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Abstract

Nucleases are enzymes that can degrade genomic DNA and RNA that decrease the accu-

racy of quantitative measures of those nucleic acids. Here, we study conventional heating,

standard microwave irradiation, and Lyse-It, a microwave-based lysing technology, for the

potential to fragment and inactivate DNA and RNA endonucleases. Lyse-It employs the use

of highly focused microwave irradiation to the sample ultimately fragmenting and inactivat-

ing RNase A, RNase B, and DNase I. Nuclease size and fragmentation were determined

visually and quantitatively by SDS polyacrylamide gel electrophoresis and the mini-gel Agi-

lent 2100 Bioanalyzer system, with a weighted size calculated to depict the wide range of

nuclease fragmentation. Enzyme activity assays were conducted, and the rates were calcu-

lated to determine the effect of various lysing conditions on each of the nucleases. The

results shown in this paper clearly demonstrate that Lyse-It is a rapid and highly efficient

way to degrade and inactivate nucleases so that nucleic acids can be retained for down-

stream detection.

Introduction

Ribonuclease A (RNase A), Ribonuclease B (RNase B), and Deoxyribonuclease I (DNase I) are

three types of stable endonucleases that can contaminate RNA and DNA samples and effec-

tively cleave a wide variety of genomic DNA and RNA prior to being detected by methods like

quantitative polymerase chain reaction (qPCR). Ribonuclease A is a small 13.7 kDa protein

with 124 amino acid residues, including eight cysteines that create four crosslinking disulfide

bonds. The presence of the disulfide bonds, in addition to the protein’s ability to refold, lends

to its immense stability. RNase A hydrolyzes the phosphodiester bond of a nucleoside 2’3’-

cyclic phosphodiester of both single and double-stranded RNA.[1, 2] Like RNase A, RNase B

has an identical amino acid sequence to RNase A, but it is also glycosylated by an N-linked oli-

gosaccharide chain at Asn34.[3] The carbohydrate chain extends outwards from the protein in

to the cytosol and can be hydrated. RNase B has the same catalytic ability as A, but it is slightly
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heavier due to glycosylation, measuring around 14.8 kDa.[1] The oligosaccharide chain

imparts RNase B with slightly higher stabilization at a pH greater than 7.[4, 5]

Unlike RNase A and B, DNase I is a large nuclease, typically around 31 kDa and is typically

characterized by five main criteria. The criteria include a preference for double-stranded DNA

as a substrate, an optimum pH between 7 and 8, endonucleolytic attack, production of 5’-oli-

gonucleotides, and the requirement of divalent cations to function. DNase I has no native

activity without Mg2+ cofactors and is naturally inhibited by monomeric actin or when in the

presence of chelating agents.[6–9]

Herein, we have investigated the degradation, fragmentation, and enzymatic activity of

these three nucleases with conventional heating, standard microwave irradiation, and using a

highly focused microwave irradiation based technology known as Lyse-It. Lyse-It has been

reviewed in the literature as a highly efficient way to rapidly break open a wide variety of bacte-

rial cells and subsequently fragment DNA and RNA and degrade proteins.[10–14] Lyse-It is a

technology that utilizes highly focused microwave that increases the electromagnetic energy

and subsequently temperature to the sample. By using gold equilateral triangles and a standard

microwave, microwave power and time can be adjusted for tunable cellular lysis, intracellular

component release, DNA fragmentation, and protein degradation.[12–14] We investigate the

effects of conventional heating, standard microwave irradiation versus Lyse-It for their ability

to fragment and inactivate three endonucleases. By utilizing Lyse-It, we can conclude that cel-

lular lysis, DNA fragmentation, protein release and degradation [14] along with nuclease frag-

mentation, can occur at specific Lyse-It power and time settings, and be tuned to achieve over

98% inactivation of RNase A, RNase B, and DNase I.

Materials and methods

Standardization of nuclease concentrations

The three nucleases used in this paper were Ribonucleases A and B and Deoxyribonuclease I.

All nucleases were purchased from Sigma Aldrich and stored at -20˚C until use. The concen-

tration of the nucleases was standardized at 6.1 ± 0.2 μM in DI water for all stock solutions.

Concentrations of 11 ± 1 μM were used for the 2100 Agilent Bioanalyzer 80 Protein Kit studies.

Concentrations were adjusted to 20 pM RNase A, 46 pM RNase B, and 10.5 nM DNase I for

the activity studies with RNaseAlert QC v2 system (Thermo Fisher 4479769) and the DNaseA-

lert QC system (Thermo Fisher AM1970) respectively. The absorbance of RNase A and RNase

B was determined using Beer-Lambert Law using a 0.5 cm pathlength quartz cuvette (Starna)

and an extinction coefficient of 9800 M-1cm-1. The extinction coefficient for RNase B was cal-

culated as 11760 M-1cm-1, and its absorbance was measured using a 0.5 cm pathlength quartz

cuvette. The extinction coefficient for DNase I was calculated to be 34,410 cm-1M-1 as com-

pared to 36,750cm-1M-1 reported by the Worthington Biochemical Corp.[15]

Buffer mixtures

25 μL of the standardized nuclease concentrations described above were mixed with 25 μL of a

buffer solution to create sample nuclease concentrations of 3.0 ± 0.2 μM. The final concentra-

tion of nucleases for SDS polyacrylamide gel electrophoresis (PAGE) were 3.0 ± 0.2 μM. From

this concentration, nucleases were diluted down using serial dilutions to the concentrations

stated in the standardization of nucleases methods section for the assay studies. The buffers

that were used were 0.1 nM, 1.0 nM, 1.0 μM, 1.0 mM or 10 mM Tris-EDTA or HEPES and DI

water. Each set of samples was subjected to either conventional heating or microwave irradia-

tion both with or without Lyse-It.

