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Abstract: NAC transcription factors play an important regulatory role in tomato fruit ripening. We
chose a novel perspective to explore the traces left by two paleopolyploidizations in the NAC family
using a bioinformatics approach. We found that 85 (S. lycopersicum) and 88 (S. pennellii) members of
the NAC family were present in two tomatoes, and most of them were amplified from two paleo-
hexaploidizations. We differentiated NAC family members from the different paleohexaploidizations
and found that the SWGT-derived NAC genes had more rearrangement events, so it was different
from the DWGT-derived NAC genes in terms of physicochemical properties, phylogeny, and gene
location. The results of selection pressure show that DWGT-derived NAC genes tended to be posi-
tively selected in S. lycopersicum and negatively selected in S. pennellii. A comprehensive analysis of
paleopolyploidization and expression reveals that DWGT-derived NAC genes tend to promote fruit
ripening, and are expressed at the early and middle stages, whereas SWGT-derived NAC genes tend
to terminate fruit growth and are expressed at the late stages of fruit ripening. This study obtained
NAC genes from different sources that can be used as materials for tomato fruit development, and
the method in the study can be extended to the study of other plants.

Keywords: paleohexaploidization; tomato; NAC transcription factor; fruit ripening

1. Introduction

The tomato (Solanum lycopersicum, abbreviated S. lycopersicum) is a diploid (2n = 24)
crop of the Solanaceae family whose fruits are rich in organic nutrients such as sugars,
amino acids, lycopene, β-carotene, and vitamin C (ascorbic acid), and is one of the important
economic vegetable crops in the world [1,2]. The tomato is a model organism for agronomic,
nutritional, and genetic studies due to its small genome (~900 Mb) [3], short growth cycle,
high self-fertility, and homozygosity [4–6].

Various factors such as plant hormones, environmental signals, and transcription
factors influence fruit ripening in tomato, of which the NAC transcription factor is one
of the major ones [7,8]. The NAC family, named after NAM, ATAF1/2, and CUC2, is one
of the largest families of TFs that play important roles in different stages of plant growth,
development, and maturation [8,9]. An increasing number of studies revealed that NAC
proteins play important roles in various metabolic pathways, and resistance to biotic and
abiotic stresses in tomatoes, such as flower border formation [10], leaf senescence [11], fruit
ripening [12–15], phytohormones [16], salt [17], drought [17,18], and heavy metals [19].

Paleopolyploidization, also known as whole-genome duplication (WGD), is an im-
portant driver of plant evolution through the numerical multiplication and functional
diversification of genes [20–24]. The tomato genome has undergone two paleohexaploidiza-
tions in its evolutionary history, also known as whole genome triploidization (WGT) events.
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The first was a γ event[3] (~120 mya) that occurred in the common ancestor of dicotyle-
dons, referred to here as DWGT. The second was a paleohexaploidization (~67 mya) that
occurred in the common ancestor of Solanaceae [3,25,26], referred to here as SWGT. Pa-
leopolyploidization produces more gene family members that may affect the regulatory
functions of the gene family, and influence the growth and development of the crop. For
example, the effects of paleopolyploidization on gene function were identified in the
studies of several gene families such as PHYB1/PHYB2 [3], U-box E3 gene [27], XTH and
DOF [28], but few studies have associated tomato paleohexaploidization with its NAC
family characteristics.

Given the importance of the NAC family in the physiological activity of tomatoes, this
study presents a novel comparative analysis of the NAC family and paleohexaploidizations
in two tomato genomes (S. lycopersicum and its wild-type S. pennellii). This study uses
Coffea canephora [29] as an out-group that did not undergo SWGT to distinguish NAC
genes generated by different paleohexaploidizations. Furthermore, the study explores
the associative features of two paleohexaploidizations with the NAC family in terms
of chromosomal localization, physicochemical properties, phylogeny, selection pressure,
differential expression, and functional enrichment. This study helps in applying the
characteristics of the NAC family to the improvement of tomato fruits.

2. Materials and Methods
2.1. Species Selection and the Generation of NAC Members

Two tomato genomic data were downloaded from Sol Genomics Network (https:
//solgenomics.net/, accessed on 8 July 2022) [30], with ITAG version 4.0 for cultivar S.
lycopersicum [31] and Spenn-v2.0 for the wild species S. pennellii [32]. Genomic data for out-
group C. canephora [29] were downloaded from the Coffee Genome Hub (https://coffee-
genome-hub.southgreen.fr/, accessed on 8 July 2022). Hidden Markov model (HMM)
seeds for the NAC domain (PF02365) were downloaded from Pfam [33]. Bioperl [34] was
used to manipulate sequences, Muscle [35] to perform multiple sequence alignment, and
HMMER 3 [36] to perform Pfam Hmm seed-based sequence alignment. The threshold for
specific NAC library construction was 1 × 10−20, and the threshold for NAC identification
was 1 × 10−10.

