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Simple Summary: Genome-wide association study (GWAS) has become the main approach for
detecting functional genes that affects complex traits. For growth traits, the conventional GWAS
method can only deal with the single-record traits observed at specific time points, rather than the
longitudinal traits measured at multiple time points. Previous studies have reported the random
regression model (RRM) for longitudinal data could overcome the limitation of the traditional
GWAS model. Here, we present an association analysis based on RRM (GWAS-RRM) for 808 Chinese
Simmental beef cattle at four stages of age. Ultimately, 37 significant single-nucleotide polymorphisms
(SNPs) and several important candidate genes were screened to be associated with the body weight.
Enrichment analysis showed these genes were significantly enriched in the signaling transduction
pathway and lipid metabolism. This study not only offers a further understanding of the genetic
basis for growth traits in beef cattle, but also provides a robust analytics tool for longitudinal traits in
various species.

Abstract: Body weight (BW) is an important longitudinal trait that directly described the growth gain
of bovine in production. However, previous genome-wide association study (GWAS) mainly focused
on the single-record traits, with less attention paid to longitudinal traits. Compared with traditional
GWAS models, the association studies based on the random regression model (GWAS-RRM) have
better performance in the control of the false positive rate through considering time-stage effects. In
this study, the BW trait data were collected from 808 Chinese Simmental beef cattle aged 0, 6, 12, and
18 months, then we performed a GWAS-RRM to fit the time-varied SNP effect. The results showed a
total of 37 significant SNPs were associated with BW. Gene functional annotation and enrichment
analysis indicated FGF4, ANGPT4, PLA2G4A, and ITGA5 were promising candidate genes for BW.
Moreover, these genes were significantly enriched in the signaling transduction pathway and lipid
metabolism. These findings will provide prior molecular information for bovine gene-based selection,
as well as facilitate the extensive application of GWAS-RRM in domestic animals.

Keywords: random regression model; longitudinal trait; GWAS; Chinese Simmental beef cattle

1. Introduction

With the development of the high-throughput chip technologies and the completion
of whole-genome sequencing of swine [1], cattle [2], sheep [3], chicken [4], and other
domestic animals [5], genome-wide association study (GWAS) has become an indispensable
statistical method that can detect significant single-nucleotide polymorphisms (SNPs) and
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functional genes affecting economical traits in domestic animals, including growth traits,
fertility traits [6], and meat quality [7], which greatly contributes to improving animal
breeding and reproduction.

Numerous GWAS have been widely performed on single-record traits of beef cattle,
such as birth weight, weaning weight, and yearling weight (YW) [8,9], and several sig-
nificant SNPs and candidate genes were mapped. Buzanskas et al. revealed four SNPs
significantly associated with the BW trait in Canchim beef cattle [10]. Zhuang et al. per-
formed the weighted single-step GWAS in 744 Chinese Simmental beef cattle with 770K
BovineHD SNP BeadChip, concluding TBC1D5 and MYH10 were associated with birth
weight at the age of 18 months and YW [11], respectively, of which MYH10 was also
identified to be related to chicken growth traits [12]. Amounts of candidate genes and
significant SNPs relevant to the BW trait have been identified and submitted to Cattle
Quantitative Trait Locus Database (Cattle QTLdb) [13]. Longitudinal traits are defined as
a type of functional traits that are observed repeatedly over multiple time points during
an organism’s life cycle [14], such as test-day milk yield and body condition scores in
dairy cattle, periodic body weight, and daily gain in beef cattle, litter size in swine, and
egg production in chicken, etc. Compared with single-record traits, the longitudinal traits
classified into multi-record traits could better reflect the growth and development pattern
of livestock with time. At present, there are three main models for GWAS analysis of
longitudinal traits, namely the two-stage analysis method [15], the point-by-point analysis
method, and the analysis method based on the random regression model (RRM) [16].
Among these analysis ideas, GWAS analysis based on RRM (GWAS-RRM) could result
in the high accuracy of estimated breeding values and the decrease of false positive rate
(FPR) in animals breeding [17]. Consistent with these findings, simulation studies con-
ducted by Ning et al. showed GWAS-RRM for longitudinal traits could decrease FPR
and increase statistical powers in the detection of quantitative trait nucleotide (QTN) [18],
which enabled large-scale GWAS analysis for longitudinal traits [14]. Emamgholi et al. also
proposed GWAS-RRM analysis could improve the selection accuracy for the trajectory of
feed intake traits in the F2 chickens’ population [19]. Additionally, Oliveira et al. performed
GWAS-RRM to detect candidate genes associated with milk production traits (milk, fat,
and protein yields) in three breeds of dairy cattle. They found there were differential
expression patterns of candidate genes underlying the phenotypic expression across breeds
and lactation stages [20]. The same method was conducted on Duroc for daily feed intake
and average daily weight, and results showed candidate genes associated with these traits
were mainly involved in metabolite homeostasis and insulin signaling [21]. Taken together,
these studies indicated that GWAS-RRM has been widely applied in the genetic evaluation
of longitudinal traits in dairy cattle, especially for its milk production, but not in beef
cattle [22,23].