Effects of microwave irradiation on endonucleases
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Nuclease conventional heating

A Fisher Scientific Isotemp heating block was used to conventionally heat all nucleases. RNase

A and DNase I were heated at 60˚C for 1 minute in DI water, Tris-EDTA and HEPES buffer

concentrations, as listed above, to see if the type or concentration of buffer had an effect on the

nucleases, as visualized by a single band seen by SDS PAGE. Additionally, RNase B was con-

ventionally heated for 1 minute at temperatures between 40˚C and 80˚C in 1 mM Tris-EDTA

or. Changing the temperature aided in the investigation of whether temperature promoted

nuclease fragmentation as probed by SDS PAGE.

Nuclease purging with argon, air, or oxygen

Nucleases were purged with argon, air, or oxygen for 10 minutes with a steady bubble per cou-

ple of seconds. A Lyse-It slide was used and enclosed with a 3 mL sample volume chamber

containing 1250 μL of sample. A lid was adhered to the top of the sample chamber to contain

the sample and create a sealed purging system, and to trap the purging gas. A venting needle

was inserted through the sample chamber above the sample and the gas-in needle was inserted

at the bottom of the sample chamber into the sample (S1 Fig). The bubble rate was monitored

for the 10 minutes of purging. After 10 minutes, the venting needle was removed, and gas bub-

bles allowed a gaseous headspace to be created until removed a few seconds later. After purg-

ing, the samples were microwave irradiated for 60 seconds at 50% total cavity power, where

the total cavity power of the microwave was 900W. Post microwave irradiation, the sample

temperature was taken with a Traceable Dual Laser IR digital Thermometer. The lid was subse-

quently removed, and the sample was pipetted out into a 1.5 mL microcentrifuge tube. A

50 μL 4 nM solution was made from each purged microwaved solution for use with the RNa-

seAlert QC v2 system (Thermo Fisher Scientific AM1970) or the DNaseAlert QC system

(Thermo Fisher Scientific 4479769).

Microwave irradiation both with or without Lyse-It

One set of nuclease samples was microwaved either with or without Lyse-It for 30 seconds at

either 30% or 50% total power for each buffer concentration listed above. Additionally, each

nuclease was added to 1 mM Tris EDTA and microwaved at 30% power for 30, 45, 60, 90, or 135

seconds respectively, to test the effects of microwave irradiation time. It is imperative to note that

the Lyse-It system employs a Frigidaire 900-Watt microwave. Note, the Lyse-It technology is not

a theory driven lysing technology, even though it utilizes microwaves (see reference 10).

Visualization of nuclease molecular size and weighted concentration

through SDS-PAGE

20 μL of each sample was loaded and run against unheated controls on a 10% SDS-PAGE and

stained overnight with Oriole dye and DI water was used to wash off any excess Oriole stain.

The gel was then imaged using a Bio-Rad GelDoc EZ Imager. The intensity of each visible band

was analyzed against a standard Pre-nuclease band to determine if degradation or fragmenta-

tion of the nuclease had occurred. The Pre-nuclease band intensity and Pre-nuclease activity

were obtained through the suspension of nuclease in buffer without any further analysis.

Nuclease fragmentation and weighted size analysis using the Agilent 2100

Bioanalyzer

In order to analyze and ultimately quantify small nuclease fragments post lysing, RNase A,

RNase B, and DNase I samples were run on an Agilent Bioanalyzer 2100 system utilizing the

Effects of microwave irradiation on endonucleases
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Agilent Protein 80 Kit. The Bioanalyzer analysis was performed at the Institute of Marine and

Environmental Technology BioAnalytical Services Lab in Baltimore, MD, USA. Because the

nuclease concentrations used coupled with the purging conditions and microwave power and

times employed, smaller nuclease fragments were not readily seen on the SDS PAGE; a more

sensitive detection method was used to see and quantitate nuclease fragmentation, i.e. the 2100

Bioanalyzer system. Only one trial on the Agilent 2100 Bioanalyzer system was performed on

each of the nucleases under the varying conditions to show that each of the nucleases were

being fragmented into various sizes that could now be visualized on SDS PAGE. This data is

concurrent with previous data that shows that bacterial DNA is also fragmented in to various

sizes under a wide variety of conditions.[12–14] To aid in the fragment analysis, a mathemati-

cal weighted size (�y1!n) was calculated per trial as shown in Eqs 1! 2, where n0 is the first

peak detected and n is the final peak reported from the Bioanalyzer data. For these equations,

yi was the reported fragment size at peak n0� i� n, Ri is the relative concentration reported

for each fragment, and xi was the calculated weight factor where 1 = ∑i xi.

�yn0!n ¼
Xi¼n

i¼n0

xiyi ð1Þ

xi ¼
Ri

Pi¼n
i¼n0

Ri

ð2Þ

The weighted fragment sizes for each trial were then averaged, and the standard deviation

calculated. Weighted averages demonstrating larger relative standard deviation values corre-

spond to a larger distribution of observed fragmentation within the sample set.

