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Abstract: The greatest challenge in the analysis of herbal components lies in their variety and com-
plexity. Therefore, efficient analytical tools for the separation and qualitative and quantitative analysis
of multi-components are essential. In recent years, various emerging analytical techniques have
offered significant support for complicated component analysis, with breakthroughs in selectivity,
sensitivity, and rapid analysis. Among these techniques, supercritical fluid chromatography (SFC) has
attracted much attention because of its high column efficiency and environmental protection. SFC can
be used to analyze a wide range of compounds, including non-polar and polar compounds, making
it a prominent analytical platform. The applicability of SFC for the separation and determination
of natural products in herbal medicines is overviewed in this article. The range of applications
was expanded through the selection and optimization of stationary phases and mobile phases. We
also focus on the two-dimensional SFC analysis. This paper provides new insight into SFC method
development for herbal medicine analysis.

Keywords: supercritical fluid chromatography; herbal medicines; stationary phase; mobile phase;
multidimensional chromatography; application

1. Introduction

Herbal medicines (HMs), the main carrier of traditional Chinese medicines (TCMs),
have been widely used for disease treatment and human health care [1]. Nowadays, some
effective natural components such as berberine, ephedrine, and artemisinin have been
developed into modern medicines. However, most HMs are used in multiple component
forms, such as Ginkgo biloba extracts, ginseng preparations, and Ganoderma lucidum spore
powder [2]. Therefore, an analysis of the multiple chemical constituents in HMs not only
provides opportunities for new drug discovery but is also key to the quality control of HMs.

Liquid chromatography–mass spectrometry (LC-MS) as well as gas chromatography–
mass spectrometry (GC-MS) have been widely used for complicated component analysis [3].
Although various MS detectors provide high sensitivity and resolution for the identification,
quantification, and confirmation of analytes, the main drawback of these detectors is the
matrix effect, which can be solved with a previous chromatographic separation [4]. As HMs
usually comprise hundreds of constituents that belong to diverse chemical and physical
properties, the choice of chromatographic type depends to a large extent on the properties
of the analyte (polarity, volatility, etc.). LC is the most popular separation strategy for
TCM research [5], possibly because of its various separation mechanisms, such as reversed-
phase, normal-phase, hydrophilic interaction chromatography, ion exchange, and others.
Meanwhile, the use of sub-2 µm particle-size columns significantly increases separation
efficiency [6], and comprehensive two-dimensional LC improves peak capacity [7], making
LC suitable for the qualitative and quantitative analysis of multiple components in HMs [8].

Supercritical fluid chromatography (SFC) is a chromatographic technique that uses
a supercritical fluid, a low-viscosity solvent, as the mobile phase. The most commonly
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used supercritical fluid is carbon dioxide (scCO2), which has a similar polarity to hexane
or pentane [9]. Klesper [10] first used supercritical fluids in chromatography in 1962, and
capillary column SFC (cSFC) was developed about 20 years later [11–13]. Considered
an advanced application of gas chromatography (GC), cSFC is typically combined with
the flame ionization detector (FID) and requires pure supercritical fluid as the mobile
phase. This property limits it to only hydrophobic compounds, and it has a narrow
scope of application, which is possibly the reason that cSFC disappeared in the 1990s [14].
After the development of SFC equipment that overcame the deficiencies in instrumental
stability and detection sensitivity, modern SFC was resurgent. To date, the commercial SFC
instrumentation, such as the Waters ACQUITY UPC2, the Agilent 1260 Infinity Hybrid
UHPLC/SFC, the Shimadzu online SFE-SFC system, or the Jasco SFC Hybrid system
between analytical and preparative SFC [15], improves a new chemical separation strategy
in HM analysis.

Compared with HPLC, due to its higher flow rate and lower viscosity, SFC has the
following advantages: (a) a lower pressure at the high flow rate, (b) a shorter analysis time
for high-throughput analysis, (c) a good separation efficiency and unique selectivity, and
(d) less organic solvent consumption for environmental friendliness. However, it has some
limitations: (a) more operating parameters (the flow rate, column temperature, and pres-
sure were coupled such that one of them changed as the others changed) and (b) a strong
solvent effect (the selection of dissolution solvents for polar compounds is limited) [16].
Compared with GC, SFC enables a wider selection range of operating conditions and effi-
cient separation of thermally labile compounds. Furthermore, SFC required fewer organic
solvents, and the peak broadening of SFC is narrower than that of LC. For example, for the
analysis of the indole and oxindole alkaloids in Mitragyna speciosa plants, the established
UHPLC method required acetonitrile and water with ammonium acetate, which resolved
the major alkaloids in 30 min but was not specific to the mitragynine diastereoisomers. The
alkaloid diastereoisomers without derivatization could not be separated by the established
GC method (18 min), and the required high temperature for alkaloids analysis in GC
imposed a severe restriction on the adjustment of some parameters for resolution. The eight
major compounds, including two pairs of diastereoisomers, were successfully separated by
SFC in 8 min, which is faster and more efficient than HPLC and GC when using the UV
detector [17].

The SFC separation of multi-components containing various types or classes in HMs
mainly depends on the selection of stationary phases and the optimization of mobile phases.
Meanwhile, its analytical capacity could be improved based on the two-dimensional mode.
Therefore, we focus on the selection of the above-mentioned factors and summarize the
application of SFC in HM analysis (2010–2021).

2. Selection of Stationary Phases

West and Lesellier [18–20] have published a series of articles to study SFC stationary
phases. The linear solvation energy relationship (LSER) model illustrates column properties
using Abraham descriptors, as described by the Equation (1):

log k = c + eE + sS + aA + bB + vV (1)

The capital letters indicate interactions between solutes and columns. The E, S, A,
B, and V represent the charge transfer interaction, dipole–dipole interaction, hydrogen-
bond donor, hydrogen-bond acceptor, and dispersion. The lower-case letters represent the
coefficient values, and c is the intercept term of the model.

This model is specific to neutral analytes. Therefore, the model could be upgraded
and two descriptors are introduced for ionic compounds [21], as follows Equation (2):

log k = c + eE + sS + aA + bB + vV + d−D− + d+D+ (2)
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D− represents the ionic interaction performed by anionic and zwitterionic ions, and
D+ represents the ionic interaction generated by cationic and zwitterionic ions. For chiral
stationary phases [22,23], two additional descriptors, the flexibility of the analytes (F)
and globularity (G), were introduced to provide complementary information, as follows
Equation (3):

log k = c + eE + sS + aA + bB + vV + f F + gG (3)

A positive coefficient shows the interaction between the solute and the stationary
phase, while a negative coefficient represents the interaction with the mobile phase. The
coefficient is numerically larger, indicating a stronger interaction. This theory provides
guides for selecting appropriate chromatographic columns.

