, the reliability of products

based on these relationships, such as dynamic vegetation

models (Scheiter et al. 2013). As the different variables in

the multipredictor model explained additional variation

in crown width growth rates, they were not fully collinear

to each other, showing that the leaf and wood economics

spectrum did not perfectly match (Baraloto et al. 2010).

The comparably low explanatory power of LES traits on

tree growth in the single predictor models and their con-

trasting role in the multipredictor model challenges the

assumption of a universal positive growth–LES effect on

tree growth. Trees may also behave differently from

herbaceous plants, particularly where strong positive

growth–LES relationships have been described (Grime

and Hunt 1975; Poorter and van der Werf 1998). The

low predictive power for tree growth has been recently

demonstrated in a meta-analysis that estimated size-stan-

dardized relative growth rates for 278 tree species from 27

sites around the world and found no significant relation-

ship to SLA or wood density (Paine et al. 2015). Another

variable in the best multipredictor model was stomata

size, which enables species to attain maximum stomatal

conductance at low vpd values (Kr€ober and Bruelheide

2014). Furthermore, tree crown growth was positively

related to xylem water potential measured in the field,

showing that species grew more vigorously when they

were able to keep their water status at a more moderate

level. This was also reflected in leaf toughness, which had

the highest explanatory power in the multipredictor

model and can be interpreted as a key defense trait

against herbivores (Kursar and Coley 2003). In our

model, species grew better when they invested less in

physical defense.

Although we encountered approximately three times

the amount of significant relationships between CWM

Table 3. Multipredictor model coefficients for environmental variables, CWM, and FD.

Model r2 Significant predictors Abbreviation Estimate P

Environment 0.04 Altitude + ALT �0.08 0.0129

Aspect (east) EAST �6.03 0.0125

CWM 0.44 Leaf toughness + LEAFT �14.5 <0.001

Leaf magnesium content + MG �11.1 <0.001

Stomata size + STOMSIZE 7.2 <0.001

Wood density + WOODDENS 2.9 0.0103

Water potential WPOT 13.0 <0.001

FD 0.31 Extra-floral nectaries + EXTRAFLORAL 3.93 0.0011

Number of palisade layers + PALSTR �8.41 <0.001

Stomata index + STOIND �11.46 <0.001

Vein length + VEINLENGTH 9.27 <0.001

Water potential WPOT 12.14 <0.001

Combined 0.51 Altitude + aspect (east) + leaf

toughness + leaf magnesium content +

stomata size + wood density + water

potential + extra-floral nectaries +

number of palisade layers + stomata

index + vein length + water potential

Results of the minimum multipredictor models for environmental variables, community-weighted mean (CWM) values, and functional diversity

(FD) and the overall model combining these three multipredictor models. All variables are scaled by mean and standard deviation; as such, the

estimates show the direction and magnitude of impact on CW growth rates.
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than FD to single traits, there were several FD traits that

showed significant effects on crown diameter increment

that complimented CWM effects. The significance of FD

at this early stage shows that effects of complementarity

in resource use have already emerged. In principle, the

traits with significant FD effects on tree growth can be

thought to operate through spatial complementarity, such

as wood density and leaf area. The joint occurrence of

species with low and high investment in wood allows a

community to quickly build up tall canopies with fast-

growing species while forming a second layer of more

slowly growing, durable-wood species. In Iberian forests,

canopy trees with denser wood had lower maximum

height and wider crown widths (Poorter et al. 2012b). As

wood density and physiological strategies of trees are clo-

sely related (Santiago et al. 2004), a wide range of wood

density in a plot might increase the total amount of

resources captured in this plot. Leaf area plays a central

role in leaf trait relationships because the mass-normal-

ized traits in the leaf economics spectrum are propor-

tional to leaf area (Osnas et al. 2013). Thus, leaf area

might represent a sum variable that captures variance in

(A) (B)

(C) (D)

(E)
Figure 3. Mean annual crown width growth

rate as predicted by the CWM multipredictor

model. The residuals from all other terms in

the model are plotted against (A) leaf

toughness, (B) water potential, (C) leaf

magnesium content, (D) stomata size, and (E)

wood density. Every dot represents one plot.