Measured values of nuclease activity using RNaseAlert and DNaseAlert QC

systems

Nuclease activity studies were performed using RNaseAlert QC v2 and DNaseAlert QC sys-

tems from Thermo Fisher Scientific. To be brief, the two assays work in a FRET/PET manner

where a fluorophore is connected to a DNA or RNA strand on one end and a respective

quencher tethered on the other end. This fluorophore/quencher strand “pair” is known as the

substrate. When the substrate and an enzyme, like RNase A/B or DNase I come in contact, the

nuclease readily cleaves the substrate allowing for the fluorophore to be released and to subse-

quently fluoresce upon excitation (S2 Fig). Thus, as more substrate is cleaved, the more fluo-

rescence is detected and can be monitored in real-time using a standard fluorometer. It is

important to understand that the fluorescent intensity measures nuclease activity, i.e. as fluo-

rescent intensity increases, the greater the activity of the nuclease. The rate is then shown as

fluorescent intensity over time. 4 μL or 9.98 μL of 4 nM RNase A or RNase B respectively, was

added to 776 or 771 μL DI water, 10 μL RNaseAlert Buffer, and 10 μL v2 fluorescent substrate.

4 μM DNase I (2 μL) was added to 778 μL nuclease free water, 10 μL RNaseAlert Buffer, and

10 μL fluorescent substrate. For both assays, the final sample volume was 800 μL. A 0.5 cm

quartz cuvette (Starna) with a max volume of 800 μL was used for all fluorescent kinetic runs

performed on a Horiba Fluoromax 4 Fluorometer with FluorEssence software. For RNase A

and RNase B, the following parameters were set—λex: 490 nm, λem: 520 nm, collections of 0.1–

0.4 every 3 seconds, λex and λem slits of 1 nm, with a total of 100 collections. For the DNaseA-

lert QC assay the following parameters were used—λex: 535 nm, λem: 556 nm, collections of

0.1–0.4 every 3.5 seconds, λex and λem slits of 1 nm, with a total of 100 collections. Blank mea-

surements for both the RNase and DNase Alert assays were performed without nuclease added

for 10 collections with the same parameters above, prior to the addition of nuclease.

Effects of microwave irradiation on endonucleases
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qPCR of Vibrio cholerae DNA after exposure to intact and microwave

irradiated DNase I with and without Lyse-It

Stock DNase I (2.70U/μL) was diluted to 0.1U/μL. Three tubes were made where there was 1U

of DNase I in a total volume of 50μL One of the tubes was DNase I not microwaved and serves

as the intact DNase I control. From the second tube of 1U DNase I, all 50μL were microwave

irradiated without Lyse-It for 60 seconds at 50% power. Finally, the last tube containing 50μL

1U DNase I was microwave irradiated at 50% power for 60 seconds with Lyse-It. 0.5U of each

of the 3 different trials were incubated with 1μg of V. cholerae DNA. Incubation was per-

formed in a 37˚C heating block for 10 minutes. The V. cholerae DNA/ DNase I reactions were

stopped by increasing the heating block temperature to 100˚C and heating the reaction for 5

minutes. qPCR was then run on the samples using an ABI QuantStudio 3 qPCR with the fol-

lowing V. cholerae primers. hlyA forward primer: 5’-ATCGTCAGTTTGGAGCCAGT-3’ and

hlyA reverse primer 5’-TCGATGCGTTAAACACGAAG-3’.

Results

Modest conventional heating and buffers do not affect RNase A, RNase B,

or DNase I fragmentation or aggregation

Prior to studying the effects of lysing on nuclease activity, it was imperative to investigate

nuclease size band intensity via SDS PAGE to ascertain if there were any affects due to buffer

at 60˚C or also an increase in temperature. 60˚C was used as the conventional heating temper-

ature because of the microwave irradiation power and times used, which also generated an

average upper sample temperature of 60˚C ± 5˚C. RNase A and DNase I were conventionally

heated at 60˚C for 1 minute in various buffer concentrations (S3A Fig) to see the effects on the

RNA/ DNA endonuclease in varying concentrations. Additionally, RNase B was convention-

ally heated at varying temperatures to determine if an increasing temperature reduced the abil-

ity of the Oriole stain to bind to the nuclease (S3B Fig). Normalization was performed where

the band intensity of the Pre (not conventionally heated) nuclease was set to 1. Each band after

Pre was divided by the Pre-band intensity. For RNase A/B and DNase I, the buffer concentra-

tion for Tris-EDTA and HEPES as well as temperature did not affect the band intensity of the

nucleases. Note that for all RNase A/B and DNase I SDS PAGE there was only 1 band (the

nuclease size) that was visible on the Oriole stained gels. Only band intensity could be

distinguished.

Statistically significant band intensity differences occur when nucleases

were microwave irradiated with Lyse-It with increasing powers and

increasing irradiation times

Following conventional heating, we investigated the effect that Lyse-It had with increasing

microwave power for a constant 30 seconds on nuclease band intensity in Tris-EDTA, HEPES,

and DI water. The average nuclease band intensity for each buffer was taken across all concen-

trations of buffer, as concentration did not influence band intensity. For the DI water average,

different samples of nuclease in DI water and microwave irradiated were loaded into three sep-

arate lanes on the SDS PAGE. The reference band intensity used was the Pre-band as the

nuclease was only suspended in DI water without any further processing. A line graph of

RNase A in each of the buffers was constructed to see the normalized band intensity (S4A Fig).

It was found that for RNase A there were statistical differences (p<0.05) between Tris-EDTA

and DI water and HEPES and DI water for 50% total microwave power. At 30% total micro-

wave power, only HEPES to DI water was significant (p<0.05) (S4B Fig). Additionally, DI

Effects of microwave irradiation on endonucleases

PLOS ONE | https://doi.org/10.1371/journal.pone.0223008 September 30, 2019 5 / 21

https://doi.org/10.1371/journal.pone.0223008


water was the only buffer to show a significant statistical difference (p<0.05) between 30%

power irradiation and 50% power irradiation (S4C Fig). At both 30% and 50% powers, there

were no statistical differences between Tris-EDTA and HEPES buffers.

