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Integrating the analysis of the cistrome of a transcription factor by ChIP-Seq with the study of its transcriptional
output by microarray or RNA-Seq analysis is a powerful approach to elucidate the genomic functions of a tran-
scription factor. Recently, we employed this approach to determine themechanism of action bywhich the nucle-
ar receptor PPARγ elicits its antitumorigenic effects in lung cancer cells upon activation by TZDs (1). Here we
describe in detail the design, contents and quality controls for the gene expression and cistrome analyses associ-
ated with our study published in Cell Metabolism in 2014.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Specifications
Organism/cell
line/tissue
Homo sapiens/NCI-H1993 and NCI-H2347 lung cancer cell lines
Sequencer or
array type
Sequencer: Applied Biosystems SOLiD 4hq
Array: Illumina Human HT12v4.0 Expression Beadchip
Data format
 Raw sequence data:xsq, (.csfasta and .qual)
Mapped sequence data: bam
Raw expression data: Illumina Beadstudio tab-delimited file
Experimental
factors
Transcription factor binding to DNA; gene expression level
changes in response to nuclear receptor agonist treatment
Direct link to deposited data

Deposited data can be found at: http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE59736.

Experimental design, materials and methods

ChIP of PPARγ

We generated PPARγ-LAP BAC transgenic NCI-H2347 and NCI-
H1993 cell lines using a BAC-transgenesis approach [2–4]. Cells at 80%
nter for Human Growth and
al Center, Dallas, TX 75390, USA.
ttler).

. This is an open access article under
confluency (~1–1.5 × 107) were cross-linked with 1% formaldehyde
for 10min at 37 °C and quenchedwith 125mMglycine at room temper-
ature for 5 min. The fixed cells were washed twice with cold PBS,
scraped and transferred into 1 ml PBS containing protease inhibitors
(Roche). After centrifugation at 700g for 4 min at 4 °C, the cell pellets
were resuspended in 100 μl ChIP lysis buffer (1% SDS, 10 mM EDTA,
50 mM Tris–HCl [pH 8.1] with protease inhibitors) and sonicated at
4 °C with a Bioruptor (Diagenode) (30 s on and 30 s off at highest
power for 12 min). The sheared chromatin with a fragment length of
~200–600 bp) was centrifuged at 10,000g for 10min at 4 °C). One hun-
dredmicroliters of the supernatant was used for ChIP or as input. A 1:10
dilution of the solubilized chromatin in ChIP dilution buffer (0.01% SDS,
1.1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl 16.7 mM Tris–HCl [pH
8.1]) was incubated at 4 °C overnight with 6 μg/ml of a goat anti-GFP
(raised against His-tagged full-length eGFP and affinity-purified with
GST-tagged full-length eGFP). Immunoprecipitations were carried out
by incubating with 40 μl pre-cleared Protein G Sepharose beads
(Amersham Bioscience) for 1 h at 4 °C, followed by five washes for
10 min with 1 ml of the following buffers: Buffer I: 0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20 mM Tris–HCl [pH 8.1], 150 mM NaCl; Buffer II:
0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–HCl [pH 8.1],
500 mM NaCl; Buffer III: 0.25 M LiCl, 1% NP-40, 1% deoxycholate,
1 mM EDTA, 10 mM Tris–HCl [pH 8.1]; twice with TE buffer [pH 8.0].
Elution from the beads was performed twice with 100 μl ChIP elution
buffer (1% SDS, 0.1 M NaHCO3) at room temperature (RT) for 15 min.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Protein–DNA complexes were de-cross-linked by heating at 65 °C
in 192 mM NaCl for 16 h. DNA fragments were purified using
QiaQuick PCR Purification kit (Qiagen) and eluted into 30 μl H2O
according to the manufacturer’s protocol after treatment with
RNase A and Proteinase K.

Outline of the computational analyses

A brief overview of the computational analyses described below is
provided in Fig. 1.

Base calling and alignment

Barcoded libraries of ChIP and input DNA were generated with
the SOLiD Fragment Library Barcoding Kit (Applied Biosystems), and
35-nt single-end reads were generated with the SOLiD 4hq system
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samples, respectively. Quality control analysis on the mapped reads in
H2347 PPARG ChIP and H1993 PPARG ChIP samples using FASTQC
indicated no shift in the overall GC content in the sequenced reads
and overall excellent quality values (Fig. 2A–D), suggesting that the
next-generation sequencing read data are of excellent quality.

