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Abstract

Background: Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their
daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation
feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We
use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary
divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the
core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome
sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species.

Methods: We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of
conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine
the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to
Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia.

Results: Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their
assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding
genes, respectively, sharing homology with other animal proteomes.

Discussion: The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes
and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii
contigs and singletons from this transcriptome with other insects, we determined that there was no significant
difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes
and post-translational modifiers.

Conclusions: The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered
all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between
core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that
has experienced a continual northward dispersal into temperate regions of progressively longer summer day
lengths as compared with six other insect taxa. An associated microarray platform derived from this work will
enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and
diapause along a photic and seasonal geographic gradient.
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Background
The rotation of the earth about its axis generates a daily
cycle of light, temperature, moisture and resources that
ultimately affect the microclimate and fitness of organ-
isms [1–5]. A general property of Eukaryotes is that they
possess an internal, self-sustaining circadian (circa,
about; dies, day) clock that results in the anticipation
and preparation for daily changes in both their external
and internal environments [6–9]. Circadian rhythms “are
inherent in and pervade the living system to the extent
that they are fundamental features of its organization; and
to an extent that if deranged, they impair it” ([6], p. 159).
Indeed, studies from prokaryotes to mammals have shown
that impairment of the circadian clock or imposition of
daily environmental cycles that deviate from the innate
duration or period of the circadian clock results in re-
duced fitness [6, 7, 10]. Even if the period of the clock is
exactly 24 h, the clock will be able to track the daily
cycle of light and dark if the oscillator driving the
rhythm varies in its responsiveness to light through the
daily cycle [11, 12]. Hence, life in a 24-h world should
impose stabilizing selection for a biological clock with
an innate period of about 24 h.
At the core of all eukaryotic circadian clocks are

transcriptional-translational feedback loops (TTFL, pink
in Fig. 1) [13, 14]. The concept of the TTFL existed be-
fore any clock genes were known [15] and has been de-
scribed as comprising the “core” or canonical clock
genes. Very quickly, it was recognized in Drosophila
that the TTFL consisted of positive-acting elements
(CLK/CYC) and negative-acting elements (PER/TIM)
with input of light through CRY1 (aka dCRY) and its
interaction with TIM and SGG. Subsequently, the
PDP1, VRI, KAYα, and CWO feedback loops have been
shown to interact with and regulate transcription in
the CLK/CYC – PER/TIM cycle. We also included in
our analyses CRY2 (aka mCRY) because, unlike in Dros-
ophila, it is known to be a transcriptional regulator of
TTFL genes in mosquitoes, Lepidoptera, Hemiptera,
Orthoptera, and Hymenoptera, as well as mice [16–20].
Straightforward kinetics of the TTFL estimate that, un-

modified, the TTFL would complete its cycle in a few
hours [14, 21–24] and therefore be poor at orchestrating
daily events. This observation elevated the appreciation
of post-translational modifiers (PTM, blue in Fig. 1) that
act as modulators (governors), delaying this cycle and
thereby producing a rhythm of about 24 h [21–36]. It is
the quality and quantity of phosphorylation by the PTMs
that determine the kinetics of the negative-acting loop
and, hence, the period of the circadian clock and ultim-
ate degradation of the TTFL proteins [21, 24, 31–36].
Hence, it has been proposed that the post-translational
or the post-transcriptional modifiers are more respon-
sible for maintenance of a biological clock with a period
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Fig. 1 Functional clockworks of the genes listed in Table 2. Pink: TTFL
genes, the core transcription-translation feedback loop consists of
positive-acting CLK and CYC and negative-acting CRY2, PER, and TIM;
their cycling is affected by “stabilizing” loops involving CWO, KAYα, VRI,
and PDP1. Blue: PTM genes, the duration of the circadian cycle is then
altered by a number of post-translational modifiers, mainly kinases and
phosphatases. Yellow: Entrainment of the circadian clock by external
day and night is achieved via the blue-light receptor CRY1. Clear
dashed boxes: phosphorylation or ubiquitination leading to ultimate
protein degradation. Solid arrows: enhancing transcription or PP2A-B’
reversing phosphorylation of PER. Dashed lines: inhibiting transcription
or promoting phosphorylation. Upper case Roman, proteins; lower
case Italic, transcripts promoted by CLK and CYC. Solid black circles:
phosphate groups (compiled from [17, 25, 26, 30, 123, 125, 127])
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of about 24 h than is the TTFL [21–23, 36–42]. This
proposition would predict that PTM genes should be
evolutionarily more conservative than TTFL genes.
Herein, we investigate the relative evolutionary rates