2.1. Non-Polar Stationary Phases

The non-polar stationary phases, such as the C8, C18, and C30 columns, consist of
alkyl-bonded stationary phases that do not have hydrophilic groups. These columns are
suitable for the separation of hydrophobic compounds such as lipids, carotenoids, terpenes,
and many substances with low polarities (e and v are positive). Polar analytes generally
show poor retention behaviors (s, a, and b are negative) and have poor peak shapes [19,24].

SFC was sometimes considered reverse-phase liquid chromatography (RPLC) in this
condition [15], but it is worth noting that the mobile phase of SFC is usually a mixture
of low-polar CO2 and a more polar modifier. During the gradient elution procedure, the
proportion of modifiers is gradually increased. Therefore, the polarity of the mobile phase
changes from low to high, and it is not similar to RPLC.

Carotenoids are the natural pigments with health benefits in plant seeds. The C18
and C30 columns are the most commonly used stationary phases for the separation of
carotenoids. The Giuffrida group [25] performed an SFC-APCI-QQQ-MS method for the
determination of apocarotenoids in Capsicum chinense. In this study, 25 apocarotenoids were
identified on a novel C30 fused-core column with sub-2 µm particles within 5 min, including
14 free apocarotenoids and 11 apocarotenoids fatty acid esters. Furthermore, an online
supercritical fluid extraction–supercritical fluid chromatography–mass spectrometry (SFE-
SFC-MS) system was then developed for the extraction and identification of carotenoids in
Capsicum chinense [26]. The extraction process had no saponification step and was optimized
by changing the pressure, temperature, and modifier percentage. The conditions for the
complete extraction of all carotenoids were 150 bar, 80 ◦C and 20% MeOH (extraction
yield about 50%). Twenty-one carotenoids were extracted and identified on the novel C30
fused-core column within 17 min, including free, monoester, and diester carotenoids. The
methodology was also applied to the characterization of carotenoids and apocarotenoids
in Solanum betaceum fruits [27]. Compared to the traditional YMC C30 column, the novel
C30 fused-core column could provide a shorter elution time of about 6 min and a better
separation of carotenoid diesters. In brief, SFC is suitable for the carotenoid separations
due to the short analysis time, efficient resolution, and low organic solvent consumption.

The orthogonality between SFC and RPLC was investigated by comparing the elution
order when identifying sesquiterpenes and other components from Matricaria chamomilla
and Chamaemelum nobile extracts. The elution orders of each peak in SFC and RPLC are
inverse, demonstrating the high orthogonality of the two chromatographic techniques [28].

2.2. Polar Stationary Phases

SFC is generally performed as a normal-phase liquid chromatography (NPLC) mode
using a polar stationary phase. The polar stationary phases include bare silica gel, 3-
aminopropyl bonded silica (NH2), 3-cyanopropyl bonded silica (CN), propanediol bonded
silica (Diol), and others. The moderately polar stationary phases include numerous aromatic
stationary phases and short-chain alkyl stationary phases, such as phenylhexyl (C6PHE),
phenylpropyl (C3PHE), pentafluorophenyl (PFP), and diphenyl (DP) bonded silica. These
columns offer more options for SFC separation. These stationary phases are suitable
for the analysis of polar compounds such as saponins and phenolics (a, b, e, s, and d+
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are positive, while v and d− are negative) [20]. If the stationary phase contains silanol
groups, the alcohol modifier converts the silanol to silyl ether, altering the chromatographic
retention and selectivity. This phenomenon also occurs in hydrophilic interaction liquid
chromatography (HILIC) or RPLC. However, the mobile phase with significant amounts
of water quickly removes the silyl ethers. Therefore, it is often recommended to store SFC
columns in pure carbon dioxide to prevent changes in the stationary phase properties [29].

The specific SFC stationary phase, the 2-ethylpyridine (2-EP) column, was designed
for the analysis of basic compounds such as alkaloids without the use of basic mobile phase
additives. The nitrogen atoms of the pyridine moiety of the stationary phase possess hydro-
gen bonding acceptor capabilities. Under the acidic conditions generated by methanol and
scCO2, the 2-EP moiety becomes protonated and positively charged, creating electrostatic
repulsion with the analytes and forming π-π interactions with the basic analytes. The
interactions mentioned above affect the retention behavior of the alkaloids. The hydrogen
bonding interaction of the stationary phase is strongly influenced by the modifier. There-
fore, using a modifier with hydrogen bond donor properties, such as methanol, weakens the
hydrogen bonding interaction between the stationary phase and the analytes. In contrast,
the use of hydrogen bond acceptor modifiers, such as acetonitrile, resulted in excessive
retention [30,31].

Saponins are an important component of the active ingredients in HMs. Huang
et al. [32] reported the isolation of triterpenoid standards (kudinosides, stauntosides, and
ginsenosides) and triterpenoid extracts from Ilex latifolia leaves, Panax quinquefolius roots,
and P. ginseng roots. The polar characteristics of triterpenoids resulted in no retention on
the SB-C18 column, while the ZORBAX RX-SIL column achieved the best triterpenoid
separation performance by using CO2, MeOH, H2O, and 0.05% (v/v) formic acid as the
mobile phase. The SFC method was faster than the HPLC method, and the elution order in
the SFC method was opposite to that in the HPLC method. The saponins with fewer sugar
groups were eluted first, while saponins with more sugar groups were strongly retained.
The results indicated the complementarity of the two separation techniques.

The methoxylation or ethoxylation of the hydroxyl group at the C-22 position of
furostanol saponins is usually observed when it reacts with lower alcohols under appropri-
ate conditions. Yang et al. [33] analyzed the furostanol saponins in the Dioscorea zingiberensis
rhizome based on the Diol column using methanol containing 0.2% NH4OH and 3% H2O
as the modifier, which minimizes the degree of derivatization. Furthermore, furostanol
saponins were well-identified by SFC based on the number and type of sugars. The polarity
of glucosyl was stronger than that of rhamnosyl, and the polarity of furostanol saponins
became stronger as the number of sugar groups increased. Therefore, the retention time of
saponins with high polarities became longer. However, the isomers could not be separated.

Seventy-one sesquiterpene pyridine alkaloids in Tripterygium wilfordii root bark extract
were successfully analyzed on the ACQUITY UPC2 BEH 2-EP column in combination
with an MeOH modifier without additives in less than 10 min. Alkaloids were strongly
retained on the BEH column due to the ion-exchange interactions between alkaloids and the
silanol groups on the surface of the stationary phase. Broader peaks were observed on the
CSH PFP (charged surface hybrid silica bonded with a fluoro phenyl group) column [31]
(Figure 1).
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Figure 1. Optimization of stationary phases for six standard alkaloids separation. (a) BEH, (b) BEH
2-EP, and (c) CSH PFP columns. Analytes: (1) compound 1, (2) euonymine, (3) wilfornine D, (4)
wilforgine, (5) wilforine, and (6) hyponine E. Adapted from [31] with permission. Copyright 2015,
Elsevier.