2.2. Physical Localization, Physicochemical Properties, and Phylogenetic Analysis

The distribution of NAC members on chromosomes was demonstrated using MG2C [37]
on the basis of the location of genes in genomic assembly data. The primary structure of
NAC proteins was analyzed using Protparam in Expasy [38]. The subcellular localization of
NAC proteins was analyzed using CELLO [39]. The secondary structure of NAC proteins
was predicted using SOPMA [40]. The multiple sequence alignment of the identified NAC
families was performed using Muscle software, and the construction of evolutionary trees
using the maximal likelihood method (ML) in FastTree [41] software setting Bootstrap = 1000.
The evolutionary tree was trimmed and embellished using the Chiplot tool (https://www.
chiplot.online/, accessed on 8 July 2022).

2.3. Genomic Collinearity Search and Selection Pressure Analysis

The search for collinear fragments was performed in C. canephora and two tomato
genomes using MCScanX [42] with default parameters to obtain genes of different origins,
such as tandem repeats and paleopolyploidization. The origin of the NAC genes was ob-
tained by querying the identified NAC family members in the above results. On the basis of
the above results, the downstream analysis of MCScanX (detect_collinearity_within_gene_fa
milies.pl) was executed to obtain the collinearity of NAC family members. The multiple
sequence alignment of collinear NAC genes using Clustalw [43] software, followed by
calculation of Ka (nonsynonymous substitutions) and Ks (synonymous substitutions) val-
ues for each collinear NAC gene pair using Bioperl. The selection pressure on NAC genes
of different species was analyzed on the basis of the ratio of Ka to Ks, with Ka/Ks > 1

https://solgenomics.net/
https://solgenomics.net/
https://coffee-genome-hub.southgreen.fr/
https://coffee-genome-hub.southgreen.fr/
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being positive selection, Ka/Ks = 1 being neutral selection, and Ka/Ks < 1 being purifying
selection. Genomic collinearity and NAC genes were visualized using Circos [44].

2.4. Fruit-Ripening-Specific Expression Analysis and Enrichment Analysis

For the analysis of differential expression and enrichment in the NAC family, we se-
lected the expression microarray data of tomato (cv., Money Maker) at three fruit-ripening
stages. The three stages were mature green (MG), breaker (Br), and breaker + 10 days
(Br10), and each stage had three biological replicates. These data were downloaded from
the NCBI Gene Expression Omnibus [45] and stored in accession number GSE108415 [46].
Limma [47] software screens for specific differentially expressed genes in fruit ripening.
AnnotationHub [48], DOSE [49], and clusterProfiler [50] were used for the enrichment anal-
ysis of differentially expressed genes and the NAC family. ggplot2 [51] and enrichplot [52]
were used to visualize differential expression volcano maps and enrichment analysis results.
pheatmap (https://github.com/raivokolde/pheatmap, accessed on 8 July 2022) was used
for clustering and drawing heat maps. Linear fit models for differentially expressed genes
were estimated using the least-squares method. The p-value and adj. p-Value for each group
comparison were calculated using the modified t-statistic and BH method [53], respectively.
The screening threshold for differential genes was |logFoldChange| > 2 and p-value < 0.05.
The screening threshold for both GO and KEGG enrichment was adj. p-value < 0.05. The
FoldEnrichment value in Go enrichment analysis is equal to the ratio of the GeneRatio
to BgRatio; RichFactor in KEGG enrichment analysis is equal to the ratio of molecules of
GeneRatio (i.e., Count) to molecules of BgRatio.

3. Results
3.1. Identification and Localization of NAC Family

C. canephora has undergone only one paleohexaploidization (DWGT) event and has a
relatively conservative evolutionary rate, thus serving as an out-group species. The NAC
genes in C. canephora, S. lycopersicum, and S. pennellii were identified on the basis of a hidden
Markov model of the NAC domain. The number of NAC genes in each species was recorded
(Table 1). The results show that S. lycopersicum and S. pennellii had similar numbers of NAC
genes (85 vs. 88). The number of NAC genes was significantly higher in both tomatoes
when compared to C. canephora. This suggests that the second paleohexaploidization may
have resulted in the expansion of the NAC family members in the tomato genome.

Table 1. Identification information of NAC.