of TTFL and PTM genes using the mosquito Wyeo-
myia smithii. The roles of post-transcriptional control
[37, 40–42], micro-RNAs [38, 39, 43], O-GlcNAcylation
[44], and histone acetylation and methylation [22, 45, 46]
in circadian time-keeping are still emerging areas of re-
search, especially in insects. Hence, We focused on the
TTFL and phosphorylation-related PTM as the two best
documented groups of genes involved in circadian rhyth-
micity that possessed both distinct roles in the circadian
clock (TTFL vs. PTM) and distinct biochemical mecha-
nisms (regulation of gene transcription vs. modification of
protein stability).
The genus Wyeomyia is a member of the tribe

Sabethini, which includes some 429 circumtropical spe-
cies [47], only one of which, W. smithii, has invaded
temperate North America, likely from tropical South
America [48]. Wyeomyia smithii completes its pre-adult
development only in the water-filled leaves of the carniv-
orous plant Sarracenia purpurea and has dispersed
northwards from the Gulf of Mexico to northern and
western Canada [49–51]. Over a similar south to north
geographic range, the oviposition rhythm of Drosophila
melanogaster has shown a decline in amplitude, and the
eclosion rhythms of D. subobscura and D. littoralis have
shown a decline in both amplitude and period [52]. This
latitudinal gradient in period and amplitude of the circa-
dian clock has been attributed to summer day length,
which increases with latitude, thereby imposing selection
for an increasingly robust oscillator, although evidence
supporting this proposition remains equivocal [52, 53].
Regardless of the ultimate causality of the latitudinal
gradient in Drosophila, W. smithii has encountered the
same gradient in summer day lengths and we ask
whether there has been greater rates of divergence in
PTM or TTFL genes in a northern, derived population
of W. smithii relative to other insects. We focus on a
northern population of W. smithii first because we were
able to use the recently collected F2 of field-collected
larvae that reflect the genomics of a natural population.
Second, we have over 30 years experience working with
the genetics, evolution, physiology, and population biol-
ogy of W. smithii from the Gulf of Mexico to northern
Canada, including this particular population (http://
www.uoregon.edu/~mosquito). We are therefore able to
place our ongoing genomics experiments into a broader
context relating to the bionomics of the focal species. Fi-
nally, this population represents a more polar population
than any other Sabethine mosquito; the only other tem-
perate Sabethine (Trypteroides bambusa) occurs in East
Asia and does not reach the latitude (46 °N) of the focal

population [54]. Hence, this population represents a
more northern and, therefore, is more likely to parallel
Drosophila in the northern, post-glacial divergence of its
circadian clock than any other Sabethine species.
At present, there are no sequenced genomes or tran-

scriptomes available for any member of the circumtropical
mosquito tribe Sabethini, among which several Neotrop-
ical species, including members of the genus Wyeomyia,
but not including W. smithii, have been implicated in the
transmission of arboviruses [55, 56]. We therefore pro-
duced the first Sabethine transcriptome sequence, assem-
bly and gene annotation. We compared amino acid
substitutions from translated W. smithii sequences with
annotated circadian clock genes in other insects and com-
pared the sequence divergence between W. smithii and six
other taxa of increasing phylogenetic divergence : mosqui-
toes in the same subfamily but different tribes (Aedes and
Culex), a mosquito in a different subfamily (Anopheles),
another Diptera in a different sub-order (Drosophila), and
progressively more distant orders (Lepidoptera, Danaus;
Hymenoptera, Nasonia). We compared evolutionary rates
using nine genes of the TTFL with eight key genes of the
PTM (Fig. 1). All six species we considered exhibit circa-
dian rhythmicity under daily and constant conditions
[16, 25, 27, 52, 57–60]. Finally, we estimated evolution-
ary divergence from branch lengths of the generated
maximum-likelihood tree for each gene. Our goal was
to present the Sabethine transcriptome, a concise appli-
cation of that transcriptome, and to emphasize concepts
rather than present a discussion of the genome-wide de-
tails of the transcriptome.
We made four basic assumptions: First, during its dis-