Polar stationary phases have also been used for the separation of hydrophobic com-
pounds. Hou et al. [34] used the Torus 2-PIC column for the separation of lipids in Coix
lacryma-jobi ripe caryopsis with different geographical origins. The HSS C18 SB column had
strong retention, the CSH FP column had coelution, and the other polar stationary phases
had poor separation. The same column was also used to explore the lipidomic differences
of three Panax species (P. ginseng, P. quinquefolius, and P. notoginseng) [35].

2.3. Chiral Stationary Phases

Chiral separation is mainly based on the formation of a transitional diastereomeric
complex between the analytes (SAs) and chiral selectors (SOs) on the chiral stationary
phases (CSPs), relying on modifiers and additives for the separation. CSPs involve at least
three different combinations of physiochemical properties, including hydrogen-bonding
interactions, dipole–dipole interactions, π-π interactions, electrostatic interactions, hy-
drophobic interactions, and spatial interactions [36,37].

The chiral stationary phase, designated a UHPC-(S, S)-Whelk-O1 column, was used
to separate a R- and S-goitrin mixture in Isatis indigotica root, Baphicacanthus cusia root,
and Ban Lan Gen powder formulations within 6 min. This column accomplished this
with a suitable resolution and an almost eight-fold increase in speed compared to the
NPLC method [38]. Phytocannabinoids are derived from the Cannabis sativa L. species.
Most of them are chiral and exist in the single-enantiomeric format. The Gasparrini
group [39] utilized a UHPC-(S, S)-Whelk-O1 column and a UHPC-(R, R)-Whelk-O1 column
for the enantio- and chemo-selective separation of phytocannabinoids by UHPSFC. The
method was based on the “Inverted Chirality Columns Approach” (ICCA) according to the
reciprocal principle [40]. The elution order of the enantiomers was reversed by switching
two chiral columns with the same SO and opposite configuration. This method shows great
potential for the identification of enantiomers without standards.

2.4. Other Stationary Phases

With the development of technology and the increase in experimental demand, several
novel stationary phases are being developed [41–48]. The Chou group [41] covalently
bonded 1-octyl-3-propylimidazolium chloride on silica gel to produce an ionic liquid-
functionalized stationary phase. Compared with the C18 stationary phase, the column
has a longer chain length of the alkyl group to increase hydrophobic interaction and



Molecules 2022, 27, 4159 6 of 22

can separate acidic, basic, and neutral compounds simultaneously. Complete separation
occurred when CO2 and MeOH were used as the mobile phase. Electrostatic and hydrogen-
bonding interactions are essential for the separation. This implies that the addition of
water and trifluoroacetic acid increases the elution strength of the mobile phase. Neutral
compounds with weak hydrophobic interactions are eluted first, while acidic and basic
compounds are more strongly retained. Due to the complexity of the multi-components,
there is an urgent need for novel stationary phases for HM analysis that can separate
complex components simultaneously.

3. Selection of Mobile Phases
3.1. Modifiers

Due to the low polarity of scCO2, the variety of compounds analyzed with SFC is
limited. Modifiers are added to adjust the solvent strength of the mobile phase. The
high miscibility of CO2 with many organic solvents contributes to the expansion of the
application. Short-chain alcohols are commonly used as modifiers in SFC, such as methanol,
ethanol, and isopropanol, among which methanol is the most commonly used. It is
important to note that when used as a modifier methanol can contain up to 10% water,
while isopropanol can contain up to 50% water [49].

Modifiers affect chromatographic retention in several ways: (a) improving mobile
phase polarity and improving mobile phase eluting power, (b) changing mobile phase
density, (c) modifiers adsorb to the surface of the stationary phase, thus changing the
properties of the stationary phase, which many articles have investigated [50–53], and (d)
masking the active site on the stationary phase. Free silanols on the stationary phase surface
have both hydrogen-bonding acceptor and hydrogen-bonding donor capabilities that can
affect the analyte peak shape. Alcohols also have both hydrogen-bonding acceptor and
donor properties, so they can minimize this effect. Acetonitrile has a weak ability to cover
silanol groups, so it can be mixed with methanol as a modifier to improve the separation
ability [16,54].

Liu et al. [55] used SFE-SFC-MS/MS for the analysis of phenolic compounds. Three
modifiers, methanol, acetonitrile, and a mixture of methanol and acetonitrile (2:1, v/v), were
investigated. The polar protic solvents are more conducive to the formation of hydrogen
bonds, and the charge separation in the ESI droplet is more stable for the separation of
polar phenolic compounds. The significantly increased responses of the majority of the
target compounds and the separation efficiency followed the order methanol, a mixture
of methanol and acetonitrile (2:1, v/v), and finally acetonitrile. Therefore, methanol was
identified as a mobile phase modifier for the separation of phenolic compounds.

3.2. Additives

Unlike modifiers, additives are added to the mobile phase to improve chromato-
graphic performance by competing with solutes for adsorption sites on the surface of the
stationary phase. In general, acidic additives (formic, acetic, trifluoroacetic, and phosphoric
acid, etc.) can be selected for the analysis of acidic compounds, while basic additives
(isopropylamine, diethylamine, ammonium hydroxide, etc.) are selected for the analysis of
basic compounds. Salt additives such as ammonium formate and ammonium acetate can
be applied to amphoteric compounds. When using different additives and modifiers, we
should pay attention to increasing the column equilibration time [56,57]. The addition of
water separates the more polar compounds. Ashraf-Khorassani et al. [58] proposed that
the water additive altered the properties of the bare silica columns, thus generating an
HILIC-like retention mechanism. The analytes are partitioned between the water in the
mobile phase and the water adsorbed on the surface of the stationary phase.

For bare silica columns, an additive such as ammonium hydroxide is added to the
modifier, which acts as a competitor for the active site on the stationary phase surface
and masks the residual silanol group on the stationary phase. In this case, the main
interaction is hydrogen bonding between the hydrophilic compounds and the methanol or
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the basic additive adsorbed on the stationary phase surface. At this point, the hydrogen
bonding interactions have a large impact on chromatographic retention. If the analyte
has a large number of hydrogen bonding donor or acceptor groups, it is difficult to elute
from the stationary phase [59]. A recent study reported that the presence of both water
and ammonium hydroxide in the methanol modifier, in an in situ formation of HCO3

−

produced through the chaotropic effect, improves the separation of hydrophilic compounds
and provides excellent chromatographic performance [60].

Phenolics are an important class of HM constituents, including phenolic acid, flavonoids,
isoflavones, lignans, etc. Phenolics contain one or more phenolic hydroxyl groups and are
acidic. SFC has been used successfully for the separation of phenolics in various matri-
ces. The C18 column is widely used for separating phenolics in RPLC with remarkable
performance. However, it is not suitable for the SFC separation of phenolics directly. For
the acidic properties of phenolics, serious peaking tailing could be observed. The selection
of a suitable additive, which increases the acidity of the modifier, plays a significant role in
SFC method development.