Body weight (BW) is an economically important longitudinal trait in beef cattle that
greatly influences growth performance [10]. Until now, longitudinal traits have been in-
creasingly available in GWAS-RRM for the identification of significant SNPs and promising
candidate genes that influence economically important traits in livestock over time; how-
ever, less attention was given to longitudinal traits in beef cattle. In the present study,
GWAS-RRM was performed on the BW trait of 808 Chinese Simmental beef cattle at the
age of 0, 6, 12, and 18 months to identify important significant SNPs and promising candi-
date genes associated with this trait. These findings will contribute to understanding the
molecular basis of growth and development traits in beef cattle, and provide insights into
the studies of longitudinal traits in other domestic animals.

2. Materials and Methods
2.1. Animal Resource and Phenotypes Recording

All animals and protocols in the study were approved by the ethics committee of
the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS),
Beijing, China (approval number: RNL09/07). A total of 808 male individuals in this
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study were derived from the Chinese Simmental beef cattle resource population estab-
lished in Ulgai, Xilingol League, Inner Mongolia of China from 2008 to 2014. After weaning,
the cattle were moved to the Beijing Jinweifuren fattening farm for fattening in the same
feeding strategies and management conditions. Body weight was measured for each indi-
vidual at 0, 6, 12, and 18 months after birth, respectively. Here, the body weight data were
consistent with the data in the study by Duan et al. [24].

2.2. Genotyping and Quality Control

Blood samples for the experimental population were collected along with the periodic
quarantine inspection of the farm. Genomic DNA was isolated from blood samples using
the TIANamp Blood DNA Kit (Tiangen Biotech Co.Ltd., Beijing, China), and the high-
quality DNAs with the A260/280 ratio ranging 1.8–2.0 were considered for further analysis.
In this study, the Illumina BovineHD Beadchip with 774,660 SNPs (Illumina Inc., San
Diego, CA, USA) was used for qualified DNAs genotyping and Illumina’s Infinium II
Assay was selected as the genotyping platform. The SNPs were uniformly distributed on
the whole bovine genome with a mean inter-marker space of 3.43 kb. SNP chips were
scanned and analyzed using the Infinium GenomeStudio software (Illumina Inc., San
Diego, CA, USA). PLINK v1.9 (http://zzz.bwh.harvard.edu/plink/, accessed on 1 July
2021) was used for quality control of SNPs according to the following empirical excluded
criteria: (1) minor allele frequency (MAF) < 0.01; (2) SNP call rate (CR) < 95%; (3) Hardy–
Weinberg equilibrium value p < 1 × 10−6; (4) Mendelian error of SNP genotype above
2%; (5) Individuals with more than 10% SNPs deletion; (6) SNP marker sites with missing
chromosomal location information. All the misplaced and duplicated SNPs were also
excluded from the analysis. Ultimately, 671,192 SNPs with an average marker interval of
3 kb on 29 autosomal chromosomes remained for subsequent analysis.

2.3. Population Stratification

Population stratification usually caused serious FPR in GWAS analysis. Here, we
performed a principal component analysis (PCA) by PLINK v1.9 [25]. Our previous work
demonstrated the first two principal components had been selected as covariances to
eliminate the influence of population stratification [24].