persal northwards in North America, W. smithii has
undergone analogous directional selection on its circa-
dian clock as reflected in circadian-based behaviors in
Drosophila melanogaster, D. subobscura, and D. littora-
lis. Second, directional selection and drift will erode gen-
etic variation in clock genes as it has in other protein-
coding loci in W. smithii [50]; consequently, genes under
stronger selection will exhibit, on average, shorter
branch lengths between this northern population of W.
smithii and the other taxa. Third, the sequence reads
from the W. smithii transcriptome represent random
samples of their respective genes. This third assumption
bears the caveat that, from incomplete cDNA contigs in
the assembly, we cannot estimate evolutionary rates of
individual genes, since different domains and even differ-
ent codons within a domain, may evolve at different
rates [31]. Since we are aligning W. smithii sequences of
varying completeness to identify orthologs across dispar-
ate taxa, there is an inherent bias towards enriching for
more conserved segments of the clock genes. Since we
are concerned with the comparative evolutionary rates
of functional groups of genes in taxa that are separated
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by 100-400my, this temporal separation means that we
have to use more conservative portions of the genes in-
volved in order to obtain a clear signal of protein diver-
gence. Nonetheless, if conservative segments are randomly
distributed among clock genes, average divergence of TTFL
or PTM genes provides a composite estimate of those two
functional components of the W. smithii circadian clock.
Fourth, we assume that TTFL and PTM genes identified in
Drosophila serve analogous functions in the other insect
taxa we consider. The number and function of circadian
clock genes is better documented in Drosophila, which has
set the historical landmarks for comparison with other in-
sects and mammals [12, 14, 21, 22, 61–63] When looked
for, the TTFL genes that are rhythmically expressed in
Drosophila are also found to be rhythmically expressed in
Danaus [18] and Nasonia [16] as well as mosquitoes [58–
60, 64, 65] (including tim in W. smithii [66]). Functionally,
RNAi targeted against Cry2 [16–19], tim [64, 67–69], per
[70–72], Clk [73, 74], cyc [75, 76] all disrupted circadian
rhythmicity in non-Drosophila insects ranging from other
Diptera to apterygote Thysanura. At least Cry2 and TTFL
orthologs of tim, per, Clk, and cyc in Drosophila are in-
volved in circadian clock function across a variety of
insects.

Methods
Collection, maintenance, and experimental treatment of
Wyeomyia smithii
Wyeomyia smithii were collected in spring, 2010, as
overwintering larvae from Maine (46 °N, 68 °W, 270 m
elevation; population KC of earlier studies from this lab).
Populations were maintained at the University of Ore-
gon under standard rearing conditions and run through
two generations to minimize maternal and field effects
[53]. In the F2 laboratory generation, larvae were reared
on short days (L:D = 8:16) at 23 °C to induce larval dia-
pause in the third instar. After the initiation of diapause,
a group of larvae continued on short days while another
group was directly transferred to long days (L:D = 18:6)
in order to initiate development, both at 23 °C.

RNA isolation and cDNA library construction,
transcriptome sequencing and assembly
RNA was extracted from 12 samples of 30 individuals
each. The 12 samples represented diapausing larvae on
short days (L:D = 8:16), diapausing larvae exposed to 10
diapause-terminating long days (L:D = 18:6), pupae on
long days and adults on long days. Each stage of devel-
opment was sampled at three times of day (Table 1). All
samples were prepared in 500uL TRIzol (Ambion Life
Technologies, 5791 Van Allen Way, Carlsbad, California
92008) according to manufacturer’s protocol. RNA was
resuspended in 20uL DEPC-treated water and stored at