Flavonoid aglycones and their glycosides are an interesting class of both hydrophobic
and hydrophilic compounds in phenolics. The peak shape could be improved by the
addition of acidic additives. Formic, acetic, and phosphoric acid were investigated for
flavonoid analysis on the ZORBAX RX-SIL column (Figure 2). When formic and acetic acid
were used as additives, the flavonoids could not be eluted because the flavonoids interacted
strongly with the stationary phase. Phosphoric acid could compete with flavonoids for
the active sites, facilitating the elution of flavonoids. Compared with the HPLC method,
the SFC method can provide separation about three times faster [61]. Phosphoric acid is
also applied for isoflavone separation in SFC. The BEH column with 0.05% phosphoric
acid as an additive provided better peak separation and less baseline drift. Aglycones
eluted earlier than the glycosides. The developed method was applied to the analysis of
dietary supplements containing Glycine max bean, Trifolium pratense blossom, and Pueraria
lobata root for 8 min [62]. Sun and co-workers [63] used oxalic acid as an additive in
the modifier (with MeOH/ACN, 50/50, v/v) in UHPSFC-QTOF/MS for the efficient
separation of 51 prenyl flavonoids, including aglycone and glycosides from Epimedium
species for the first time, then the developed method was successfully applied for the
differentiation and quality assessment of Epimedium species. Gao et al. [64] optimized an
ionic liquid (IL) called 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) as an
unconventional additive for the separation of six structurally similar flavonoid aglycones.
The addition of IL improved the resolution and increased the retention factors. The authors
proposed that a new hydrogen-bonding interaction was formed between flavonoids (with
hydrogen-bonding acidity) and ionic liquid (with hydrogen-bonding basicity) to enhance
the separation. Meanwhile, 0.1% methanesulfonic acid (MSA) in methanol was used for the
separation of nine flavonoid standards, including aglycones and glycosides on the polar
stationary phase Torus DEA column, then the aglycones were eluted first, followed by their
glycoside forms, and glycosides with smaller sugar groups were eluted more easily [65].

Alkaloids are a class of basic organic compounds containing nitrogen atoms that exist
in nature and have significant biological activity. SFC analyses of alkaloids and other
basic compounds produce peak shape distortions such as trailing, fronting, and splitting,
resulting in poor chromatographic performance. The reasons for this situation are: (a) The
most widely used modifier for SFC is methanol. The mobile phase is acidic (apparent pH is
about 4–5) due to the reaction of methanol and scCO2 to form methyl carbonate. Under
such acidic conditions, alkaloids can form alkaloid cations in the mobile phase, which can
interact with the negatively charged silanol groups remaining on the surface of the polar
stationary phase through ion exchange. Therefore, a strong retention is produced on the
column. (b) scCO2 reacts with the amino groups in the basic compound to form carbamic
acid, a reaction that strongly depends on the spatial site resistance of the amino substituent.
In the presence of methanol, the conversion to methyl carbonate preferably occurs so that
the conversion of carbamic acid is usually not observed [30,31].
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Figure 2. Effect of the addition of an acidic additive to the mobile phase on the separation of
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phosphoric acid (H3PO4). Adapted from [61] with permission. Copyright 2017, Elsevier.

To solve the above-mentioned problem of the chromatographic separation of alkaloids,
basic additives can be added to the mobile phase, which compete for the active sites on the
stationary phase surface, mask the silanol groups, and thus improve the chromatographic
separation.

Yang et al. [66] utilized the 1-AA and Diol columns for the separation of rhyn-
chophylline and isorhynchophylline, and corynoxine and corynoxine B, present as two
pairs of 7-epimeric spiro oxindole alkaloids (SOAs) in Uncaria macrophylla. The 7-epimeric
SOAs trended to isomerize in the protic MeOH compared with the aprotic ACN. Therefore,
ACN is a significant solvent as the modifier for the SFC separation. It was found that 0.1%
diethylamine as the additive on the 1-AA column and 0.1% ammonium hydroxide on the
Diol column are suitable for UV and MS detection, respectively. The developed method
facilitated the quality control of Uncaria macrophylla. Huang et al. [67] found that 0.2%
(v/v) NH4OH was the optimal additive compared to diethylamine and trimethylamine for
the separation of alkaloids on the PFP column in Mahonia bealei stem, root, leaf, and seed
extracts. Indeed, water could improve the peak shape and elution in this study. The SFC
method could provide separation about 13 times faster than the LC method, showing that
SFC could be an alternative separation method.

Jiang et al. [68] used deep eutectic solvents (DESs) consisting of choline chloride
(hydrogen bond acceptor) and glycerol (hydrogen bond donor) for the separation of 10
isoquinoline alkaloids. DES as a silanol blocker to occupy the residual silanol group on
the surface of the stationary phase competes with the isoquinoline alkaloids for the active
sites and could be used to improve chromatographic separation and prevent serious peak
tailing for the analysis of isoquinoline alkaloids. It should be noted that the effect of DES
on the analysis of isoquinoline alkaloids was mainly attributed to the hydrogen bond
acceptors. The established method was then applied for the analysis of the alkaloids in
the Sinomenium acutum stem rattan, Corydalis yanhusuo rhizome, Coptis chinensis rhizome,
C. deltoidei rhizome, C. teeta rhizome, Mahonia bealei stem, M. fortune stem, Phellodendron
chznense bark, and Stephania tetrandra root extracts.

To achieve the best separation of components with different polarities in the sample in
the shortest time, gradient elution is usually preferred, which could increase the elution
strength of the mobile phase by adjusting the proportion of the modifiers in the mobile
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phase. Gradient elution can make the components with different properties in a complex
sample separate well according to their appropriate capacity factor, k, which can shorten
the analysis period, improve the separation ability, increase the sensitivity, and improve
the peak pattern. Taguchi and co-workers [69] developed a unified chromatography to
successfully analyzed water- and fat-soluble vitamins using low to 100% ratios of modifiers.
Fat-soluble vitamins were well-retained on the C18 SB column for the hydrophobic inter-
action. Meanwhile, the residual silanol groups on the stationary phase were successfully
employed for the retention of hydrophilic compounds. This approach used methanol to
separate 17 vitamins with diverse properties within 4 min, and the states, namely, supercrit-
ical, subcritical, and liquid, were continuously changed. Figure 3 demonstrates an overview
of the current application areas of SFC, where the stationary phase and the mobile phase
are selected according to the analytes. The SFC analysis (2010–2021) of various constituents
from herbal medicine extracts is outlined in Table 1.
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Table 1. Application of SFC in the analysis of natural products.

Categories Analytes Species (Part) Stationary Phases
(length × i.d., dp) Modifier Elution Detector Purpose Ref.