2.4. Genome-Wide Association Study Based on the Random Regression Model

The general expression of the random regression model is as follows:

ytijk = Fi + f (t)j + r(a, x, m1)k + r(p, x, m2)k + eijkt (1)

where ytijk is the measured value of individual k at time t; Fi is the time-independent
fixed environmental effect; f (t)j is fixed regression function, reflecting the average change
trend of phenotypic values of animals in group j with time t; r(a, x, m1)k and r(p, x, m2)k
are random regression functions, which represent time-varied additive genetic effect and
permanent environmental effect for individual k, respectively; a and p are the random
regression coefficients of additive genetic effect and permanent environmental effect, re-
spectively; m1 and m2 are the orders of the corresponding regression function; x is a
covariable; eijkt is the time-independent random residual for each measurement of individ-
ual k at time t. Here, f (t)j, r(a, x, m1)k and r(p, x, m2)k can be described as the Legendre
polynomial regression for a set of basis functions, specific form as follows:

f (t)j =

m f

∑
l=0

bjlφtjkl , r(a, x, m1)k =
mr1

∑
l=0

ajklφtjkl , r(p, x, m2)k =
mr2

∑
l=0

pjklφtjkl (2)

where bjl is the lth fixed regression coefficient; ajkl and pjkl are the lth random regression
coefficients for additive genetic effect and permanent environmental effect of the kth
individual, respectively; m f , mr1, and mr2 are the orders of corresponding basis functions;
The orders of different basis functions can be determined by model selection criteria

http://zzz.bwh.harvard.edu/plink/
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proposed by Das et al. [26]. For instance, in the present study, Akaike information criterion
(AIC) and Bayesian Information Criterion (BIC) were used to determine a fifth-order basis
function for the population mean, a third order for additive genetic effects and a fifth
order for permanent environmental effects were best fit to the data for BW trait. φtjkl .
represents the value of the lth basis function at time t, i.e., the value of the Legendre
polynomial (covariable).

The Equation (1) can be denoted as:

y = X1f + X2b + Z1a + Z2p + e (3)

We assume that there are m out of n individuals for which phenotypic values are
measured; mk represents the phenotypic record for individual k and the total number of
records for all individuals is m = ∑n

k=1 mk. Therefore, y is the vector (m × 1) of phenotypic
values of all individuals. The parameters in the equation are defined as follows: Parameter
f is a vector of fixed environmental effect and parameter X1 is the corresponding incidence
matrix; Parameter b is the vector (mf + 1) of fixed regression coefficients; Parameter
a (n× (mr + 1)) and p (m× (mr + 1) ) are the vector of random regression coefficients for
additive genetic effect and permanent environmental effect respectively for each individual;
Parameter X2, Z1, and Z2 are the corresponding covariance matrix; e is the vector of random
residuals.

For matrix form (3), we have the (co) variance matrices of all random effects:

Var
[

a
p

]
= G =

[
A⊗D 0

0 I⊗ P

]
and Var(e) = R = Iσ2

e (4)

here, A is the numerator relationship matrix based on pedigree information; D and P are
the variance-covariance matrix of random regression coefficients for additive genetic effect
and permanent environmental effect, respectively; I is the identity matrix; σ2

e is the residual
variance; The symbol “⊗” represents the Kronecker product. Therefore, the mixed model
equations can be represented as:

X′1X1 X′1X2 X′Z1 X′Z2

X′2X1 X′2X2 X′2Z1 X′2Z2

Z′1X1 Z′1X2 Z′1Z1 + σ2
e A−1 ⊗D−1 Z′1Z2

Z′2X1 Z′2X2 Z′2Z1 Z′2Z2 + σ2
e I⊗ P−1




f̂

b̂

â

p̂

 =


X′1y

X′2y

Z′1y

Z′2y


Note : G−1 =

[
A⊗D 0

0 I⊗ P

]−1

=

[
A−1 ⊗D−1 0

0 I⊗ P−1

]
(5)

Based on the general random regression model, the functional GWAS model (fGWAS-C)
for the association analysis of longitudinal traits has been proposed by Ning, C. [18], which
adds an additional fixed regression term to Equation (1) to account for the effect of the SNP.
Th fGWAS-C can be expressed as:

ytijk = f (t)j + xiSNP(t) + r(a, x, m1)k + r(p, x, m2)k + eijkt (6)

here, xi is a genotype indicator variable that is coded as 0, 1, or 2 for the three genotypes,
aa, Aa, and AA, respectively. SNP(t) represents the time-varied additive effect for each
SNP at time t. The function expression of SNP(t) is:

SNP(t) =
m f

∑
l=0

ηlφtjkl (7)
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where m f is the order of basis functions for the time-varied SNP effect; ηl is the lth fixed
regression coefficient of SNP additive effect; φtjkl is the value of the lth basis function at
time t.