Peak calling

Model-based analysis of ChIP-Seq (MACS) [6] software tool (v.1.4.2)
was used to identify PPARγ-bound regions from ChIP-Seq data with
200 bp as the fragment length and read shifting by 100 bp to identify
candidate peaks with significant tag enrichment. MACS uses a Poisson
distribution model to calculate the significance (p-value) of these
peaks. Default parameters of MACS were used for the analyses in our
study to quantify the PPARγ ChIP signal fold enrichment over input
sample in each region with increased PPARγ occupancy (i.e., peaks),
providing this value in the peak file. A false discovery rate (FDR) cutoff
of 1% was used to select peaks for further analysis.

Motif discovery and motif enrichment analysis

A crucial step in the secondary and tertiary analyses of our PPARγ
ChIP-Seq data was to assess the validity of peak regions identified
withMACS. A de novomotif discovery analysis for PPARγ-bound regions
shared inNCI-H2347 andNCI-H1993 cellswas performedwith theMul-
tiple EM for Motif Elicitation (MEME) software tool. MEME uses a mul-
tiple sequence alignment approach to identify repeated ungapped
sequence patterns in the input DNA with statistical significance [7].
We retrieved 200 bp sequence (i.e., 100 bp sequence flanking the
peak summits 3′ and 5′) as input for MEME. From theMEME prediction
results, highly enriched motif in terms of number of sites and E-values
were selected and thenmapped against the transcription factor annota-
tion databases JASPAR [8] and TRANSFAC [9] using TOMTOM suite [10].
TOMTOM identifies transcription factors (TF) position weight matrices
(PWMs) also known as motifs similar to theMEME predicted motif. As-
suming that the ChIP-Seq data are of high quality, we expect to identify
the known motif for the transcription factor with this approach, which
is critical to proceed with downstream analyses.

Furthermore, we analyzed the enrichment of known transcription
factor motifs in JASPAR and ENCODE by determining the frequency of
known motifs in PPARγ-bound regions and in 75,000 random sets of
the same sample size by using Motif Scanner [11]. Motif Scanner
searches for the known motif instances in the given input sequence
over the background model and provides output for the best scoring
positions as the motif instances. The background model selected for
this study is the 3rd-order Markov model designed using the human
promoter sequences in eukaryotic promoter databases (EPD) [11]. The
motif enrichment scorewas calculated as the ratio of themotif frequen-
cy in PPARγ binding region set and the meanmotif frequency in 75,000
random sets. The Z value and statistical significance (p-value) of the
enrichment score was calculated based on the variance and the mean
obtained from the 75,000 random simulations.

Target gene analysis and pathway enrichment analysis

Potential protein-coding target genes associated with PPARγ bind-
ing regions were identified based on the distance of their transcription
start sites (TSSs) (obtained from RefSeq annotation assembly, hg19)
to PPARγ binding peak summits. All genes whose TSSs were within
100 kb distance were called as PPARγ target genes. Also, if no gene
was identifiedwith in 100 kb distance, the nearest genewas considered
as the PPARγ target. Pathway enrichment analysis was performed on
the called target genes using gene sets provided by Merico et al. [12].
We performed the hypergeometric test to identify the gene or pathway
signatures thatwere overrepresented in the target gene set. Enrichment
p-values were calculated and adjusted for multiple hypotheses testing
using the Benjamini–Hochberg method. Significantly enriched path-
ways (FDR ≤ 1%) were selected and the hypergeometric test was used
to calculate the enrichment p-values between each pair of significantly
enriched pathways or gene sets. These p-values were used to plot the
edges in an enrichment map to represent the strength of enrichment
between gene sets in our Cell Metabolism paper [1].

Normalization of wig files

We used the wignorm executable provided in MACS software tools
to determine the background signal in the input sample and subtracted
it from the ChIP signal.We used the fold change between the ChIP signal
and the input signal as the score to build a single wig track to represent
the binding strength. This scorewas used to construct theUCSC browser
tracks shown in our Cell Metabolism paper.