All predictor variables are scaled by mean and

standard deviation; as such, the slope of the

regression shows the direction and magnitude

of impact on CW growth rates. The panels

have been arranged in the sequence of

decreasing order of effect sizes. For statistical

details, see Table 3.
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other variables in the LES as well as morphological traits,

such as palisade parenchyma thickness (PALIS) and the

palisade to mesophyll ratio (LOG10RATIO). Particularly

in young plantations, large-leaved species can quickly

increase a stand’s leaf area index, while species with smal-

ler leaves follow a more invariable investment strategy.

Studies on crown filling in the BEF-China experiment are

still ongoing, but results from natural forests revealed that

diverse plots have a higher crown overlap than species-

poor plots (Lang et al. 2012). Species with small leaves

also tend to be evergreen (Kr€ober et al. 2014a) and may

also be complementary to large-leaved deciduous species

in time. In our study, traits that potentially contribute to

temporal complementarity were all related to plant water

relations, such as specific hydraulic conductance of the

xylem (KS), xylem water potential, leaf vein length and

diameter, and leaf stomatal conductance. FD in these

water flux-related traits can increase growth rates where

some species display high carbon assimilation rates under

optimal humid conditions, while others continue with

(A) (B)

(C) (D)

(E)Figure 4. Mean annual crown width growth

rate as predicted by the FD multipredictor

model. The residuals from all other terms in

the model are plotted against (A) water

potential, (B) stomata index, (C) leaf vein

length, (D) number of palisade parenchyma

layers, and (E) the presence of extra-floral

nectaries. Every dot represents one plot. All

predictor variables are scaled by mean and

standard deviation; as such, the slope of the

regression shows the direction and magnitude

of impact on CW growth rates. The panels

have been arranged in the sequence of

decreasing order of effect sizes. For statistical

details, see Table 3.
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carbon sequestration in dry spells, which frequently occur

in summer at the experimental site (Zhou et al. 2011,

2013). Interestingly, FD of some traits also had negative

effects on crown width growth rates, such as slope of the

xylem vulnerability curve (B), the presence of a subepi-

dermis, and the presence of columns of sclerenchyma cells

in the leaf. In principle, negative estimates of FD can only

be interpreted as corroborating the CWM signal of these

traits, which was also negative in all these cases. While

positive FD effects can only arise when growth is higher

in mixtures than in monocultures, irrespective of the

traits considered, negative FD effects only occur when the

traits considered promote growth toward the extreme val-

ues where CWM and FD show a strong covariation (Dias

et al. 2013). In addition, some traits may act through

facilitation, that is, by enhancing the growth of different

species’ individuals. Such a trait is most likely to be the

presence of extra-floral nectaries, which was the FD trait

in the single predictor models with the highest impact on

crown width growth. Interestingly, the presence of one of

the four species with such nectaries in a plot increased

overall plot mean crown growth rates. Extra-floral nec-

taries have previously been shown to have large effects on

plant performance through ant–plant mutualism, as ants

attracted by extra-floral nectaries have been found to

reduce infestation levels of herbivores (Oliveira 1997).

While the presence of extra-floral nectaries be beneficial

for the target plant itself (Kersch-Becker et al. 2013;

Pereira and Trigo 2013), they may have positive effects at

the community level (Koptur 1992). The multipredictor

model for the FD–growth relationship included the

presence of extra-floral nectaries, which can be inter-

preted as facilitation. Further variables included in the

model point to temporal complementarity, while most

variables related to spatial complementarity did not enter

the final model.