The threshold p-value for GWAS analysis was calculated as follows:

p = FDR × n/m (8)

where FDR was usually set at 0.05; n is the number of SNPs with p < 0.05; m is the total
number of SNPs after quality control [27].

2.5. Detection and Functional Enrichment of Candidate Gene

The significant SNPs associated with BW were screened according to the threshold
p-value and then the Ensembl–BioMart was used to match these SNPs with the bovine
reference genome UMD 3.1 (http://www.ensembl.org/Biomart, accessed on 1 July 2021).
Candidate genes in the target region were screened through the National Center for
Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/, accessed on
1 July 2021), cattle QTLdb [13], and previous relevant studies. Then Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the
function of candidate genes, and protein-protein interaction (PPI) network explored the
interaction between node proteins encoded by these genes [28]. The p-value adjusted using
the Benjamini–Hochberg approach (p-value < 0.05) was considered to be the threshold value
for significantly enriched GO terms and pathways. Using ToppCluster and Cytoscape
v3.8.0 to plot the network diagram between candidate genes and their belonged GO
terms/pathways. The STRING (https://string-db.org/, accessed on 1 July 2021) was used
to perform PPI network analysis.

2.6. Statistical Analysis

Using SPSS v20.0 to calculate the measurement values of body weight at four growth
stages. All data were expressed as means ± standard deviation (M ± SD). Microsoft Excel
2010 software was used to check up the data with normality test.

3. Results
3.1. Data Statistics of Body Weight

The BW values of Chinese Simmental beef cattle at 0, 6, 12, and 18 months of age were
tested for normality. As shown in Figure 1, the phenotypic values of the individuals at
different months of age presented normal distributions, which was in line with the hypoth-
esis of the model and could be used for subsequent association analysis. The descriptive
statistics of the BW trait at different months of age were presented in Supplementary
Table S1.

3.2. Genome-Wide Association Study Based on the Random Regression Model

The quantile-quantile (Q–Q) and Manhattan plots of GWAS-RRM analysis are shown
in Figures 2 and 3, respectively. Distributions of the observed −log10(p) versus expected
−log10(p) in the Q–Q plot represented most points revolving around the 45◦ line, indicating
there was no inflation or systematic bias in this study, as well as population stratification
was well controlled. The Manhattan plots showed that a total of 37 significant SNPs
associated with BW trait were identified, most of which were located on Bos taurus autosome
(BAT) 1 (five SNPs), BAT 2 (three SNPs), BAT 11 (four SNPs), and BAT 12 (three SNPs).
Two SNPs were found on each of the seven chromosomes (BAT 4, 5, 7, 8, 14, 16, and 29),
and only one SNP was distributed on each of the eight chromosomes (BAT 3, 6, 9, 10, 13,
19, 21, and 25). The SNP with the smallest p-value (p = 7.55 × 10−8) was located on BAT 10:
101,577,026 bp (BovineHD1000029459). However, some SNPs had the lowest significance
levels, i.e., the p-value of BovineHD1100004962 and BovineHD1100011885 located on BAT
11 was 2.54× 10−6 and 3.42× 10−6, respectively. The detailed information of all significant
SNPs was displayed in Table 1 and Supplementary Table S2.

http://www.ensembl.org/Biomart
https://www.ncbi.nlm.nih.gov/
https://string-db.org/
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null hypothesis for no association.
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individual SNPs.

Table 1. The detected candidate genes affecting body weight trait.