-70 °C until shipment on dry ice to the Center for Gen-
omics and Bioinformatics at Indiana University.
The overall quality of RNA samples was evaluated in

terms of purity and integrity of RNA by means of a
NanoDrop ND-1000 UV–VIS spectrometer (Thermo
Fisher Scientific, 81 Wyman St, Waltham, MA 02451),
Bioanalyzer (Agilent Technologies, 5301 Stevens Creek
Blvd., Santa Clara, CA 95051) and agarose gel electro-
phoresis. RNA sample quality was verified regarding
high RNA concentration, absorbance ratios A260/A280
in the range 2.0 - 2.2, and A260/A230 above 1.8. Samples
with lower absorbance ratio were ethanol-precipitated in
order to improve the quality. Equivalent amounts of RNA
mass per test condition were pooled together, with a total
of 10 μg RNA from all samples of W. smithii. Normalized
454-sequencing libraries were constructed from an equal-
molar pool of RNA obtained from the unique exposure
samples described above using the procedures optimized
for Roche/454 Titanium sequencing modified from Meyer
et al. [77]. After the final purification step, the library was
stored at −20 °C until sequencing. This library was se-
quenced using one full-plate sequencing run in a 454
Roche GS FLX pyrosequencing instrument with Titanium
chemistry (454 Life Sciences Corporation, 15 Commercial
St., Branford, CT 06405), following manufacturer’s proto-
col and methods previously described [78]. After 454 se-
quencing, the generated sequence reads were cleaned
using ESTclean [79] and assembled using Newbler
v.2.5.3 (454 Life Sciences Corporation, 15 Commercial
St., Branford, CT 06405) in de novo mode and default
parameters.

Transcriptome annotation
Transcriptome annotation was performed through the
ISGA transcriptome analysis pipeline [80]. First, sequence

Table 1 Equimolar sources of cDNA to generate the W. smithii
transcriptome

Sample Stage Daylengtha Hours after lights-on

1 larvae Short 5

2 larvae Short 13

3 larvae Short 21

4 larvae Long 5

5 larvae Long 13

6 larvae Long 21

7 pupae Long 5

8 pupae Long 13

9 pupae Long 21

10 adult Long 5

11 adult Long 13

12 adult Long 21
aShort: L:D = 8:16; long: L:D = 18:6
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homology to known metazoan proteins was obtained by
submitting contigs and singletons to BLASTx searches
against NCBI’s non-redundant database and dbEST [81].
Moreover, protein domains were identified among the six
frame translations of the assembled sequences using Pfam,
TIGRfam and HMMER3 searches [82]. Open reading
frames were determined with the ORFpredictor software
on the proteomics server of Youngstown State University
[83]. Finally, orthology and paralogy was assigned by
BLASTx against orthoMCL databases [84].

Defining orthologous groups and ortholog sequence
acquisition
Flybase was used to identify each individual circadian gene
in Drosophila melanogaster [85]. The D. melanogaster Fly-
base gene numbers and peptide sequences were used to
identify the pre-computed orthologous genes for all in-
sects using OrthoDB7 [86] and specifically extracting
amino acid sequences for five comparative species: Aedes
aegypti, Culex pipiens, Anopheles gambiae, Danaus plex-
ippus and Nasonia vitripennis (Fig. 2). Geneious [87] was

Drosophila melanogaster Ortholog

OrthoDB

Orthologous genes in
Aedes aegypti
Culex pipiens

Anopheles gambiae
Danaus plexippus

Nasonia vitripennis

Flybase

BLAST A. aegypti 
ortholog against

W. smithii contigs
& singletons

Single loweste-value contig
or singleton for single gene

Multiple low E-value contigs
or singletons for gene family

Assembly gene family tree, identify
clade with target Drosophila

melanogaster protein

Set of sequences for single gene

Assembly gene tree

Fig. 2 Flow diagram of assigning contigs or singletons to specific circadian clock genes. The functional circadian clock gene was identified in
Drosophila melanogaster through Flybase. The Drosophila melanogaster protein sequence was blasted against OrthoDB7 using the most recent
common ancestor of all seven species as the search node. The orthologous genes were then taken from the resulting OrthoDB group, with the
ortholog of A. aegypti, W. smithii’s most closely related species, and used in a local BLAST against the contigs and singletons from the W. smithii
transcriptome. If the lowest E-value from that BLAST identified a single contig or singleton, that contig or singleton was assigned to the respective D.
melanogaster gene function in the OrthoDB group. If the lowest E-value from the BLAST identified a multi-gene family, maximum likelihood trees were
used to identify the orthologs of various genes in that family (Figs. 3 and 4)
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used to perform a local BLAST (tblastx) of each Aedes
aegypti ortholog against the entire W. smithii transcrip-
tome. This procedure identified all possible homolo-
gous genes as contigs/singletons coding for W. smithii
clock proteins, except for five groups of related genes
that required additional analysis (Table 2): Clk vs. cyc,
tim vs. tim2 (timeout), cry1 vs. cry2 vs. phr6-4, and dbt
vs. Ck1α. The contigs/singletons were then each evalu-
ated as representing full gene transcripts, partial gene
transcripts (including split genes), orthologs or para-
logs, based on the alignments of their translated amino
acids to those from the other six species, including
their relative positions within the resulting phylogen-
etic gene trees (Figs. 3 and 4; Additional file 1 and
Additional file 2).