RNase B displayed similar results to RNase A (S5A Fig) such that there were statistical dif-

ferences (p<0.05) between Tris-EDTA and DI water and Tris-EDTA and HEPES at 50% total

cavity power. However, there was only a statistical difference (p<0.05) between Tris-EDTA

and HEPES at 30% total cavity power (S5B Fig). However, there were no statistical differences

when keeping the buffer constant but changing the microwave power (S5 Fig).

For DNase I, there were statistical differences (p<0.05) seen in band intensity when all buff-

ers were kept constant and only the microwave power was changed (S6A and S6C Fig). On the

contrary, to the ribonucleases, there were only statistical differences (p<0.05) at 30% power

between Tris-EDTA and DI water and HEPES and DI water (S6B Fig).

In addition to microwave power, microwave irradiation time was also investigated keeping

both the buffer (1 mM Tris-EDTA) and Lyse-It power constant (30%). Band intensities were

normalized to 1, where 1 was equal to the Pre-band intensity for each nuclease (Fig 1A). It was

only seen for DNase I that an increasing irradiation time reduced the band intensity for times

greater than 60 seconds (p<0.05) (Fig 1B). We attribute the increase in RNase B increase in

band intensity as irradiation time increased do to gel abnormalities such as a curved gel and

the stacking portion of the gel making a non-compressed band (S7 Fig).

Although there were some band intensity differences that could be seen in the SDS PAGE

gels with respect to microwave power and time, nuclease fragmentation was not evident con-

firming that the band intensity decrease was likely due to nuclease degradation. Therefore, we

utilized a more sensitive technique, namely the Agilent 2100 Bioanalyzer mini-gel system, for

protein size and fragmentation determination.

As oxygen concentration increased within the nuclease samples, more

fragments were seen

It is well-known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) affect

cells and mechanisms within cells, oxidize various molecular species, and have the ability to

Fig 1. SDS PAGE band intensities for RNase A, RNase B, and DNase I in 1 mM Tris-EDTA post 30% microwave irradiation

with Lyse-It. A representative SDS PAGE for DNase I is provided were a decrease in band intensity is seen as microwave

irradiation time increases. For RNase A and B, the band intensities did not decrease as irradiation time increased and thus, there

were no statistical differences for RNase A and B.

https://doi.org/10.1371/journal.pone.0223008.g001
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cut, mutate, fragment, and degrade nucleic acid species.[16–22] Additionally, it has been

shown that Lyse-It generates more reactive oxygen species, in particular singlet oxygen,

hydroxyl radicals, and superoxide anion radicals as oxygen content to the sample increases as

well as microwave irradiation power.[23, 24] Therefore, we investigated the effects of increas-

ing the oxygen content within the nuclease suspensions prior to microwave irradiation with

Lyse-It. To be able to see the fragments, the Agilent 2100 Bioanalyzer system with the Protein

80 kit was used. The three nucleases were purged with argon, air, or oxygen for 10 minutes

and then immediately microwaved with Lyse-It at 30% power for 60 seconds. It was shown for

all nucleases that as the oxygen content increased, the number of fragments also increased (Fig

2), which is consistent with previous reports of ROS-based fragmentation.[20, 22, 25–28] To

achieve a more complete analysis of the fragments, the total number of fragments from Fig 2

were subsequently broken down by kDa size ranges and are reported in S1 Table. To be brief,

the Bioanalyzer displayed sizes that were consistent with dimers for RNase A (approximately

27 kDa) and RNase B (approximately 29 kDa) and the monomer form of DNase I (approxi-

mately 31 kDa).

As microwave power and time increase, the number of nuclease fragments

increases

Following nuclease fragmentation with increasing oxygen sample content above, we addition-

ally investigated nuclease fragmentation following Lyse-It at 30% and 50% power at 60 seconds

and 30% power with an increasing irradiation time (Fig 3). Consistent with previously

reported work, as microwave power is increased, the size of DNA fragments decreased demon-

strating that large genomic DNA was being fragmented down into smaller sized pieces.[12, 14]

This same concept holds true when it is applied to nucleases. As the microwave power

increased, the number of fragments increased (Fig 3A). Additionally, as microwave power was

kept constant and irradiation time increased, the number of nuclease fragments increased (Fig

3B). As microwave power increased or as irradiation time increased for each nuclease, the

number of fragments found within various size ranges (kDa) can be found in S2 and S3 Tables

Fig 2. Total number of fragments observed for RNase A, RNase B, and DNase I lysed with Lyse-It at 30% power,

60 seconds using the Agilent 2100 Bioanalyzer system. As oxygen content increases, the number of nuclease

fragments also increases.

https://doi.org/10.1371/journal.pone.0223008.g002
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respectively. It is important to note that fragments larger than the monomer of DNase I were

larger than the reported kDa size. We think this is due to rearrangement or aggregation, with

DNase I forming dimers or larger aggregates. This is also thought to be similar for RNase A or

B for fragments that are larger than the reported monomer or dimer sizes. Even though we

were able to see fragments from a variety of conditions, the increase in oxygen content, micro-

wave power or time both increased and decreased the size of fragments; therefore, we consid-

ered a weighted fragment size analysis and standard deviation for each of the conditions to

further understand this.

As oxygen content or microwave power or time increased, the overall

weighted size decreased while the standard deviation became larger

The weighted size analysis demonstrates that as oxygen content increased, the nuclease size

subsequently decreased from the Pre-reported size, the control sample. The standard error in

the size substantially increased (Fig 4) which is counter-intuitive as normally small errors are

reported to confirm a small measured size. Here, the error was large as there was not only one

quantitative size found but numerous sizes of the nuclease fragments. This standard error anal-

ysis was also applied to the other conditions investigated.