BTA 1 SNP Position 2 (bp) Distance 3 (bp) Gene p-Value 4

1 BovineHD0100045595 156,093,740 within TBC1D5 4.60 × 10−6

BovineHD0100003348 10,460,874 243,218 MRPL39 2.17 × 10−6

BovineHD0100004041 13,081,890 1,709,537 NCAM2 3.07 × 10−6

BovineHD0100046569 114,775,186 56,124 YWHAH 3.97 × 10−6

BovineHD0100022686 78,806,582 77,944 TPRG1 4.23 × 10−6

2 BovineHD0200031068 107,968,173 within PTPRN 3.17 × 10−7

BovineHD0200018897 65,376,344 98,097 / 2.91 × 10−6

BovineHD0200037229 128,220,525 within LOC282685 4.06 × 10−6

3 BovineHD0300009402 29,779,589 within PHTF1 3.12 × 10−6

4 Hapmap36353-
SCAFFOLD29708_3468 64,923,141 62,596 PDE1C 2.41 × 10−6

BovineHD0400005814 19,409,767 41,461 THSD7A 4.25 × 10−6

5 BovineHD0500007511 25,778,691 within ITGA5 1.48 × 10−6

ARS-BFGL-NGS-
119234 56,876,453 1314 SDR9C7 4.86 × 10−6

6 BovineHD0600001415 6,027,009 7189 BT.87489 4.30 × 10−6

7 BovineHD0700024228 82,801,757 within RARS 1.31 × 10−6

BovineHD0700012290 42,156,049 / / 4.15 × 10−6

8 BovineHD0800029069 98,418,906 within ZNF462 4.06 × 10−6

BovineHD0800009085 29,939,592 90,148 NFIB 4.35 × 10−6

9 BovineHD0900003150 12,246,543 314,022 RIMS1 2.38 × 10−6

10 BovineHD1000029459 101,577,026 within TTC8 7.55 × 10−8

11 BovineHD1100004962 15,555,441 within LTBP1 2.54 × 10−6

BovineHD1100011885 40,440,551 109,804 VRK2 3.42 × 10−6

BovineHD1100030552 105,125,657 15,309 / 4.45 × 10−6

BovineHD1100012203 41,709,686 965,290 FANCL 4.77 × 10−6

12 BovineHD1200027798 33,568,673 9620 SHISA2 3.40 × 10−6

BovineHD1200026844 26,501,234 386,041 CHMP3 4.49 × 10−6

ARS-BFGL-NGS-
37745 77,271,637 within TMTC4 4.40 × 10−6

13 BovineHD1300017420 60,743,532 within ANGPTL4 4.72 × 10−6

14 BovineHD1400018666 66,735,095 95,093 COX6C 8.66 × 10−7

BovineHD1400015595 55,998,180 654,428 KCNV1 8.50 × 10−7

16 BovineHD1600019714 69,438,282 38,338 PLA2G4A 3.78 × 10−6

ARS-BFGL-NGS-
56551 52,584,126 within INTS11 1.65 × 10−6



Animals 2021, 11, 2524 8 of 16

Table 1. Cont.

BTA 1 SNP Position 2 (bp) Distance 3 (bp) Gene p-Value 4

19 BovineHD1900013251 47,547,492 11,129 TLK2 1.39 × 10−6

21 BovineHD2100021363 52,053,470 24,294 LRFN5 3.23 × 10−6

25 BovineHD2500007568 27,048,437 325 FBRS 2.45 × 10−6

29 BovineHD2900014092 47,651,695 4899 FGF4 4.09 × 10−6

BovineHD2900008350 28,354,480 3970 / 2.16 × 10−6

1 BTA, Bos taurus autosome; 2 Position on reference genome Bos_taurus UMD 3.1; 3 Distance between SNP and the nearest gene; 4 p-values
calculated based on Equation (8).

3.3. Genes Detection

In this study, 37 significant SNPs were identified for BW trait, of which 33 were
located within or near candidate genes through searching Ensembl, NCBI, and QTL
databases. As shown in Table 1, significant SNPs on BAT5, BAT13, and BAT29 were
within or close to genes ITGA5, ANGPTL4, and FGF4, respectively. Three significant SNPs
were identified at the region of 26.11-33.58 Mb on BAT12, of which BvineHD1200027798
and BovineHD1200026844 were close to genes SHISA2 and CHMP3, respectively. No
candidate genes were detected in four significant SNPs including BovineHD0200018897,
BovineHD0700012290, BovineHD1100030552, and BovineHD2900008350, located on BAT2,
BAT7, BAT11, BAT12, and BAT29, respectively. The detailed information on these genes
was listed in Supplementary Table S2.