Lipids 13 triacylglycerols Soybean three Chromolith Performance RP-18e
columns (100 mm × 4.6 mm, –)

MeOH with 0.1%
(w/w) ammonium

formate

20 min; gradient
elution MS Qualitative [70]

32 glycerides Coix lacryma-jobi (ripe
caryopsis) Torus 2-PIC (100 mm × 3.0 mm, 1.7 µm) MeOH:ACN (9:1) 8 min; gradient

elution MS Qualitative [34]

24 lipids
Panax ginseng, P.

quinquefolius, and P.
notoginseng

Torus 2-PIC (100 mm × 3.0 mm, 1.7 µm) MeOH 14 min; gradient
elution MS Qualitative [35]

Carotenoids 8 carotenoids Microalgae and
rosehip Torus 1-AA (100 mm × 3 mm, 1.7 µm) MeOH 7 min; gradient

elution DAD and MS Qualitative
Quantitative [71]

21 carotenoids Capsicum chinense Ascentis Express C30 (150 mm × 4.6 mm,
2.7 µm) MeOH 16 min; gradient

elution MS Qualitative
Quantitative [26]

31 carotenoids Solanum betaceum
(fruit)

Ascentis Express C30 (150 mm × 4.6 mm,
2.7 µm) MeOH 16 min; gradient

elution MS Qualitative
Quantitative [27]

25 apocarotenoids Capsicum chinense Ascentis Express C30 (150 mm × 4.6 mm,
2.7 µm) MeOH 10 min; gradient

elution MS Qualitative
Quantitative [25]

Terpenes 5 triterpenes Rosa sericea (leaf) HSS C18 SB column (100 mm × 3 mm, 1.8
µm)

MeOH with 0.08%
TFA

17 min; gradient
elution ELSD Quantitative [72]

8 triterpenoids Apple pomace extracts Synergi Polar-RP (250 mm × 4.6 mm, 4
µm) MeOH isocratic elution: 3%

modifier ELSD Qualitative [73]

6 sesquiterpenes
Matricaria chamomilla

(flower), Chamaemelum
nobile (flower)

ACQUITY UPC2 BEH 2-EP column (150
mm × 3 mm, 1.7 µm)

MeOH:IPA (1:1) with
0.5% FA

15 min; gradient
elution PDA and MS Qualitative [28]

Camphor Tanacetum parthenium
(seed)

Acquity UPC2 BEH-2EP column (100 mm
× 3 mm, 1.7 µm)

IPA 10 min; gradient
elution DAD Quantitative [74]

Continentalic acid
and kaurenoic acid

Aralia continentalis
(root)

A. pubescens (root)
Acquity UPC2 Torus 1-AA column (150

mm × 2.1 mm, 1.7 µm)
MeOH with 0.1% FA isocratic elution: 3%

modifier DAD Quantitative [75]

18 diterpene esters Euphorbia semiperfoliata Hypercarb column (Carbon, 100 mm ×
2.1 mm, 3 µm) EtOH with 0.1% FA 20 min; gradient

elution DAD and MS Qualitative [76]

5 terpene lactones,
4 ginkgolic acids Ginkgo biloba ACQUITY UPC2 BEH 2-EP column (150

mm × 3 mm, 1.7 µm)

MeOH:IPA (50:50)
with 10 mM

ammonium acetate

12 min; gradient
elution PDA and MS Quantitative [77]

12 limonoid
aglycones Citrus essential oil Ascentis C18 column (250 mm × 4.6 mm,

5 µm) MeOH 20 min; gradient
elution MS Qualitative

Quantitative [78]

2 triterpenoid acids Chaenomelis Fructus
(fruit)

Shim-pack UC-X Diol Column (150 mm ×
4.6 mm, 3 µm) MeOH 20 min; gradient

elution UV Quantitative [79]
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Table 1. Cont.

Categories Analytes Species (Part) Stationary Phases
(length × i.d., dp) Modifier Elution Detector Purpose Ref.

Saponins

Triterpenoid
saponins: 9

kudinosides, 6
stauntosides, and 11

ginsenosides

Ilex latifolia (leaf),
Panax quinquefolius

(root), P. ginseng (root)
ZORBAX RX-SIL column (150 mm × 4.6

mm, 5 µm)

B1: MeOH with
0.05% FA and 10%

H2O;
B2: MeOH with

0.05% FA and 5%
H2O

Kudinosides: 15 min;
Stauntosides: 20 min;

Ginsenosides: 17
min; gradient elution

DAD and MS Qualitative [32]

10 furostanol
saponins

Dioscorea zingiberensis
(rhizome) Diol column (150 mm × 3 mm, 1.7 µm)

MeOH with 0.2%
NH3·H2O and 3%

H2O

15 min; gradient
elution MS Qualitative [33]

7 ginsenosides, 6
nucleosides,

4 nucleobases

Ginseng, Korean
ginseng, American

ginseng
ZORBAX RX-SIL column (150 mm × 4.6

mm, 5 µm)
MeOH with 5 mM
ammonium acetate

20 min; gradient
elution DAD and MS Qualitative [80]

6 ginsenosides Panax quinquefolius
(root)

Cyanopropyl packed column (250 mm ×
4.6 mm, 5 µm)

MeOH with 0.05%
TFA

18 min; gradient
elution ELSD Qualitative [81]

Paeoniflorin,
albiflorin, benzoyl

paeoniflorin,
oxypaeoniflorin,
gallic acid, and

benzoic acid

Raw, wine-baked, and
vinegar-baked Paeonia

lactiflora (root)

Acquity UPC2 HSS C18 SB column (100
mm × 3.0 mm, 1.8 µm)

MeOH:ACN (70:30)
with 0.1%

phosphoric acid

12 min; gradient
elution PDA Quantitative [82]

Six
25(R/S)-spirostanol

saponin
diastereomers

Trigonella
foenum-graecum (seed)

CHIRALPAK IC column (250 mm × 4.6
mm, 5 µm) couple CHIRALPAK IC
column (150 mm × 4.6 mm, 5 µm)

MeOH isocratic elution: 33%
B ELSD Qualitative [83]

Cannabinoids 9 cannabinoids Cannabis sativa
(flowering bud)

ACQUITY UPC2 BEH 2-EP column (150
mm × 3 mm, 1.7 µm)

IPA:ACN (80:20)
with 1% H2O

10 min; gradient
elution PDA and MS Quantitative [84]

11 cannabinoids
Cannabis sativa
(flowering bud,

hashish, and leaf)
ACQUITY UPC2 BEH 2-EP column (150

mm × 3 mm, 1.7 µm)
IPA:ACN (80:20)

with 1% H2O
10 min; gradient

elution PDA and MS Quantitative (9);
Qualitative (2) [85]

7 cannabinoids Cannabis sativa
UHPC-(S, S)-Whelk-O1 column;

UHPC-(R, R)-Whelk-O1 column (100 mm
× 4.6 mm, 1.8 µm)

MeOH isocratic elution: 2%
modifier UVD and CD Qualitative [39]

Flavonoids 5 flavonoids Chrysanthemum
morifolium

ZORBAX RX-SIL column (150 mm × 4.6
mm, 5 µm)

MeOH with 0.1%
phosphoric acid

20 min; gradient
elution DAD Qualitative

Quantitative [61]

7 flavonoids Astragalus
membranaceus (root) Acquity UPC2 CSH fluorophenyl column MeOH 13 min; gradient

elution PDA Qualitative
Quantitative [86]

6 flavonoids Citrus reticulata
(pericarp)

Zorbax RX-SIL column (150 mm × 2.1
mm, 5 µm) MeOH 11 min; gradient

elution DAD Quantitative [87]
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Table 1. Cont.