Annotation of PPARγ binding regions

We used the annotate Peaks function available in Homer tools [13]
to annotate PPARγ binding regions relative to their specific positions
in the genome. This function takes the peak coordinates, tag directories
as input and extends each tag by their estimated ChIP fragment length,
and calculates ChIP fragment coverage represented in per base pair per
peak. We used CEAS tool [14] to annotate the binding sites distributed
over important genomic features such as promoter, downstream of
transcription termination site, untranslated region (UTR), exons and
introns.

Microarray data normalization and analyses

For microarray data analyses, NCI-H2347 cells were treated with
50 μM pioglitazone or vehicle (DMSO) for 12, 24 and 48 h, and total
DNA-free RNA was prepared. Triplicate experiments were performed
for each time point. The whole genome gene expression assay was
carried out using Illumina HumanHT-12 v4 Expression BeadChip plat-
form. This array contains more than 47000 probes for the human
transcriptome.

Microarray preprocessing is a crucial step to avoid background noise
interference with the array experiment results. Hence, the two main
steps implemented in our preprocessing of microarray array data
were background correction and normalization. In this study, we used
a non-parametric version of model-based background correctionmeth-
od (MBCB),which uses an extendedmodel of robustmultiarray analysis
(RMA), to incorporate the information fromnegative control beads [15].
These background-corrected data were subjected to quantile normali-
zation to obtain identical sample distributions in terms of their statisti-
cal properties.

To assess the differential expression between samples, we used the
linearmodels for microarray data (LIMMA)method [16]. In LIMMA, lin-
ear models are fitted to normalized expression data by specifying the
design matrix to represent the samples that were used in each array
and the contrast matrix to specify which comparisons should be used
between RNA samples. Also, LIMMA uses an empirical Bayes method
to compute the statistical significance and the fold change between
the samples to minimize the standard error. p-values for expression
changes were computed and adjusted for multiple hypothesis testing
[16]. From the LIMMA results, we selected significant probes as those
with significant expression changes between the pioglitazone-treated
and vehicle samples at any time point (cutoff: adjusted p b 0.05 and
fold change N2 or b0.5).

Quality control of gene expression data

We calculated pairwise distances between all array sample expres-
sion data using the Manhattan method in dist () R function to check
the reproducibility between array sample replicates. This method
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Fig. 2. Quality control analysis for ChIP-seq and gene expression data. (A and B) Sequencing quality values across all read positions for NCI-H2347 and NCI-H1993 PPARG ChIP sample
reads. Yellow box represents the interquartile range. Blue and red lines represent mean and median quality values, respectively. The x-axis depicts each position on the read, the y-axis
depicts quality scores. (C and D) GC content across all read positions for NCI-H2347 and NCI-H1993 PPARG ChIP sample reads. The red curve depicts the GC content distribution per
read, the blue curve depicts normal distribution of GC content in the reference genome. (E) Cluster dendrogram of microarray gene expression profiles. The dendrogram was obtained
by hierarchical clustering of pairwise distances between all replicate samples using normalized gene expression values. Sample annotation for Veh_24_Rep1 is vehicle-treated sample,
24 h of treatment, replicate 1 (Pio = pioglitazone-treated samples).
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calculates the absolute distance between the two vectors. We per-
formed hierarchical clustering on this distance matrix using “ward”
method in hclust() R function (Fig. 2E).

Clustering analysis

Genes with significant expression change at any given time point
were used for clustering analysis. To identify gene clusters that have
similar expression patterns, we performed hierarchical clustering with
Euclidean distance metric and “agglomerative average” method using
heatmap.2 function available in the “gplots” R package [17]. We filtered
genes whose expression was not significant and highlighted important
genes that are involved in lipid metabolism, oxidative stress and cell
cycle regulation in the Cell Metabolism paper [1].