Combining environment, CWM, and FD in the overall

model confirms that environment has a very minor bear-

ing on tree growth, which contrasts with Li et al. (2014),

who carried out single-tree-level analyses at the same site

and using the same crown width growth data as that for

our study. This indicates that individual trees respond

much more strongly to topography and soil than plot-

level mean growth. However, the overall contribution of

soil variables, such as C and N content, on individual tree

growth was also low at the single tree level (Y. Li, unpubl.

data). A further reason for the discrepancy between plot

and single-tree-level data was that Li et al. (2014) treated

species as a random factor and consequently assigned all

trait differences between species to random variation,

whereas we accounted for such differences in CWM func-

tional traits. Similarly, FD was also only partially repre-

sented in the single-tree models of Li et al. (2014) by

including Shannon diversity of the local neighborhood,

which was found to not contribute to explaining crown

growth. Thus, FD may capture more unexplained varia-

tion than Shannon diversity. In addition, FD effects may

only play out when scales larger than the immediate

neighborhood are considered, that is, on whole plots that

contained 400 tree individuals.

It should also be noted that the environmental vari-

ables included in our study did not sufficiently reflect

resource supply. While many variables showed only a very

low amount of variation among plots, such as soil pH,

other soil variables such as nitrogen content or carbon to

nitrogen ratio might reflect the preplanting conditions of

the conifer plantations of Pinus massoniana and Cunning-

hamia lanceolata, which may have levelled out differences

among plots. As such, some key variables for tree growth

such as phosphorus supply have been excluded in our

study. However, considering that soil variables are known

for their strong spatial autocorrelation (Hengl et al.

2004), we would not expect them to have such a large

impact on crown diameter increment, as this response

variable was randomly distributed in space.

Although our overall model explained 51% of variation

in plot-level crown growth, a substantial amount of varia-

tion in the growth–trait relationship remained unex-

plained, which is typical of tree growth studies (ter Steege

2003; Poorter et al. 2008; Mart�ınez-Vilalta et al. 2010;

Wright et al. 2010; R€uger et al. 2012). Possible causes for

unexplained variation might include negative biotic inter-

actions such as pathogens or herbivores, both of which

reduce potential growth rates. As such, field studies most

probably produce different conclusions to that of green-

house trials, which assess potential growth rates under the

Figure 5. Plot of the partitioned variance explained by the three

different variable complexes, green = environment, purple = CWM,

light blue = FD; values below 0.01 not shown. For statistical details,

see Table 3.
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exclusion of biotic interactions and show strong relation-

ships to functional leaf traits (B€ohnke and Bruelheide

2013). Moreover, juvenile trees may allocate resources to

the expansion of their root system for several years with-

out showing any substantial aboveground growth, espe-

cially in dry or nutrient-poor forests (Poorter et al.

2012a).

Conclusion

It is important to note that our study was conducted at

an early stage of the experiment, at which time the system

is neither stable nor in equilibrium, and as trees continue

to grow, tree–tree interactions will become increasingly

intense. At present, forest growth is still dominated by

CWM effects, but an increasing impact of FD at the

expense of CWM effects may be expected in the future.

The role of the environment is, however, unpredictable. A

distinction can be made between environmental variables

that are temporally invariable (such as slope, aspect, ele-

vation) and those that are dynamic (such as microclimate,

content of soil organic matter and nutrients, and soil

reaction). While invariable abiotic site conditions are not

important at present, dynamic environmental variables

will become increasingly affected by tree growth. Thus,

we expect that tree growth feeds back on this aspect of

the environment. In particular, with respect to biodiver-

sity, the dynamic environment can take the form of a

positive feedback loop, whereby a higher variation of

organisms that depend on higher tree richness modifies

the abiotic environment to their own favor. Therefore, it

may be the case that diversity creates conditions that are

amenable to more diversity. In this respect, the process

might be similar to niche construction models for single

species discussed by Odling-Smee et al. (2003). Where

biodiversity has an effect by modifying the environment,

an increase in the importance of the dynamic environ-

ment components can be expected.
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