3.4. Functional Annotation of Candidate Genes

To further understand the function of candidate genes, GO and KEGG enrichment
was performed using the R package “clusterProfiler” [29]. As shown in Figure 4, seven
pathways were significantly enriched, of which five pathways were implicated in signal
transduction, including PI3K-Akt signaling pathway (bta04151), Ras signaling pathway
(bta04014), MAPK signaling pathway (bta04010), Rap1 signaling pathway (bta04015),
and Calcium signaling pathway (bta04020); one pathway, regulation of actin cytoskele-
ton (bta04810), was involved in cell motility; one pathway was associated with lipid
metabolism, namely alpha-Linolenic acid metabolism (bta00592). The information about
these significant pathways is shown in Supplementary Table S3. No GO term was signifi-
cantly enriched. Notably, FGF4, ANGPT4, ITGA5, and PLA2G4A involved in no less than
two KEGG pathways deserved further attention and discussion. Additionally, based on
animal QTLdb, the previous reports and gene function analysis, several candidate genes
including TBC1D5, SHISA2, PDE1C, and COCX6 were also identified to affect the BW trait.
The information of these candidate genes was listed in Table 2. Numerous candidate genes
known to be related to BW in domestic animals were presented in Supplementary Table S4.
PPI network shown in Figure 5 visualized the interaction between node proteins encoded
by corresponding candidate genes.

Table 2. The most important candidate genes affecting body weight trait.

SNP BTA 1 Position 2 (bp) Distance 3 (bp) Gene p-Value 4

BovineHD2900014092 29 47,651,695 4,899 FGF4 4.09 × 10−6

BovineHD1300017420 13 60,743,532 within ANGPTL4 4.72 × 10−6

BovineHD1600019714 16 69,438,282 38,338 PLA2G4A 3.78 × 10−6

BovineHD0500007511 5 25,778,691 within ITGA5 1.48 × 10−6

BovineHD0100045595 1 156,093,740 within TBC1D5 4.60 × 10−6

BovineHD1200027798 12 33,568,673 9620 SHISA2 3.40 × 10−6

Hapmap36353-
SCAFFOLD29708_3468 4 64,923,141 62,596 PDE1C 2.41 × 10−6

BovineHD1400018666 14 66,735,095 95,093 COX6C 8.66 × 10−7

1 BTA, Bos taurus autosome; 2 Position on reference genome Bos_taurus UMD 3.1; 3 Distance between SNP and the nearest gene; 4 p-values
calculated based on Equation (8).
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4. Discussion

Longitudinal traits can better reflect the growth and development patterns of livestock
and poultry. Therefore, mapping and analyzing the significant SNPs and functional genes
affecting longitudinal traits have important economic value for beef cattle breeding. It
is worth noting that GWAS-RRM is the main approach to analysis longitudinal traits,
which could better control FPR and improve the accuracy of estimated breeding values
(EBVs) [17,18], thus improving the efficiency of GWAS analysis [30]. Body weight is an
important longitudinal trait that greatly reflects bovine growth performance. Previous
studies have shown skeletal muscle is involved in the structure and metabolic regulation of
the body and its mass accounts for 40% of total body weight in animals [31], indicating the
growth and development of animals are inseparable from muscle development. The actin
cytoskeleton is an important muscle structure that regulates cell adhesion, cell proliferation,
cell motility, and muscle contraction via the signals transduction from the extracellular
matrix to the nucleus [32]. Ito et al. elucidated that the MAPK signaling pathway could
stimulate the growth of skeletal muscle and cell proliferation [33]. Therefore, it could be
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concluded that the pathway of regulation of actin cytoskeleton and the MAPK signaling
pathway might be potential candidate pathways affecting the BW trait via affecting the
development of skeletal muscle. In the present study, several candidate genes (FGF4,
ANGPTL4, PLA2G4A, and ITGA5) were significantly enriched in the above pathways,
which implied these genes might play special roles in regulating the BW trait.

Fibroblast growth factors (FGFs) are important growth factors that participate in many
developmental and physiological processes [34]. FGF signaling could be disrupted due
to the mutations of FGFs, thus causing developmental disorders, i.e., skeletal diseases,
infertility, and cancer [35]. Relevant studies have reported some members of the FGF family,
FGF4, and FGF14, regulate fibroblasts formation and the development of growth traits such
as BW trait [36,37]. The complete nucleotide sequence of the bovine FGF4 was identified
in three cattle breeds (panese Black, Japanese Shorthorn, and Holstein cattle) [38], and its
coding exons encode 206 amino acid residues, perhaps including a signal peptide at the
amino terminus [39]. Sato et al. reported FGF4 was related to the regulation of bovine
embryo development [38]. Consistent with these findings, Feldman et al. also found
FGF4 was associated with trophoblast proliferation in mice, and FGF4 null mice showed a
peri-implantation lethal phenotype [40]. This evidence supported FGF4 was an important
indicator in the growth and development of animals.