To identify the enrichment of genes are putative direct targets
of PPARγ (i.e., genes with PPARγ binding sites near or within 100 kb
distance with respect to the TSS, which displayed significant expression
changes upon pioglitazone treatment), we clustered genes with
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significant expression change at any given time point into six clusters
using centroid based clustering (k-means clustering) as follows:We cal-
culated the within-group sum of squares measure by increasing the
cluster size by one in a stepwise manner. We determined the optimal
number of clusters when we did not see a difference in the within-
group sum of squares measure after increasing the cluster size. From
this analysis, we determined our optimal cluster size as six or eight.
We tested the results for both cluster sizes and did not observe new ex-
pression patterns when we compared the cluster size of eight to the
cluster size of six (data not shown). Hence, we choose the cluster size
of six for our analysis. Also, since k-means clustering startswith random
initial points and produces different results each time, we used the
“pam()” function in the “fpc” R package, which is amore robustmethod
of k-means clustering by starting with defined data points as centers to
define clusters. Two of the six clusters showed similar expression pat-
tern between 12, 24, and 48 h time points. Hence, we collapsed them
into single cluster (Fig. 3) and quantified the enrichment of PPARγ
direct targets in these clusters using the hypergeometric test.
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Rationale for the use of different distance and linkage methods

For the quality control analysis, we performed hierarchical cluster-
ing on all probes on the array, whereas for “significant genes” clustering,
we performed hierarchical clustering only for probes of genes with sig-
nificant expression changes for at least one of the three time points. For
the quality control analysis, we used log2-transformed normalized ex-
pression values of all probes, whereas for “significant genes” clustering,
we used log2-transformed fold change values. The “average method”
defines clusters based on the distance between groups, which is calcu-
lated as the average of the distances between all pairs of individuals in
the groups. Hence, the “average method” is more appropriate to define
clusters for differentially expressed genes (i.e., those with significant
differences in expression between treated and control samples).
Ward’s method defines clusters by minimizing the variance in the dis-
tances between two groups. Hence,Ward’s method is more appropriate
for analyzing replicate reproducibility. Euclidean distance uses the
square root of the sum of the squares of the distances and Manhattan
method uses sum of absolute distances. We obtained the same cluster-
ing patterns with both methods (data not shown).

GSEA enrichment map

To determine the enrichment of gene sets at the top or bottom of a
ranked list of differentially regulated genes upon pioglitazone treat-
ment, we performed gene set enrichment analysis (GSEA) using the
time-course gene expression data and a priori defined gene sets. We
A B

D E

12hr (NES = 2.11) 24hr (NES

12hr (NES = -1.89) 24hr (NES

Fig. 4. GSEA enrichment plots for time-course gene expression data. (A–C) Enrichment plots fo
cycle gene signature. The top part of each plot shows the enrichment score that represents run
shows the position of a member of a gene set in the ranked list of genes. The bottom part dep
normalized enrichment score.
used default parameters for GSEA except the permutation type param-
eter. Since, we have a limited number of samples, we used the “geneset”
permutation type for the analysis. We performed GSEA for each time
point separately (examples for two gene sets are shown in Fig. 4A and
B), and the gene sets that were significantly enriched (FDR ≤ 5%) at
any given time point were selected for clustering analysis. Hierarchical
clustering was performed on the normalized enrichment scores (NES)
obtained for all the significant gene sets in all the three time points
using heatmap.2 function available in “gplots” R package [17] to pro-
duce an enrichment heatmap as displayed in the Cell Metabolism
paper [1].

Discussion

We describe an integrated analysis of the PPARγ cistrome and gene
expression changes caused by the PPARγ agonist pioglitazone in lung
cancer cells. This analysis identified the putative direct targets of
PPARγ. Multi-step bioinformatic analyses uncovered the gene regulato-
ry program controlled by PPARγ, which provides a hypothesis for its
mechanism of action in lung cancer. Importantly, we show that both
primary data (for ChIP-seq and gene expression) aswell as the primary,
secondary and tertiary analysis are of high quality. These data sets and
follow-up biochemical studies have been recently used in a study pub-
lished in Cell Metabolism [1]. Thus, we demonstrate the power of func-
tional genomic approaches coupled with sophisticated bioinformatic
analysis to develop mechanistic understanding for the function of tran-
scription factors.
C

F

 = 1.21) 48hr (NES = 1.40)

 = -2.63) 48hr (NES = -3.20)

r the fatty acid beta-oxidation gene signature. (D–F) Enrichment plots for the mitotic cell
ning-sum statistic calculated by “walking down” the ranked list of genes. The middle part
icts the ranking metric that measures a gene’s correlation with a biological function. NES,
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