Species Name Data Version Chromosome
Number

Total Gene
Number

NAC Candidate
Number

Coffea canephora AUK _v1 2n = 22 25,574 60
Solanum

lycopersicum ITAG 4.0 2n = 24 34,075 85

Solanum pennellii Spenn-v2.0 2n = 24 48,923 88

The physical localization of NAC genes in S. lycopersicum and S. pennellii shows that
NAC genes were distributed very similarly on the same chromosomes in different tomatoes
(Figure 1A). For example, NAC genes had the same arrangement on chromosome 1 in
both tomatoes. On chromosome 7, the difference was that S. pennellii had one more gene
located in the middle of the chromosome, Sopen07g012150.1. The results for different
chromosomes show that NAC genes are unevenly arranged on different chromosomes
(Figure 1B). For example, the number of NAC genes on chromosomes 2 and 6 was more
than that on chromosomes 9 and 12. At the overall level, NAC genes often form some gene
clusters at the ends of the chromosomes (Figure S1). For example, the average distance
of NAC genes on chromosome 2 of S. lycopersicum was 0.0578 Mb (Solyc02g061780.3.1,
Solyc02g061900.1.1, Solyc02g062060.1.1, Solyc02g061870.1.1 and Solyc02g061910.1.1), which

https://github.com/raivokolde/pheatmap
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is very close (Figure S1A). Similarly, NAC genes also form clusters on chromosome 4 of
S. pennellii, with an average distance of 0.0586 Mb (Figure S1B).

Figure 1. Distribution of NAC genes on two tomato chromosomes. (A) NAC on chromosomes 1
and 7 of S. lycopersicum and S. pennellii with a similar positional distribution. (B) NAC on different
chromosomes of S. lycopersicum with chromosome end distribution. Each NAC gene is labeled with
its possible origin: DWGT, SWGT, and unknown.

3.2. Physicochemical Characteristics of NAC Proteins

In total, 173 NAC genes were identified in two tomatoes (Table 1), and the primary
structure and physicochemical properties of their proteins were analyzed using the Prot-
param tool (Figures 2 and S2, and Table S1). The results of amino acid numbers show
that the majority of NAC proteins had amino acid numbers between 100 and 700, with
Solyc03g062750.1.1 having the lowest number of amino acids (122) in S. lycopersicum. In
addition, two NAC proteins in S. pennellii had amino acid numbers greater than 700
(Table S1), Sopen10g022760.1 (853), and Sopen02g025910.1 (1014). The molecular mass of
NAC proteins showed a positive correlation with the number of amino acids. In detail, the
majority of NAC proteins had molecular masses less than 80,000 (Figure 2B). The NAC
protein with the smallest molecular mass was Solyc03g062750.1.1 (14,427.78), which also
had the lowest number of amino acids. The NAC protein with the largest molecular mass
was Sopen02g025910.1 (115,206.37), which also had the highest number of amino acids
(Figure S2 and Table S1).

The results of isoelectric points show that the range of isoelectric points of NAC
proteins in S. lycopersicum was between 4.58 and 9.90. Among these NAC proteins, (PI < 6.5)
47 were acidic, (PI > 7.5) 26 were alkaline, and the remaining 12 were between 6.5 and
7.5 (Figure 2C and Table S1). Correspondingly, the isoelectric points of NAC proteins in
S. pennellii ranged from 4.21 to 9.82. Among them, the numbers of acidic and basic proteins
were 51 and 26, respectively, and the remaining 11 were neutral proteins (Figure S2 and
Table S1). The instability index results show that most of the proteins in two tomatoes
(111) had instability coefficients greater than 40, i.e., unstable proteins, and a small number
of proteins (62) were less than 40, i.e., stable proteins (Figures 2D and S2 and Table S1).
The results of the fat coefficients show that most of the NAC proteins had fat coefficients
between 40 and 80 in two tomatoes (Figures 2E and S2, and Table S1).
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Figure 2. Primary structural and physicochemical properties of NAC proteins. (A) The number of
amino acids of NAC protein in S. lycopersicum ranged from 122 to 687. (B) The relative molecular
mass of NAC protein in S. lycopersicum ranged from 14,427.78 to 76,250.64, a similar to the distribution
of amino acid numbers. (C) The isoelectric points of NAC proteins in S. lycopersicum ranged from 4.58
to 9.90, and they were mostly acidic. (D) The instability coefficients of NAC proteins in S. lycopersicum
ranged from 24.28 to 61.13, and most of them belonged to instability coefficients (>40). (E) The
fatty coefficients of NAC proteins in S. lycopersicum ranged from 40.45 to 82.39. (F) The subcellular
localization of NAC proteins in S. lycopersicum was mainly in the nucleus. Each NAC protein is
labeled with its possible origin: DWGT, SWGT, and unknown.