Angiopoietin-like 4 (ANGPTL4), known as a novel peroxisome proliferator-activated
receptor target gene, is a key regulator of triglyceride, non-esterified fatty acid (NEFA)
concentrations, and plasma cholesterol [41]. Just as in the mouse study, ANGPTL4 is also
widely expressed in many bovine tissues, such as liver, subcutaneous adipose tissue, rumen,
omasum, abomasum, etc., among which the first two are important tissues for ANGPTL4
synthesis [42]. Under fasting conditions, its expression level is strongly up-regulated in
the liver and adipose tissue [43], which plays an important role in lipid metabolism via
inhibition of the lipoprotein lipase (LPL) and stimulated lipolysis [44]. ANGPTL4 has
been recognized as an adipokine in bovine adipose tissue and its expression could affect
bovine body fat [45]. Notably, intramuscular fat becomes an important component of
maturing muscles, and the mass of skeletal muscle accounts for 40% of total body weight
in animals [32], thus it could be speculated that ANGPTL4 might regulate BW trait by
influencing the formation of adipose tissue. Additionally, previous studies have reported
ANGPTL2, a homologous family gene of ANGPTL4, influences the development of the
bovine BW trait [24]. Taken together, ANGPTL4 could be recognized as the candidate gene
regulating the BW trait for further research.

Phospholipase A2 (PLA2) is classified into three groups according to their chemical
properties and molecular structure, namely cytosolic (cPLA2), secretory (sPLA2), and
Ca2+-independent PLA2s [46]. Previous researchers found that activated cPLA2 could
stimulate the release of arachidonic acid [46], which directly suppressed the growth and
development of tumor cells [47]. Phosphorylation of cPLA2 induced by Temozolomide
could also cause the suppression of cell growth [48]. More importantly, cPLA2 is an
important regulator in various muscle development. Gluck et al. proposed cPLA2 activation
was essential for the proliferation of bovine aortic smooth muscle cells [49]. In the work
by Hirabayashi et al., cPLA2 alpha was identified to be responsible for striated muscle
growth and fertility in mice [50]. In the present study, cPLA2, known as PLA2G4A, was
significantly enriched in two signal transduction pathways, including the MAPK signaling
pathway (bta04010) and Ras signaling pathway (bta04014). As mentioned above, the MAPK
signaling pathway could stimulate the growth of skeletal muscle [33]. Hence, cPLA2 was
forecasted to be the promising gene affecting the bovine BW trait via the involvement in
muscle development.

Integrins are a family of heterodimeric cell-surface adhesion receptors that affect
cell-matrix interaction. Some integrins encoding genes, including integrin alpha-2 (ITGA2)
and integrin alpha-11 (ITGA11), have been proven to regulate the BW trait of swine and
sheep, respectively [51,52]. In this study, integrin alpha-5 (ITGA5) was speculated to be
associated with bovine BW trait. ITGA5 participated in various cellular processes, such
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as cell adhesion, survival, proliferation, differentiation, and migration of myoblasts [53],
adipocytes [54], and cardiac neural crest [55]. Its differential expression was correlated with
the organ specificity of tumor metastasis [56], thus ITGA5 was recognized as a potential
biomarker for cancer treatment. Previous studies have shown ITGA5 could promote the
proliferation, migration, and invasion of oral squamous cell carcinoma through activating
the PI3K/AKT signaling pathway [57]. Chen et al. demonstrated that ITGA5 was a
mediator for the proliferation and migration of retinal pigment epithelial cells [58]. ITGA5
knockdown or overexpression could inhibit or accelerate cell growth, respectively. Fang
et al. reported ITGA5 participated in integrin β1 overexpression, which caused growth
arrest of breast cancer cell [59]. Larzabal et al. revealed that suppressed ITGA5 could
reduce adherence capacity to fibronectin and inhibit tumor growth in lung cancer cells [60].
In addition to cell growth, ITGA5 has been proposed to regulate porcine drip loss by
mediating cell adhesion and extracellular matrix [61]. However, at present, there is no
supporting evidence for ITGA5 on the weight of beef cattle, thus ITGA5 as a molecular
marker for bovine growth traits needs further investigation.