Following the weighted sizes from the increasing oxygen content above, we studied the

effects of an increase in total microwave cavity power (30% to 50% for 60 seconds) and irradia-

tion time (30 through 135 seconds). In terms of band intensity, there were some visual differ-

ences for the three nucleases, but within the SDS PAGE gel, nuclease weighted size or various

fragments could not be seen or determined. Just as oxygen content increased and the number

of nuclease fragments subsequently increased, as microwave power increased, in general the

weighted nuclease size decreased (Fig 5). DNase I was the only nuclease where the weighted

size was slightly higher than that of the reported size. We attributed this to a potential increase

in aggregates or DNase I dimers. On the contrary to the increase in microwave power, as irra-

diation time increased, RNase A and RNase B weighted size was unaffected (Fig 6). However,

for DNase I, the weighted size decreased and the error was significant for all irradiation times,

indicative of a large number of fragments. This suggests that DNase I is more susceptible to

fragmentation then either RNase A or RNase B.

Fig 3. Total number of protein fragments for nucleases microwave irradiated with Lyse-It in DI water analyzed

using the 2100 Bioanalyzer. Increasing the microwave irradiation power with Lyse-It (A) and Lyse-It irradiation time

(B). As microwave power or irradiation time increases, the number of nuclease fragments also increases.

https://doi.org/10.1371/journal.pone.0223008.g003
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Thus far, we have investigated nuclease band intensity, nuclease fragments, and determined

a weighted size analysis of the fragments for the three nucleases. However, none of these meth-

ods analyzed the functional activity of the nucleases. Therefore, under the same conditions as

described above, the nucleases were tested with the RNaseAlert and DNaseAlert enzyme activ-

ity assays.

Despite nucleases appearing thermally stable, the activity decreases as the

heating temperature increases

The activity of the nuclease showed a temperature dependent decrease in enzyme activity.

After conventionally heating samples at various temperatures for 1 minute, the samples were

cooled down to room temperature prior to use with the activity assay. This cooling allowed for

only the effects of conventional heating on the nuclease to be examined, i.e. not the tempera-

ture effects on fluorescence. RNase A showed a decrease in activity where the kinetic rate pla-

teaued after 40˚C (Fig 7A). However, for DNase I, a significant decrease in rate is seen after

60˚C (Fig 7B). For RNase B, as temperature increased, there was no significant difference in

activity until temperatures greater than 60˚C (Fig 7C). Kinetic rates for each of the conditions

were calculated using Excels mathematical calculation LINEST where only the linear region of

the kinetic fluorescence response was considered. RNase B rate results from conventional heat-

ing are shown in Table 1. It was only until temperatures reached 80˚C that the nuclease activity

was diminished by ~25%. The kinetic rates for RNase A and DNase I can be found in S4 Table.

In general, for RNase A, an increase in temperature decreased the activity, but remained at a

constant 50% active without further loss of activity. For DNase I, there was a significant tem-

perature activity dependence after 60˚C and by 80˚C the nuclease was almost over 98% inac-

tive which is consistent with other literature reports.[9]

Fig 4. Weighted size (kDa) of RNase A, RNase B, and DNase I. Weighted size post purging and subsequent

microwave irradiation of 30% power, 60 seconds. In general, as oxygen content increases, the overall weighted nuclease

size decreases and the error in the size becomes larger. This in indicative of an increasing number of varying size

fragments with an overall degraded nuclease. Pre = No microwave irradiation.

https://doi.org/10.1371/journal.pone.0223008.g004
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Buffer and magnesium content can affect nuclease activity

We studied whether Tris-EDTA, HEPES or DI water had an influence on nuclease activity.

Nucleases were subsequently microwave irradiated with Lyse-It for 60 seconds at 50% power.

Kinetic fluorescent activity analysis for the three nucleases were obtained (Fig 8) and the corre-

sponding rates calculated (S5 Table). In all nuclease cases, HEPES buffer showed some level of

protection of the enzyme activity. It is well-known that nuclease activity, especially for DNase

I, can be inhibited by metal chelating agents like EDTA.[9] Though not fully understood from

these experiments, we speculated that HEPES was acting like a protective agent for the nucle-

ase against degradation and or fragmentation and subsequent activity. Thus, as expected, the

activity of the nuclease decreased in the presence of Tris-EDTA and DI water and subsequent

50% power, 60 seconds microwave irradiation with Lyse-It. Additionally, DI water was the

most ineffective in nuclease activity protection as the rates were substantially lower as com-

pared to both Tris-EDTA and HEPES buffers.

Lyse-It significantly decreased nuclease activity compared to standard

microwave irradiation

To ascertain if Lyse-It has a similar effect on nucleases that it has on both DNA and other pro-

teins, [12–14, 23] a dilution study of Pre nuclease aided in determining the degree of inactivity

that Lyse-It inflicted on the nucleases. Starting with 20 pM RNase A, 46 pM RNase B, and 10.5

nM DNase I, the nucleases were diluted by 10 and 100-fold and tested with their respective

activity assay (Fig 9). As the concentration of the nuclease decreased by 10-fold or 100-fold,

the activity did not decrease by the same factor. This could be due to the rate fitting parameters

Fig 5. Weighted size (kDa) of RNase A, RNase B, and DNase I. Weighted size post microwave irradiation of 30%

and 50% power, 60 seconds as compared to pre (0%). In general, as microwave power increases, the overall weighted

nuclease size decreases and the error in the size becomes larger. This in indicative of an increasing number of varying

size fragments with an overall degraded nuclease.

https://doi.org/10.1371/journal.pone.0223008.g005
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performed in this paper or through diffusional hindrance from the suspension of the nuclease

in glycerol. When comparing Lyse-It to no Lyse-It, the activity rate significantly (p<0.05)

decreased over 70% from the Pre nuclease in suspension (S6 Table). As for standard micro-

wave irradiation without Lyse-It over 60% of the nuclease activity remained. This confirmed

that Lyse-It has a much stronger effect on diminishing nuclease activity as compared to simply

microwaving without Lyse-It and to conventional heating alone.