The results of subcellular localization analysis of 173 NAC proteins show that all
proteins were present in the nucleus except Solyc04g078670.3.1 and Sopen10g022760.1,
which may also be present in chloroplasts (Figure 2F, Table S1). On the basis of the
results of secondary structure prediction for 173 NAC proteins, we counted the frequency
of secondary structures (e.g., α-helix, β-turn, random coil, and extended chain) for each
protein (Figure 3, Table S2). The results show that the random coil had the highest frequency
in the NAC proteins and was the dominant structure in the secondary structure. In addition,
the frequency of β-turn was the lowest, and the frequency of the α-helix and extended
strand was moderate.

3.3. Phylogeny of the NAC Family

Phylogenetic trees were constructed in C. canephora, S. lycopersicum, and S. pennellii
using Fastree on the basis of the results of the multiple sequence alignment of NAC proteins
(Figures 4, S3 and S4). In the case of S. lycopersicum, a phylogenetic tree of 85 NAC family
members was constructed (Figure 4). According to the topology of the phylogenetic tree,
the NAC family can be divided into three subgroups, SL_NAC1 (47 genes), SL_NAC2
(21 genes), and SL_NAC3 (17 genes). Topological results show that SL_NAC2 and SL_NAC1
had the highest and lowest overall evolutionary rates, respectively, with the branching
SL_NAC3 having the middle evolutionary rate. This may indicate that more than half
of NACs in S. lycopersicum are relatively conserved. In addition, Solyc08g007015.1 in
SL_NAC3 is noteworthy for its rate of evolution, which was much higher than that of other
proteins in the group. Similar to S. lycopersicum, the phylogenetic tree of NAC protein can
be divided into three subgroups in S. pennellii, while the phylogenetic tree of C. canephora
had no distinct grouping characteristics (Figures S3 and S4).
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Figure 3. Predicted secondary structures of two tomato NAC proteins. Horizontal coordinates are the
sequentially arranged NAC proteins, and vertical coordinates are the proportion of the four secondary
structures of each NAC protein. (A) Secondary structure of the NAC protein in S. lycopersicum has a
higher frequency of random curl. (B) Secondary structures of NAC proteins in S. pennellii are similar
in distribution to those of S. lycopersicum.

Figure 4. Phylogenetic tree of S. lycopersicum NAC proteins, the evolutionary rate of each protein
is distributed in blocks. type represents different subgroups; Source represents different sources of
NAC genes; Bootstrap values are the confidence level of the evolutionary tree; Tree scale represents
the unit of branch length.
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3.4. Association of Two Paleohexaploidizations with NAC Family Amplification

The tomato has undergone two paleohexaploidizations in its evolutionary history,
which may have resulted in the expansion of the gene families [54]. The results of whole-
genome collinearity analysis show (Table 2) that the genes derived from DWGT accounted
for 35.61% of the total genes in C. canephora, while those derived from tandem were only
2.58%. This indicates that DWGT is the main driving force of coffee gene amplification. In
the genomes of S. lycopersicum and S. pennellii, genes derived from two paleohexaploidiza-
tions contributed 51.79% and 71.31%, which means that DWGT and SWGT are the main
amplification methods in the two tomato genomes (Table 2). In contrast, the number of
SWGT amplified genes in S. pennellii was significantly higher than that in S. lycopersicum.
In addition, tandem partially contributed to the genomic amplification of two tomato
species, adding 11.77% and 15.44% genes. The amplification of the NAC family showed a
similar pattern (Table 3). In the case of S. lycopersicum, the number of NAC genes generated
by DWGT, SWGT, and tandem was 61 (71.76%), 10 (11.76%), and 3 (3.53%), respectively.
Similarly, paleohexaploidization was the primary mode of NAC family amplification in
C. canephora and S. pennellii, and tandem produced relatively few NAC family members,
which is consistent with genomic amplification (Figures 5, S5 and S6).

Table 2. Statistical table of the number of genes from different sources.

Species
Name Count Type Singleton Dispersed Proximal Tandem SWGT DWGT

C. canephora Number 7153 8354 300 659 —— 9108
Percentage 27.97% 32.67% 1.17% 2.58% —— 35.61%

S. lycopersicum Number 5784 10794 1672 4012 3254 14,394
Percentage 16.97% 31.68% 4.91% 11.77% 9.55% 42.24%

S. pennellii Number 3184 7054 1035 7556 20,861 14,027
Percentage 6.51% 14.42% 2.12% 15.44% 42.64% 28.67%

Segmental: match genes in syntenic blocks; tandem: continuous repeat; proximal: in nearby chromosomal region
but not adjacent; dispersed: other modes than segmental, tandem, and proximal. Number: number of genes by
type; percentage (%): percentage between the number of each gene type and the total number of genes in the
whole genome.