Categories Analytes Species (Part) Stationary Phases
(length × i.d., dp) Modifier Elution Detector Purpose Ref.

6 flavonoid
aglycones / Poroshell 120 EC-CN (100 mm × 3 mm,

2.7 µm)
MeOH with 20 mM

[bmim][BF4]
isocratic elution: 8%

modifier DAD Qualitative [64]

6 flavonoids
Glycyrrhiza uralensis, G.

glabra, and G. inflata
(root and rhizome)

ACQUITY UPC2 Torus 2-PIC column (100
mm × 2.1 mm, 1.7 µm) MeOH with 0.2% FA 8 min; gradient

elution PDA Quantitative [88]

51 flavonoids,
7 prenyl flavonoids

5 Epimedium species
(leaf)

Acquity UPC2 Torus Diol (100 mm × 3
mm, 1.7 µm)

MeOH:ACN (50:50)
with 5 mM oxalic
acid and 3% H2O

MS: 18 min; gradient
elution;

PDA: 17 min;
gradient elution

MS;
PDA

Qualitative (51)
Quantitative (7) [63]

16 isoflavones
Pueraria lobata, P.

thomsonii, P.
peduncularis (root)

Acquity Torus Diol column (100 mm × 3
mm, 1.7 µm)

MeOH with 1 mM
oxalic acid

12 min; gradient
elution PDA and MS Quantitative [89]

9 isoflavones

Dietary supplements
containing Glycine max

(bean), Trifolium
pratense (blossom), and

Pueraria lobata (root)

Acquity UPC2 BEH column (100 mm × 3
mm, 1.7 µm)

MeOH with 0.05%
phosphoric acid

15 min; gradient
elution PDA Qualitative [62]

17 flavonoids and
polyphenols Sweet potato leaf Acquity UPC2 BEH 2-EP column (100 mm

× 3 mm, 1.7 µm)
MeOH with 0.05%

FA
10 min; gradient

elution MS Quantitative [90]

3 flavonoids,
2 phenolic acids Medicago sativa ACQUITY UPC2 BEH column (100 mm ×

3 mm, 1.7 µm) MeOH 10 min; gradient
elution PDA Qualitative [91]

Xanthohumol Hop extracts

Waters Symmetry C18 column (250 mm ×
4.6 mm, 5 µm);

Agilent Zorbax SB C18 column (150 mm
× 4.6 mm, 3.5 µm)

EtOH 5 min; gradient
elution DAD Qualitative [92]

Phenolics 6 phenolics Liquidambaris (resin) Acquity UPC2 BEH 2-EP Column (100
mm × 3 mm, 1.7 µm)

MeOH with 0.1%
phosphoric acid

5 min; gradient
elution PDA Quantitative [93]

9 phenolic
compounds Allium sativum Shim-pack UC-X Diol column (150 mm ×

4.6 mm, 3 µm)

MeOH containing
0.1 mM oxalic acid

and 1 mM
ammonium formate

8 min; gradient
elution MS Qualitative

Quantitative [55]

12 phenolic acids Extra-virgin olive oil Platisil CN column (250 mm × 4.6 mm, 5
µm)

MeOH containing
7% water and 0.5%

FA

30 min; gradient
elution DAD and MS Quantitative [94]

7 phenolic acids Lonicera japonica
(flower bud)

ACQUITY UPC2 BEH (100 mm × 3 mm,
1.7 µm)

MeOH:ACN (70:30)
with 1% TFA

20 min; gradient
elution PDA Quantitative [95]

4 polyphenols Bee pollen sample DCpak PBT (250 mm × 4.6 mm, 5 µm) MeOH with 0.1%
TFA

24 min; gradient
elution PDA Qualitative

Quantitative [96]
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Table 1. Cont.

Categories Analytes Species (Part) Stationary Phases
(length × i.d., dp) Modifier Elution Detector Purpose Ref.

4 lignans Schisandra chinensis
(fruit)

Shim-pack UC-X SIL column (150 mm ×
2 mm, 3 µm) MeOH 7.5 min; gradient

elution PDA Quantitative [97]

9 lignans Schisandra chinensis
(fruit)

Viridis HSS C18 SB column (100 mm × 3
mm, 1.8 µm) MeOH 12 min; gradient

elution PDA Qualitative [98]

8 vitamin E isomers Moringa oleifera (leaf) Acquity UPC2 BEH 2-EP (100 mm × 3
mm, 1.7 µm)

MeOH:IPA (1:1, v/v) 6.2 min; gradient
elution DAD Quantitative [99]

Alkaloids 2 oxindole alkaloids,
6 indole alkaloids

Mitragyna speciosa
(leaf)

Agilent Rx-Sil column (50 mm × 2.1 mm,
1.8 µm)

MeOH with 10 mM
ammonium acetate

10 min; gradient
elution DAD Qualitative [17]

71 sesquiterpene
pyridine alkaloids

Tripterygium wilfordii
(root bark)

ACQUITY UPC2 BEH 2-EP column (50
mm × 2.1 mm, 1.7 µm) MeOH 10 min; gradient

elution DAD and MS Qualitative [31]

Four 7-epimeric
spiro oxindole

alkaloids
Uncaria macrophylla

Torus 1-AA column (100 mm × 3 mm, 1.7
µm);

Torus Diol column (100 mm × 3 mm, 1.7
µm)

Torus 1-AA column:
ACN with 0.1%
diethylamine;

Torus Diol column:
ACN with 0.1%

ammonium
hydroxide

Torus 1-AA column:
isocratic elution: 22%

modifier;
Torus Diol column:

isocratic elution: 21%
modifier

PDA Qualitative [66]

6 cinchona alkaloids Cinchona (bark) Acquity UPC2 Torus DEA column (100
mm × 3 mm, 1.7 µm)

MeOH:ACN (90:10)
with 0.8%

diethylamine
isocratic elution: 10
min, 2.3% modifier PDA Quantitative [100]

8 isoquinoline
alkaloids

Mahonia bealei (stem,
root, leaf, and seed)

Inspire PFP column (250 mm × 4.6 mm, 5
µm)

MeOH with 0.2%
ammonia solution

and 8% H2O
isocratic elution: 20
min 25% modifier DAD Qualitative

Quantitative [67]

10 isoquinoline
alkaloids

Sinomenium acutum
(stem rattan), Corydalis

yanhusuo (rhizome),
Coptis chinensis, C.
deltoidea, C. teeta

(rhizome),
Mahonia bealei,

M. fortune (stem),
Phellodendron chinense

(bark), Stephania
tetrandra (root)