Increasing microwave irradiation time in combination with Lyse-It

decreased nuclease activity

To further investigate microwave effects on the nucleases, we looked at the activity when

nucleases were subjected to constant microwave powers but now changing the irradiation

times (Fig 10). In both 30% and 50% power cases, as irradiation time increased, the activity of

the nuclease decreased, where RNase B is shown in Table 2 and both RNase A and DNase I in

S7 Table. The 50% power series for DNase I was not performed because at 50% microwave

power, the nuclease was already over 98% efficiently inactivated. At this juncture, it is impor-

tant to connect back and compare microwave power versus fragmentation to the subsequent

activity rate. At 50% power the number of fragments increased significantly and thus as seen

with the activity rate, as the microwave power increases, the activity rate decreases. Addition-

ally, in this experiment we were able to analyze overall microwave energy (i.e. microwave

power and time) as a function of the decrease in nuclease activity. 30% microwave power for

30, 60 and 90 seconds is analogous to 8.1, 16.2, and 24.3 kJ respectively. For 50% microwave

power with the same time points, the energy was 13.5, 27.0, and 40.5 kJ. This increase in energy

Fig 6. Weighted size (kDa) of RNase A, RNase B, and DNase I. Weighted size post microwave irradiation at 30%

power, 60 seconds. In general, as irradiation time increases, the overall weighted nuclease size decreases and the error

in the size becomes larger. This in indicative of an increasing number of varying size fragments with an overall

degraded nuclease. Pre = No microwave irradiation.

https://doi.org/10.1371/journal.pone.0223008.g006
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results in a greater inactivation of the nucleases. This was particularly evident in Fig 10B with

RNase B where the power and time were altered to demonstrate the increase in energy and

subsequent decrease in nuclease activity. At 50% microwave power for RNase, this energy to

nuclease relationship activity inactivation holds true.

Fig 7. Fluorescent intensity at 520 nm (RNase A) and 556 nm (DNase I) and 520 nm (RNase B) versus time for

conventionally heated (1 minute) nucleases. (A) RNase A (B) DNase I (C) RNase B. For RNase A and DNase I, as temperature

increases, the activity of the nucleases decreases. For RNase B, the rate is statistically different at 70˚C and 80˚C.

https://doi.org/10.1371/journal.pone.0223008.g007

Table 1. RNase B rates and percentage still active post conventional heating for 1 minute between 40˚C and 80˚C.

Conventional Heating -Temperature
(°C)

Rate (Fluorescent Intensity per

Second)

Nuclease Percentage Still

Active

RNase B
Pre (RT) 136.7 ± 2.1 100%

40 136.7 ± 2.1 100%

50 143.6 ± 6.9 100%

60 130.9 ± 6.8 95.7%

70 120.6 ± 6.6 86.3%

80 103.0 ± 6.9 75.3%

https://doi.org/10.1371/journal.pone.0223008.t001
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Higher microwave powers and longer times, and thus energy, are required

to 99% inactivate RNase A/B. Only 50% power 60 seconds (27kJ) was

required to 99% inactivate DNase I

One of the most important studies performed in this paper was the ability to inactivate the

nuclease and prevent them from degrading genomic DNA and RNA. “Kill” studies were subse-

quently performed on RNase A and RNase B by microwave irradiating with Lyse-It more than

one time at a higher power and time then previously tested or used. The higher microwave

power and times were used in order to determine the conditions where 0% of the activity

remained (i.e. the enzyme “kill” settings). DNase I only required 50% microwave power for 60

seconds of irradiation (27 kJ) to inactivate the nuclease as discussed previously. For RNase A

and RNase B, three irradiations with Lyse-It at 70% microwave power for 105 seconds, a total

Fig 8. Fluorescent intensity at 520 nm (RNase A/B) and 556 nm (DNase I) versus time for nucleases in 1 mM buffers lysed with

Lyse-It at 50% power for 60 seconds (A) 20 pM RNase A (B) 46 pM RNase B, (C) 10.5 nM DNase I. In general, HEPES buffer was

seen to protect the nuclease from becoming more inactive as compared to Tris-EDTA or DI water.

https://doi.org/10.1371/journal.pone.0223008.g008
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energy subjected to the sample of 198.45 kJ, resulted in more than 99% inactivation of both

nucleases (Fig 11). The rates from completely active nuclease compared to the “killed” inactive

nucleases can be seen in Table 3. It is important to note that in particular for DNase I, even

though the nuclease was completely inactive at 50% microwave power for 60 seconds, genomic

DNA has shown to be still viable for detection and amplification through qPCR. [14]

To demonstrate that DNase I is significantly inhibited by microwave irradiation with Lyse-

It, qPCR was performed where V. cholerae DNA was subjected to stock intact DNase I, DNase

I that was microwave irradiated for 60 seconds at 50% power without Lyse-It and then with

Lyse-It. 0.5U of DNase I no microwave irradiation, with irradiation without Lyse-It or with

Lyse-It was incubated with 1μg of V. cholerae DNA for 10 minutes. After 10 minutes the reac-

tion was stopped and qPCR was performed. It was found that stock DNase I and DNase I that

was microwave irradiated without Lyse-It broke down the V. cholerae DNA, thus the high

cycle number (Fig 12). However, the cycle number significantly dropped when microwave

irradiated DNase I with Lyse-It was incubated with V. cholerae DNA indicating that the

DNase I is significantly inhibited from being able to break down the DNA.