Combined with previous studies and gene function analysis, except for candidate
genes listed above, several known or potential candidate genes were also identified to affect
bovine BW trait in this study. TBC1 domain family member 5 (TBC1D5), encoding GTPase-
activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective
complex VPS26/VPS29/VPS35. Previous studies showed TBC1D5 was an important novel
regulator that rerouted ATG9-containing vesicular carriers toward sites of autophagosome
formation [62]. Bärlocher et al. illustrated TBC1D5 could promote the intracellular growth
of L. pneumophila [63]. Notably, Zhuang et al. reported TBC1D5 might play a special role
in BW at 18 months of age in Chinese Simmental beef cattle [11]. Consistent with these
findings, TBC1D5 was also identified as the functional gene for the bovine BW trait in the
present study. However, the molecular mechanism by which TBC1D5 influences bovine
BW remains to be elucidated.

Previous studies have demonstrated that SHISA9 affected the growth and develop-
ment traits such as pre-weaning gain in sheep and BW in beef cattle [24,64]. Protein shisa-2
homolog 2 (SHISA2) identified in this study belongs to the same family as SHISA9, which
encodes an endoplasmic reticulum protein against both Wnt and FGF signaling to affect
the development of Chicken and Xenopus embryos [65,66]. Liu et al. reported SHISA2
not only regulated F-actin distribution but also directly mediated the maturation of mem-
brane protein for myoblast fusion. Its overexpression could inhibit myoblasts’ proliferation
but promote premature fusion [67]. Human SHISA2 overexpression led to increased cell
growth and invasion [68]. In the work by Hu et al., SHISA2 was identified to be involved in
growth and development in duck skeletal muscle [69]. As mentioned previously, skeletal
muscle mass accounts for 40% of total body weight in animals [31], thus implying SHISA2
might regulate BW trait via affecting the development of bovine skeletal muscle.

Phosphodiesterase (PDE1C) regulates the stability of growth factor receptors such as
PDGFRβ [70]. which is highly expressed in the human heart, cardiac myocytes, and mouse
heart, but rarely expressed in mouse cardiac myocytes [71,72]. Cai et al. demonstrated that
PDE1C positively regulated smooth muscle cells (SMCs) growth, proliferation, migration,
and neointimal hyperplasia [73]. In agreement, the high expression of PDE1C was screened
in proliferating human arterial SMCs in primary culture, but not in the quiescent SMCs [74],
which indicated this gene was an indicator of cell proliferation. Notably, the previous
study by Duan et al. found PDE1C might be the candidate gene affecting bovine BW trait
through signal-trait GWAS [24]. However, many studies of PDE1C mainly rely on human
and mouse SMCs, with less research on beef cattle, thus the functions of PDE1C in beef
cattle should be further investigated.

Cytochrome c oxidase subunit 6C (COX6C) is eventually transported to mitochondria
to form the cytochromec oxidase (COX) complex [75]. Duggan et al. suggested that COX
participated in the remodeling of skeletal muscle [76]. The expression levels of COX
subunits are different in vertebrate muscle [77]. COX6C overexpression could induce cell
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growth retardation [78]. Therefore, it was speculated that COX6C might be a valuable gene
for bovine growth and development.

5. Conclusions

In conclusion, GWAS-RRM has been recognized as the main analysis model for
longitudinal traits as it could decrease FPR and increase statistical powers. Based on this
method, the present study mainly revealed four most promising candidate genes (FGF4,
ANGPTL4, PLA2G4A, and ITGA5) and two significantly enriched pathways regulated
bovine BW trait by affecting the growth and development of skeletal muscle and adipose
tissue. The function of these candidate genes and pathways have been analyzed and
discussed in detail. Moreover, further studies will be necessary to clarify their molecular
mechanisms and physiological implications in regulating BW trait. This study not only
offers molecular information for genomic selection of bovine growth and development
traits but also provides the reference for the large-scale application of GWAS-RRM analysis
of longitudinal traits in other livestock and poultry.

Supplementary Materials: The following are available at supplementary materials: https://www.
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