Table 3. Information on the source of the NAC gene.

Species Name Count Type Tandem SWGT DWGT

C. canephora Number 1 —— 38
Percentage 1.67% —— 63.33%

S. lycopersicum Number 3 10 61
Percentage 3.53% 11.76% 71.76%

S. pennellii Number 7 19 57
Percentage 7.95% 21.59% 64.77%

Number: Number of NAC genes produced by different sources; percentage (%): percentage of the number of
NAC genes produced by each source to the total number of NAC genes of the corresponding species.
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Figure 5. Collinear mapping of S. lycopersicum NAC genes. (a) S. lycopersicum chromosomes and NAC
genes. (b) Distribution of genes on chromosomes (per 100 Kb). (c) Distribution of GC content on
chromosomes (per 100 Kb). (d) Linkages between all collinear gene pairs of S. lycopersicum (gray),
and collinear linkages of NAC genes from different sources (DWGT, red; SWGT, green).

3.5. Selection Pressure on NAC Genes

To a certain extent, the ratio of Ka to Ks can reflect the direction of the selection
pressure on the genes of the species [55]. According to the collinear relationship between
genes within a species, the Ka and Ks between genes in each species were calculated; then,
the selection pressure (Ka/Ks) was analyzed and counted (Tables 4, S3, and S4). The results
show that the number of Ks > 1 (1546) between DWGT gene pairs in S. lycopersicum was
greater than that of Ks < 1 (778), and the number of Ks > 1 (10) between NAC gene pairs
produced by DWGT was also greater than that of Ks < 1 (4). This indicates that the positive
selection pressure was greater than the negative selection pressure on the genes generated
by DWGT, and the NAC genes are in the same direction. The number of gene pairs Ks > 1
(363) produced by SWGT was very close to Ks < 1 (339), which indicates that the positive
and negative selections of genes produced by SWGT were relatively balanced, and the
direction of its selection pressure could not be accurately determined. In the S. pennellii
genome, genes generated by SWGT were under more pressure from negative selection than
from positive selection. Genes generated by DWGT (including NAC genes) were under
more negative selection pressure than positive selection pressure, which was opposite to
S. lycopersicum.
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Table 4. Information on the source of the NAC gene.

Species
Name Count Type SWGT DWGT NAC SWGT NAC DWGT

C. canephora Ka/Ks < 1 —— 2692 —— 13
Ka/Ks > 1 —— 545 —— 1

S. lycopersicum Ka/Ks < 1 339 778 1 4
Ka/Ks > 1 363 1546 0 10

S. pennellii Ka/Ks < 1 6947 3065 4 19
Ka/Ks > 1 823 245 2 2

Count type represents different selection pressure directions (columns) and different source gene pair types (rows);
numbers represent the number of collinear gene pairs.

3.6. Developmental-Stage-Specific Expression Analysis

On the basis of expression data of three maturation stages in S. lycopersicum, pairwise
comparisons were performed (MG vs. BR, BR vs. BR10, MG vs. BR10), and the statistics of
differentially expressed genes were screened (Figure 6, Tables S5 and S6). The results show
that the number of upregulated genes shared by the three stages was 69, which was higher
than the number of downregulated genes (18), but they had a similar overall proportion
(3.1% and 2.7%). Another commonality is that there were no genes in common in either
up- or downregulated gene comparisons in the MG vs. BR combination and the BR vs.
BR10 combination (Figure 6). The results of differential expression analysis at different
maturation stages show (Figure 7) that some differentially expressed genes were highly
significant (see Section 2). For example, in the MG and BR combination (Figure 7A), there
were 25 highly significantly differentially expressed genes, of which 7 were upregulated
and 18 were downregulated. In the BR and BR10 combination, there were only 5 highly
significantly differentially expressed genes and all of them were upregulated (Figure 7B).
There were 35 highly significantly differentially expressed genes in the MG vs. BR10
combination, of which 16 were upregulated and 19 were downregulated (Figure 7C).

Figure 6. Venn diagram of differentially expressed genes at different maturation stages of S. lycop-
ersicum. (A) Comparison of the intersection of upregulated genes in the three maturation stages of
S. lycopersicum. (B) Comparison of the intersection of downregulated genes in the three maturation
stages of S. lycopersicum.
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Figure 7. Volcano plot of differential expression at different ripening stages of S. lycopersicum. The
horizontal coordinate is the log2 value of Fold Change and the vertical coordinate is the −Log10
value of p-value, highly significant differentially expressed genes (Log2(Fold Change) absolute value
> 6 and −Log10(p-value) > 10)) are labeled with gene ID. (A) Differential expression of S. lycopersicum
genes in MG vs. BR phase, up-regulated genes (red), down-regulated genes (blue). (B) Differential
expression of S. lycopersicum gene at BR vs. BR10 stage. (C) Differential expression of S. lycopersicum
gene in MG vs. BR10 phase. (D) Differential expression of S. lycopersicum NAC gene at MG vs. BR
stage. (E) Differential expression of S. lycopersicum NAC gene at BR vs. BR10 stage. (F) Differential
expression of S. lycopersicum NAC gene at MG vs. BR10 stage.