Zorbax RX-SIL column (150 mm × 2.1
mm, 5 µm)

MeOH with 0.25%
ChCl-Gly-0.5%

FA-2% H2O

26 min; gradient
elution DAD Qualitative

Quantitative [68]

5 aconitum alkaloids Aconitum pendulum
(root)

Acquity UPC2 BEH 2-EP (150 mm × 2.1
mm, 1.7 µm)

10 mM ammonium
acetate in MeOH

4 min; gradient
elution PDA and MS Quantitative [101]

Miscellaneous 9 natural aromatic
acids Grape and fruit wines BEH-2EP column (150 mm × 3 mm, 1.7

µm)
MeOH with 0.1%

TFA
3.5 min; gradient

elution DAD Quantitative [102]

5 coumarins Ammi visnaga (fruit) Acquity UPC2 HSS C18 SB (100 mm × 3
mm, 1.8 µm)

MeOH:ACN (1:1)
with 0.1%

diethylamine

7.5 min; gradient
elution PDA Quantitative [103]
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Table 1. Cont.

Categories Analytes Species (Part) Stationary Phases
(length × i.d., dp) Modifier Elution Detector Purpose Ref.

8 coumarins Angelica dahurica (root) Acquity UPC2 CSH Fluoro-Phenyl (100
mm × 3 mm, 1.7 µm)

MeOH with 0.1%
diethylamine

8 min; gradient
elution PDA Qualitative

Quantitative [104]

Decursinol angelate
and decursin Angelica gigas (root) Acquity UPC2 CSH Fluoro-Phenyl (150

mm × 2.1 mm, 1.7 µm)
EtOH isocratic elution: 5%

modifier PDA Quantitative [105]

10 annonaceous
acetogenins Annona muricata (fruit) Acquity UPC2 BEH 2-EP Column (100

mm × 2.1 mm, 1.7 µm)
EtOH 16 min; gradient

elution MS Qualitative [106]

Curcumin,
demethoxycur-

cumin, and
bisdemethoxycur-

cumin

Curcuma longa
(rhizome)

ACQUITY UPC2 BEH column (100 mm ×
3 mm, 1.7 µm)

MeOH with 10 mM
oxalic acid

6 min; gradient
elution PDA Qualitative [107]

5 anthraquinones Rheum palmatum and R.
officinale (root)

Acquity UPC2 HSS C18 SB (100 mm × 3
mm, 1.8 µm)

MeOH with 0.05%
diethylamine

10 min; gradient
elution PDA Quantitative [108]

6 kavalactones Piper methysticum (root) Acquity UPC2 BEH-2EP column (100 mm
× 3 mm, 1.7 µm)

MeOH with 0.6%
diethylamine

5.5 min; gradient
elution PDA Quantitative [109]

4 aromatic
constituents Cured vanilla beans Shimpack UC-X RP column (150 mm ×

4.6 mm, 3 µm) MeOH 17 min; gradient
elution DAD Quantitative [110]

9 phenylamides Piper kadsura Torus DIOL (100 mm × 3 mm, 1.7 µm) MeOH 15 min; gradient
elution MS Qualitative [111]

R/S-goitrin

Isatis indigotica (root),
Baphicacanthus cusia

(root),
Ban Lan Gen powder

formulations

(S, S)-Whelk-O1 column (250 mm × 4.6
mm, 10 µm) MeOH 6 min; gradient

elution PDA and MS Qualitative
Quantitative [38]

Seven
25R/S-ergostanes

Antrodia camphorata
(fruiting body)

Chiralcel OJ-H column (250 mm × 4.6
mm, 5 µm);

Princeton 2-ethylpyridine column (250
mm × 4.6 mm, 3 µm)

MeOH

Chiralcel OJ-H
column: 15 min;
gradient elution;

Princeton
2-ethylpyridine
column: 20 min;
gradient elution

DAD Qualitative [112]

11 common peaks Mahonia bealei Platisil NH2 (250 mm × 4.6 mm, 5 µm)
MeOH with 0.4%

diethylamine and 8%
H2O

25 min; gradient
elution DAD Qualitative [113]

34 common peaks Hedysarum polybotrys
(root)

HSS SB C18 column (150 mm × 2.1 mm,
1.7 µm) MeOH with 0.2% FA 23 min; gradient

elution DAD Qualitative [114]

“i.d.”: internal diameter; “dp”: diameter of particles; “Ref.”: reference; “–”: not mentioned; “DAD”: diode array detector; “PDA”: photo-diode array detector; “MS”: mass spectrometry;
“ELSD”: evaporative light scattering detector.
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4. Two-Dimensional Systems of SFC

With the advantages of remarkable separation efficiency, high robustness, and wide
compatibility, LC is currently a versatile technique. However, the ability of LC to handle
complex samples is generally limited. Two-dimensional liquid chromatography (2D-LC) is
considered an efficient alternative technique with a high peak capacity. It can be divided
into two modes: offline and online modes. Analytes are collected and concentrated from
the first dimension and then manually reinjected into the second dimension for further
separation in offline mode. The online mode combines two separation techniques with
special interfaces and is described as a comprehensive (noted LC × LC) and heart-cutting
(noted LC–LC) mode [115].

Coupling LC and SFC provides various characteristics. The use of CO2 is much more
convenient for fraction collection and can significantly reduce re-equilibration time in offline
mode, regardless of SFC as the first- or second-dimension separation. Moreover, because of
the ability to separate enantiomers, chiral SFC coupling with LC has a remarkable potential
for the identification of both achiral and chiral components in complex samples. The
properties of the CO2 expansion influence the analyte collection. Thus, the interfaces are
necessary for the online SFC × LC mode. It is worth noting that strong solvent effects can
easily cause peak broadening and deformation in the online LC × SFC mode, and there is
still room for improvement. In addition, SFC × SFC is attractive because the use of CO2
in both separation modes could reduce mobile phase incompatibility and provide wider
applicability to non-volatile and thermally labile compounds [116]. However, there are
currently no commercially available instruments. Table 2 shows the two-dimensional SFC
application of HMs.

Table 2. Application of SFC in series with other chromatography techniques in the analysis of natural
products.

No. Compounds Species Type
1D Column

(length × i.d., dp)
2D Column

(length × i.d., dp) Detector Ref.