Fig 9. Fluorescent intensity at 520 nm (RNase A/B) and 556 nm (DNase I) versus time for nucleases in DI water lysed with and

without Lyse-It at 50% power for 60 seconds. The concentration of lysing was undertaken with the highest concentration of

nuclease. Each Pre was a 10-fold dilution from the starting concentration. (A) 20 pM starting RNase A (B) 46 pM starting RNase B,

(C) starting 10.5 nM DNase I. When Lyse-It is used, the activity of the nuclease is significantly reduced as compared to without the

use of Lyse-It.

https://doi.org/10.1371/journal.pone.0223008.g009
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Discussion

In diagnostic settings like those that involve downstream manipulation of nucleic acid or other

intracellular components, it is important that there are as few contaminants as possible and

Fig 10. Fluorescent intensity at 520 nm (RNase A/B) and 556 nm (DNase I) versus time for nucleases in DI water lysed with

Lyse-It at 30% and 50% power for varying time. Pre is the nuclease suspension without microwave irradiation. (A) 20 pM RNase

A (B) 46 pM RNase B, (C) 10.5 nM DNase I. As microwave power and time increase, nuclease activity decreases.

https://doi.org/10.1371/journal.pone.0223008.g010

Table 2. RNase B rates and percentage still active post Lyse-It at 30% and 50% power, varying the time. (Pre = no

irradiation).

Nuclease Irradiation
Time (seconds)

30% Microwave Power Rate (Fluorescent

Intensity per Second)

50% Microwave Power Rate (Fluorescent

Intensity per Second)

RNase B
Pre 452.0 ± 24.53 (100%)

30 seconds 358.3 ± 17.15 (79%) 242.7 ± 22.87 (54%)

60 seconds 208.2 ± 13.84 (46%) 120.6 ± 5.87 (26%)

90 seconds 122.21 ± 3.73 (27%) 64.75 ± 0.83 (14%)

https://doi.org/10.1371/journal.pone.0223008.t002
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that the intracellular component of interest for detection is retained. Most sample preparation

kits that are available remove contaminants like nucleases that can interfere with detection

platforms such as qPCR.[29] However, these kits can be time consuming to use and expensive.

Herein, we have demonstrated that Lyse-It is a rapid and cost-effective way of fragmenting

and decreasing the activity of RNA and DNA nucleases. A cost analysis of Lyse-It compared to

bead-beating, vortex, and protein saver cards has been reported in a recent work by Santaus et.

al.[30]

We have shown in previous work that Lyse-It increased the overall temperature and electro-

magnetic energy to samples allowing for rapid cellular lysis and subsequent intracellular

release followed by fragmentation and degradation of DNA and proteins.[12, 14] Herein, we

have additionally shown that Lyse-It is also effective at fragmenting and inactivating RNase A,

RNase B, and DNase I. SDS PAGE studies followed by Bioanalyzer mini-gel analysis demon-

strated that nucleases were susceptible to thermal degradation and inactivation although this

temperature dependence is not the dominant fragmentation mechanism associated with Lyse-

It.[23, 24]

Though the use of SDS PAGE was beneficial to see the size of the nucleases, it was not suffi-

cient to determine if nuclease fragmentation was occurring or moreover to rationale the reduc-

tion in nuclease activity. From the gels, it was determined that buffer concentration, when

nucleases were conventionally heated, did not affect the ability of Oriole stain to bind to the

nuclease. However, there were some statistical deviations in the band intensities as microwave

power or irradiation time increased.

Fig 11. Fluorescent intensity at 520 nm (RNase A/B) and 556 nm (DNase I) versus time for nucleases post Lyse-It.

RNase A and B 98% inactivation was achieved through 3 irradiations with Lyse-It of 70% power, 105 seconds. DNase I

was 99% inactivated at 50% power for 60 seconds with Lyse-It.

https://doi.org/10.1371/journal.pone.0223008.g011

Table 3. Nuclease inactivation studies.

Nuclease Pre “Kill”

Rate (Fluorescent Intensity per Second)
20 pM RNase A 322.43 ± 11.94 4.94 ± 0.21 (1.4%)

49 pM RNase B 477.04 ± 24.25 3.34 ± 2.22 (0.7%)

10.5 nM DNase I 215.85 ± 9.54 0.50 ± 0.10 (0.2%)

https://doi.org/10.1371/journal.pone.0223008.t003

Effects of microwave irradiation on endonucleases

PLOS ONE | https://doi.org/10.1371/journal.pone.0223008 September 30, 2019 16 / 21

https://doi.org/10.1371/journal.pone.0223008.g011
https://doi.org/10.1371/journal.pone.0223008.t003
https://doi.org/10.1371/journal.pone.0223008


Following analysis of SDS PAGE band intensity, the 2100 Bioanalyzer was used to deter-

mine if nuclease fragmentation occurred following various tested conditions. It was found for

all nucleases that as the oxygen content increased, the number of fragments also increased.

Additionally, as microwave power or irradiation time increased, the number of fragments

increased. Further analysis of the fragments was performed to determined weighted size and

standard error. As microwave power and time increased, the weighted size of the nucleases

decreased and the standard error of the weighted size increased. This is indicative of the nucle-

ases being fragmented down to smaller and then smaller sizes, where the fragments were of a

variety of sizes. As mentioned earlier, simple microwave heating and a temperature increase,

does not appear to be the dominant mechanism behind DNA, RNA, and protein fragmenta-

tion.[23, 24] Previous studies have shown a significant amount of reactive oxygen species

(ROS) is released during Lyse-It. We therefore speculated that nuclease fragmentation and

subsequent inactivation is due to ROS when using Lyse-It.