The differential expression analysis of NAC genes at different maturation stages found that
7 NAC genes were differentially expressed (6 upregulated and 5 downregulated) in the MG vs.
BR combination (Figure 7D). In the BR and BR10 combination (Figure 7E), this number was 5
(2 upregulated, 3 downregulated). In the MG vs. BR10 combination (Figure 7F), this number
was 6 (3 up-regulated, 3 down-regulated). Although the number of differentially expressed
NAC genes was low, their −Log10 (p-value) was relatively high (greater than 5) except for
Solyc05g055480. To understand the expression patterns of NAC genes at different maturation
stages, the expression levels of all NAC genes were clustered and displayed (Figure 8). For
example, in the MG stage, Solyc08g077110, Solyc06g063380, Solyc12g036480, Solyc04g025760,
Solyc02g069960, Solyc07g066330, Solyc10g005010, Solyc09g010160 and Solyc0 6g061080 are more
active. In the Br stage, the expression of Solyc11g068620, Solyc03g097650, Solyc03g1 15850
and Solyc03g062750 was more active. In the BR10 stage, the expression of Solyc03g083880,
Solyc06g063430, Solyc07g062240, Solyc07g053680 and Solyc10g079220 was more active. The
expression results indicate that the NAC gene played a role in different maturation stages.
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Figure 8. Clustering of differential expression of NAC genes in different ripening stages of S. ly-
copersicum. The stage represents three different stages of S. lycopersicum fruit ripening; the source
represents different sources of NAC genes.

3.7. GO and KEGG Enrichment Analysis

Gene ontology (GO) can classify genes from three levels (MF: molecular function,
BP: biological process, CC: cellular components), and predict the pathway of their func-
tion [56,57]. The differentially expressed genes of the three comparative combinations
were extracted and subjected to GO enrichment analysis (Tables S7 and S8). Among the
upregulated genes, genes in the combination of MG and BR were fully enriched in bio-
logical process and had lower fold enrichment, while the genes in the combinations of
BR and BR10, and MG and BR10 were scattered into the three GO-enriched classes and
had higher fold enrichment (Figure S7). Among the downregulated genes, genes of the
BR and BR10 combination were enriched into two GO classes (BP and MF), while genes
of the MG and BR, and MG and BR10 combinations were scattered into three GO classes
(Figure S8). Taking the differentially expressed genes of the MG and BR10 combination as
an example (Figures S7 and S8), the upregulated genes were highly enriched in several
growth-essential pathways such as photorespiration, carbon fixation, glycogen metabolic
process, and energy reserve metabolic process. The downregulated genes were highly
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enriched in structurally related pathways such as fruit ripening, oxidoreductase activity,
and response to unfolded protein. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
can analyze the pathway enrichment of candidate genes in 7 categories to observe their
interactions in different biochemical processes. Taking the MG and BR combination as
an example, the upregulated genes were highly enriched in three pathways, the biosyn-
thesis of nucleotide sugars, carbon fixation in photosynthetic organisms, and glyoxylate
and dicarboxylate metabolism (Figure 9A, Table S9), which is similar to the results of GO.
Downregulated genes were highly enriched in three additional pathways: protein pro-
cessing in the endoplasmic reticulum, cysteine and methionine metabolism, and flavonoid
biosynthesis (Figure 9B, Table S10). The results of differential expression show that up-
regulated genes were highly enriched in multiple active pathways such as maintaining
organism survival and growth, while downregulated genes tended to be highly enriched
in fruit ripening and protein structure maintenance.

The same GO and KEGG enrichment operations were performed on the NAC genes
of S. lycopersicum. Due to the small number of NAC genes, only GO enrichment results
were obtained (Figure S10, Table S11). The results show that 6 NAC genes were enriched in
7 BPs involved in growth and development, of which Solyc05g007770.3.1 was present on all
7 BPs.

Figure 9. KEGG enrichment map of S. lycopersicum MG vs. BR. Horizontal coordinate RichFactor
is the ratio of the number of genes enriched by S. lycopersicum in a pathway to the total number of
genes in that pathway, and the vertical coordinate is the different pathways defined by KEGG. (A)
Enrichment results of upregulated genes in KEGG. (B) Enrichment results of downregulated genes
in KEGG.