1 amide
alkaloids Piper longum Offline

SFC/RPLC
XAmide column (150 mm ×

4.6 mm, 5 µm)
CO2/MeOH

Acquity HSS T3 (100 mm ×
2.1 mm, 1.8 µm)

H2O/ACN
UV [117]

2 lignans Fructus Arctii Offline
SFC/RPLC

XAmide column (250 mm ×
20 mm, 10 µm)

CO2/MeOH

Unitary C18 column (250 mm
× 10 mm, 5 µm)

H2O/ACN
UV-Vis [118]

3 triterpene
saponins

Panax
notoginseng

(stem)
Offline

SFC/RPLC
Atlantis HILIC column

(150 mm × 4.6 mm, 5 µm)
CO2/MeOH

Agilent Poroshell EC-C18
(50 mm × 3 mm, 2.7 µm)

H2O/ACN

PDA;
UV-MS [119]

4 carotenoid and
chlorophyll

Capsicum
annuum

Offline
SFC/RPLC

Acquity HSS C18 SB column
(100 mm × 3 mm, 1.8 µm)

CO2/EtOH

YMC C30 column (250 mm ×
4.6 mm, 3.0 µm)

MeOH:MTBE:H2O (86:12:2,
v/v/v)/MeOH:MTBE:H2O,

(8:90:2, v/v/v)

ELSD;
PDA-
MS

[120]

5 carotenoids Capsicum
annuum

Online SFC ×
RPLC

Ascentis ES Cyano (250 mm ×
1.0 mm, 5.0 µm)

CO2/MeOH

Acquity BEH C18 (50 mm ×
2.1 mm, 1.7 µm)

ACN:H2O (8:2 (v/v))/IPA

PDA-
MS [121]

6 psoralens and
coumarins Lemon oil Online SFC ×

RPLC

Four Princeton
SFC cyanopropyl silica

columns (250 mm × 2 mm,
5 µm)

CO2/EtOH

Zorbax SB C18 (50 mm ×
4.6 mm, 3.5 µm)

H2O/ACN
DAD [122]

7 bufadienolides

Bufo
gargarizans or

B.
melanostrictus

(secretion)

Offline
RPLC/SFC

HSS T3 column (250 mm ×
4.6 mm, 5 µm)

0.1% FA-water/acetonitrile

ACQUITY UPC2 HSS C18
column (100 mm × 3.0 mm,

1.8 µm)
CO2/MeOH

UV;
PDA-
MS

[123]

8 /
Blackberry

sage fragrant
oil

Offline
RPLC/SFC

Phenomenex Luna C18
(150 mm × 4.6 mm, 3 µm)

CO2/ACN

PrincetonSFC Amino column
(250 mm × 4.6 mm, 10 µm)

H2O/ACN
UV [124]

9 secondary
metabolites

Ganoderma
lucidum

(fruiting body)
Online NPLC ×

SFC

Hypersil-CN column (200 mm
× 4.6 mm, 5 µm)

Hexane/isopropanol

Merck Chromolith Flash C18
(50 mm × 4.6 mm)

CO2

UV [125]

“i.d.”: internal diameter; “dp”: diameter of particles; “Ref.”: reference; “–”: not mentioned. “DAD”: diode array
detector; “PDA”: photo-diode array detector; “MS”: mass spectrometry; “ELSD”: evaporative light scattering
detector.
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4.1. SFC as the First-Dimension Separation

In general, NPLC × RPLC has high orthogonality. However, their mobile phases are
incompatible. NPLC uses non-polar mobile phases, such as n-hexane, while RPLC uses
polar mobile phases, including water and methanol. The different chemical properties of
the mobile phases would cause peak distortion and splitting. SFC performs similar selec-
tivity and reduces the incompatibility to NPLC. SFC × RPLC is considered an alternative
technique to NPLC × RPLC.

Li et al. [117] used offline 2D SFC/RPLC to analyze amide alkaloids in Piper longum.
Three SFC columns, named BEH, CSH FP, and XAmide columns, were used to develop
a 2D SFC/SFC system. An HSS T3 column and three SFC columns were used to develop
a 2D SFC/UHPLC system. Among these combinations, the orthogonality of the XAmide
and HSS T3 column was up to 69.84%. It indicated that the 2D SFC/UHPLC system was
the most suitable system for the separation of amide alkaloids. One to thirty-two fractions
were collected from the SFC separation, dried and redissolved in H2O/ACN (3:7, v/v),
then reinjected for UHPLC separation. Less than 50 peaks were separated by 1D UHPLC,
while more than 340 peaks were separated by the 2D SFC/UHPLC system. The results
illustrated the high orthogonality and peak capacity of the 2D SFC/UHPLC system.

In addition, Isabelle Francois [122] developed an online comprehensive SFC × RPLC
method by connecting two separation modes through a two-position/ten-port switching
valve equipped with two packed octadecyl silica (C18) loops. The addition of make-
up water before the loops helped to aggregate analytes and reduce residual CO2 gas
interference. Four 25 cm Princeton SFC cyanopropyl silica columns were used for the SFC
separation because of the low viscosity of the supercritical fluids, and the 5 cm Zorbax SB
C18 column was utilized for the separation of RPLC. The developed method was applied
to the separation of psoralens and coumarins from lemon oil with high orthogonality.

4.2. SFC as the Second-Dimension Separation

Wei et al. [123] collected 40 fractions after the RPLC separation. The fractions were
dried and concentrated with nitrogen, separated by the SFC separation using a C18 col-
umn, and then identified by mass spectrometry. Global natural product social molecular
networking was used for data processing, which could significantly shorten the processing
time. Finally, 229 bufadienolides and 2 new compounds were found in Venenum Bufonis.
This method is particularly suitable for identifying structural isomers in complex samples.

Moreover, Gao et al. [125] constructed an online comprehensive NPLC × SFC platform
that was connected by a 10-port, dual-position valve for the separation of the second
metabolites in the fruiting bodies of Ganoderma lucidum. Most compounds were small and
non-polar. Therefore, the CN and C18 columns were selected in NPLC and SFC separation
mode, and 17 and 34 peaks were identified in 1D NPLC and 1D SFC separation, respectively.
Coupling NPLC and SFC provides a high peak capacity and reduces incompatibility. A
total of 250 peaks were observed, and the peak capacity increased to 350 in two-dimensional
chromatography, while only 17 and 34 peaks were identified in one-dimensional NPLC
and SFC separation, respectively. The system not only has good orthogonality but also has
high throughput for the analysis of complex samples.

5. Conclusions

Chromatography is the mainstream technique for separating substances, and SFC
provides many advantages over HPLC that cannot be substituted. SFC has become a
significant supplement to HPLC due to its high efficiency, economy, and environmental
friendliness. SFC-MS in particular is fast becoming a popular complement to LC-MS and
GC-MS. Two-dimensional SFC has been reported successfully for the separation of complex
analytes. The expansion of SFC applications cannot be achieved without the development
of instruments, stationary phases, modifiers, and additives. This review mainly describes
the application of SFC separations in herbal medicines. Depending on the properties of the
analytes, suitable stationary phases, mobile phases, and detectors can be selected. Here,
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we should pay attention to the choice of volatile additives in SFC-MS. The concentration
of additives in the modifier is generally 0.05–0.5%. In addition to conventional modifiers
and additives, unconventional modifiers and additives can also be used to improve SFC
separation and peak shape, making the peak shape sharper and more symmetrical, thereby
expanding the application range of SFC. Further efforts are required for the development
of new stationary phases and mobile phases, which will help SFC become a favorable
analytical tool for a wider range of applications in the future.
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