Further investigation using conventional heating, standard microwave irradiation, and

Lyse-It were performed. It was determined that out of the three methods investigated that

Lyse-It had a much stronger effect on nuclease inactivation. Conventional heating until higher

temperatures did not significantly affect the overall nuclease activity and standard microwave

irradiation only decreased the activity about 40%. Remarkably, Lyse-It decreased the activity

over 70% with a microwave irradiation power and time of 50%, 60 seconds. Additionally, we

noticed, though not completely understood, that HEPES has a protective property against

nuclease activity degradation.

In closing, Lyse-It can serve as a tunable platform for nuclease degradation and inactivity,

which can be beneficial increasing the accuracy of platforms like qPCR.

Fig 12. qPCR cycle number for amplified V. cholerae DNA before and after a 10-minute exposure to DNase I

without microwave irradiation (DNase I), after 50% power 60 seconds standard microwave irradiation (No Lyse-

It) and after 50% power, 60 seconds with Lyse-It (Lyse-It). A decrease in cycle number is seen with Lyse-It because

the V. cholerae DNA is intact as compared to being chewed-up by intact DNase I. � = p = 0.001.

https://doi.org/10.1371/journal.pone.0223008.g012
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Supporting information

S1 Fig. Standard Lyse-It slide with a sample chamber prior to purging (A). Lyse-It purging

system with a sample chamber and safety lid, with both a gas-in and gas-out needle.

(TIF)

S2 Fig. Simplified RNaseAlert and DNaseAlert assay systems. Prior to the addition of nucle-

ase, the fluorophore exhibits low fluorescence. Upon addition of nuclease and subsequent cut-

ting of the fluorophore/quencher system, the fluorophore exhibits an increase in fluorescence

which can be readily monitored using fluorescence kinetics, i.e. by monitoring the fluorescent

intensity versus time.

(TIF)

S3 Fig. Normalized SDS PAGE band intensity of conventionally heated (60˚C) of RNase A,

RNase B, and DNase I in 2mM Tris-EDTA and HEPES buffers with representative SDS

PAGE (A) RNase A, (B) DNase I, and (C) RNase B. In all cases, no significant change in

band intensity was observed. (p>> 0.05) (D) RNase A in Tris-EDTA and HEPES buffers

SDS PAGE. L: Ladder, P: RNase A Pre, DI: Nuclease in DI and conventionally heated, 1–5:

decreasing Tris-EDTA buffer concentration, 6–10: decreasing HEPES buffer concentration.

(E) RNase B conventionally heated in 1 mM Tris-EDTA or HEPES buffers. L: Ladder, T:

RNase B in Tris-EDTA no heating, 1–5: 40–80˚C, H: RNase B in HEPES no heating, 6–10:

40–80˚C.

(TIF)

S4 Fig. RNase A in Tris-EDTA, HEPES, and DI water with respective statistical analysis

for SDS PAGE band intensities. (A) Microwave Power Comparison of RNase A in Tris-

EDTA, HEPES, or DI Water irradiated for 30 seconds, (B) Statistical analysis of RNase A in

the three buffers as compared to 30% or 50% power, (C) Statistical analysis of the change in

band intensity versus microwave power of RNase A in the three buffers. (D) RNase A in Tris-

EDTA, HEPES, or DI SDS PAGE, P# = RNase A in buffer no microwave irradiation, 1: 30%

Power, 2: 50% Power.

(TIF)

S5 Fig. SDS PAGE band intensities for RNase B in Tris-EDTA, HEPES, or DI water with

respective statistical analysis. (A) Microwave power comparison of RNase B in Tris-EDTA,

HEPES, or DI Water irradiated for 30 seconds, (B) Statistical analysis of RNase B in the three

buffers as compared to 30% or 50% power, (C) Statistical analysis of the change in microwave

power of RNase B in the three buffers.

(TIF)

S6 Fig. Fluorescent intensity versus time for DNase I in Tris-EDTA, HEPES, or DI water

with respective statistical analysis. (A) Microwave Power Comparison of DNase I in Tris-

EDTA, HEPES, or DI Water, irradiated for 30 seconds (B) Statistical analysis of DNase I in the

three buffers as compared to 30% or 50% power, (C) Statistical analysis of DNase I in the three

buffers.

(TIF)

S7 Fig. Representative SDS-PAGE gel of RNase B showing gel abnormalities (curved gel

and non-compressed bands in the white circles) attributing to the increase in band inten-

sity as microwave irradiation time increased shown in Fig 1 for RNase B.

(JPG)
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S1 Table. Fragment sizes determined post Lyse-It after purging with argon, air, or oxygen.

Increasing oxygen concentration results in an increase in number of peaks due to fragmentation.

(DOCX)

S2 Table. Increasing microwave power results in an increase in number of peaks due to

fragmentation.

(DOCX)

S3 Table. Increasing microwave irradiation time results in an increase in number of peaks

due to fragmentation.

(DOCX)

S4 Table. RNase A and DNase I rates and percentage still active post conventional heating

for 1 minute between 40˚C and 80˚C.

(DOCX)

S5 Table. Nuclease rates and percentage still active post Lyse-It in 1 mM buffers at 50%

power, 60 seconds. (Pre = no irradiation).

(DOCX)

S6 Table. Nuclease rates and percentage still active with and without Lyse-It in DI water at

50% power, 60 seconds. (Pre = no irradiation).

(DOCX)

S7 Table. Nuclease rates and percentage still active post Lyse-It at 30% and 50% power,

varying the time. (Pre = no irradiation).

(DOCX)
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