4. Discussion

In this study, 85 and 88 NAC genes were identified in S. lycopersicum and S. pennellii, re-
spectively, which differed from the number identified in PlantTFDB v5.0 (101 and 105 NAC
genes) [19]. There may be two reasons for this difference. First, in the process of identifying
NAC genes, this study set two strict search thresholds, which resulted in fewer matches (see
Section 2). Second, the tomato genome version used in PlantTFDB v5.0 is ITAG 2.3, and the
latest ITAG 4.0 version was used in this study [31]. The difference in the number of NAC
genes in S. lycopersicum may have been influenced by all two reasons, and this difference in
S. pennellii may have mainly been due the first reason. Chromosomal mapping reveals that
the NAC family appeared to be unevenly distributed across the two tomato genomes, and
this uneven distribution is also seen in Pyrus bretschneideri (white pear) [58], Betula pendula
(white birch) [59] and Zea mays L. (maize) [60] and other plant genomes.

On the basis of gene collinearity analysis, the origin of the NAC family since two paleo-
hexaploidizations was analyzed. Our study reveals that most of the NAC genes in tomatoes



Life 2022, 12, 1236 13 of 17

originated from DWGT, and a small proportion of NAC genes originated from SWGT (Table
3). By linking paleohexaploidization to some basic features of the NAC family, we found
many interesting results. The NAC genes of DWGT origin were unevenly distributed on all
12 chromosomes, while the NAC genes of SWGT origin were distributed centrally on chro-
mosomes 2, 3, 5, 6, and 8 in the tomato (Figures 1 and S1). This may have been because each
paleohexaploidization was accompanied by genomic rearrangement, so the NAC genes of
DWGT origin underwent two rearrangements and showed uneven distribution. Comparing the
physicochemical properties of NAC proteins from different sources, the NAC proteins derived
from SWGT were smaller than those produced by DWGT in terms of amino acid number,
relative molecular mass, isoelectric point, and instability coefficient, and only the fat coefficient
was slightly higher than the latter (Figure 2 and Table S1). This may have also been the result of
two rearrangements, such as the distribution of NAC genes on chromosomes. This indicates
that the two paleohexaploidization had different effects on the physicochemical properties of
NAC proteins.

The phylogenetic trees of the NAC family in S. lycopersicum and S. pennellii share two
striking similarities. One is that the evolutionary trees of both tomato NAC families can be
divided into three subgroups, and the other is that each evolutionary tree had a subgroup
with a high evolution rate. (Figures 4 and S3). Combining the origin of NAC genes with
their phylogenetic trees revealed that NAC genes of SWGT origin were most abundant
in the subgroup with the fastest evolutionary rate, For example, 50% (5/10) of the NAC
genes of SWGT origin were in the fastest evolving subgroup in S. lycopersicum. Similarly,
nearly half (9/19) of the NAC genes in S. pennellii showed this phenomenon. Another
phenomenon is that SWGT-derived NAC genes on other subgroups also tend to be close to
the branches with faster evolutionary rates. This suggests that recent paleopolyploidization
events can significantly increase the evolutionary rate of the NAC family.

The analytical results of the genomic collinearity method and topological method also
revealed interesting phenomena. After species divergence and paleohexaploidization, the
offspring gene ratio of an ancestral gene should be C. canephora:S. pennellii:S. lycopersicum =
1:3:3 (Figure 10B), which was confirmed in the phylogenetic tree of all NAC genes in the
three species (Figure 10C). However, gene clusters that fit the complete model are rare, and
more gene clusters fit the residual model (Figure 10D). It is possible that the rearrangements
following paleopolyploidization were also accompanied by substantial gene loss, resulting
in a large reduction in family genes. This also explains why the number of NAC genes in
S. pennellii and S. lycopersicum was less than three times the number of NACs in C. canephora
(Table 1).

Several studies have shown that NAC transcription factors play a key role in the
tomato fruit-ripening regulatory network. During fruit ripening, NAC transcription factors
can act as positive regulators to promote the synthesis of hormones, such as ethylene and
abscisic acid [12,15,16]. However, the expression of NAC genes can also accelerate leaf
senescence and reduce photosynthesis time, thus reducing fruit quality [11]. The results of
expression analysis in S. lycopersicum show that NAC genes are significantly up or down
regulated at least once during fruit ripening (Figure 8). Most of the NAC genes showed
significantly high expression at the MG and BR stages, i.e., promoting fruit ripening [16]. A
small number of NAC genes showed significant expression at the BR10 stage, i.e., when
tomatoes have ripened into soft fruits. The NAC gene remains highly expressed at the Br10
stage, probably to accelerate leaf senescence and terminate continued fruit growth [11]. This
confirmed that the NAC gene can be expressed at different stages to promote and terminate
fruit ripening in tomatoes [11,16]. Associating the origin of NAC genes with the results of
enrichment analysis also revealed new phenomena. In the GO enrichment analysis of NAC
genes in S. lycopersicum, a total of six genes were enriched in five pathways, five of which
originated from DWGT and were more preferred to be enriched on processes related to
plant development (e.g., leaf, system, phyllome, etc.) (Table S11), which was consistent
with the results of the differential expression analysis. Expression analysis based on gene
origin revealed that NAC genes of DWGT origin were more preferred to be expressed
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in the early and middle stages of fruit ripening, while NAC genes of SWGT origin were
more preferred to be expressed in the early and late stages. That is, NAC genes of different
origins perform functions at different stages. These results indicate that the DWGT-derived
NAC gene was mainly expressed at the early stage of fruit ripening and promoted fruit
ripening. However, SWGT-derived NAC genes were mainly expressed in late fruit ripening,
terminating fruit ripening.

Figure 10. Phylogenetic tree and model of C. canephora, S. pennellii, and S. lycopersicum NAC genes.
(A) Phylogenetic tree of NAC genes in the three species. (B) Phylogenetic model of the three species,
C. canephora:S. pennellii:S. lycopersicum = 1:3:3. (C) Phylogenetic tree of the α branch in (A), consistent
with model B. (D) The Phylogenetic tree of the β branch in A with gene loss in both tomatoes.

5. Conclusions

NAC transcription factors are among the important regulators of tomato fruit ripening.
In this study, a novel analysis associating paleopolyploidization with the NAC family was
performed in the tomato and its wild relatives. Genomewide collinearity analysis revealed
that DWGT and SWGT were the main causes of NAC family amplification. We found that
the two types of NAC family members derived from DWGT and SWGT exhibited different
characteristics in terms of physicochemical properties, gene location, and phylogeny. We
speculate that this difference is due to the fact that NAC family members derived from
SWGT experienced more rearrangement events. For example, NAC genes derived from
SWGT exhibit more concentration on chromosomes, smaller mean values in physicochemi-
cal properties, and faster evolutionary rates. Analysis of paleohexaploidization and gene
expression showed that NAC genes derived from DWGT tend to be expressed at early
and mid-fruit ripening and promote fruit ripening. In contrast, SWGT-derived NAC genes
tended to be expressed at late fruit ripening, promoting leaf senescence and terminating
fruit growth. Our study links paleohexaploidization to the NAC family and provides a
scheme to explore the link between the origin of the NAC family and its function. This study
also provides guidance for the developmental control of tomato fruits. We hope to continue
to apply our research ideas and methods to more plant genes. Meanwhile, the linkage
between paleopolyploidization and gene families needs more studies to be confirmed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12081236/s1, Figure S1: physical and chemical properties
of two tomato NAC proteins. Figure S2: statistical chart of physicochemical properties of Solanum
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pennellii NAC protein. Figure S3: Solanum pennellii NAC protein phylogenetic tree. Figure S4: Coffea
canephora NAC protein phylogenetic tree. Figure S5: collinear map of Solanum pennellii NAC gene.
Figure S6: collinear map of Coffea canephora NAC gene. Figure S7: GO enrichment dot plot of Solanum
lycopersicum upregulated genes in different periods. Figure S8: GO enrichment map of Solanum
lycopersicum downregulated genes in different periods. Figure S9: KEGG enrichment map of Solanum
lycopersicum upregulated genes in different periods. Figure S10: GO enrichment map of NAC genes
in Solanum lycopersicum in different periods. Table S1: physicochemical properties of two tomato
NAC proteins. Table S2: secondary structure prediction table of two tomato NAC proteins. Table S3:
selection pressure gauge among different WGT-producing genes. Table S4: selection pressure gauge
among NAC genes produced by different WGT. Table S5: differential expression results of Solanum
lycopersicum gene in different periods. Table S6: differential expression results of Solanum lycopersicum
NAC gene in different periods. Table S7: GO enrichment results of downregulated genes in Solanum
lycopersicum in different periods. Table S8: GO enrichment results of upregulated genes in Solanum
lycopersicum in different periods. Table S9: KEGG enrichment results of downregulated genes in
Solanum lycopersicum in different periods. Table S10: KEGG enrichment results of upregulated genes
in Solanum lycopersicum in different periods. Table S11: GO enrichment results of Solanum lycopersicum
NAC gene in different periods
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