Alignment processing and gene tree assembly
The orthologous groups of amino acid sequences were
gathered into their respective gene families for each
clock gene, including the translated W. smithii represen-
tative sequences. The 5’ and 3’ UTRs of each W. smithii
amino acid sequence were removed based on start and

stop codon positions. Each gene family was then aligned
using MUSCLE [88] (Additional file 3) The protein
alignments were then subjected to Gblock editing in
order to identify conserved regions for phylogenetic ana-
lysis [89, 90] (Additional file 4 and Additional file 5). In
order to be processed by ProtTest and Phyml, the align-
ments were converted into Phylip format. This conver-
sion involved truncation of the identifiers for certain
species' sequences. The identifiers were truncated in
such a way to preserve the associated gene number,
while changing the organism text identifier (Additional
file 6). The best fit models of amino acid replacement
for the Gblock edited alignments were determined using
ProtTest [91, 92]. Maximum likelihood gene trees were
then assembled using the phylogenetic software Phyml
[93] and the best model of amino acid substitution ac-
cording to the ProtTest results (Additional file 2).

Results
Transcriptome
Quality filtering of the reads was performed before as-
sembly by applying default parameters using methods

Table 2 Circadian clock gene acronyms, names, and function

Abbreviation Gene name Clock function (See Fig. 1) Reference

CkIα casein kinase Iα paralog of dbt Fig. 4b

CkIIα casein kinase IIα promotes nuclear localization of PER-DBT-TIM via phosphorylation of TIM [25–27]

Clk Clock transcription factor promoting transcription of per, tim, cry2, vri, PDP1, cwo [25–27, 118]

Cul3 Cullin 3 ubiquitinates TIM leading to its degradation [30]

cwo clockwork orange acts synergisticly with PER to inhibit CLK-mediated gene activation [25, 119, 120]

cry cryptochrome 1, cry1, dcry photoreceptor; complexes with SGG & TIM to mediate light-input pathway into the clock [25, 26]

cry2 cryptochrome 2, mcry transcription regulator of Clk & cyc in insects other than Drosophila [25, 27]

cyc cycle transcription factor promoting transcription of per, tim, cry2, Pdp1, vri [25–27]

dbt doubltime = dco, discs
overgrown

major regulator of PER & CLK through phosphorylation [25–27, 31]

jet jetlag promotes light-induced proteosomal degradation of TIM & CRY1 [27, 33, 121]

kayα kayakα Inhibits VRI suppression of Clk promoter; represses CLK activity [127]

nmo nemo phosphorylates PER, enhances action of DBT; phosphorylates CLK [25, 29, 31, 123]

Pdp1 PAR-domain protein 1 Likely in combination with VRI enhances Clk transcription and clk mRNA amplitude [25–27, 118]

per period negative transcription regulator of Clk & cyc transcription after transport to nucleus as
phosphorylated PER-TIM-DBT complex

[25, 27]

phr6-4 (6–4)-photolyase paralog of cry1 & cry2 [17], Fig. 3

PP2A-B’ protein phosphatase 2A,
regulatory B subunit

regulates phosphorylation of PER; counter-balances PER & TIM phosphorylation by DBT [25–27, 31]

sgg shaggy phosphorylates TIM, in concert with CRY1 & light; regulates PER phosphorylation-
dephosphorylation; promotes PER nuclear localization

[25–27, 31]

slimb supernumerary limbs phosphorylates PER & TIM, leading to their degradation [25–27, 124]

tim timeless binds to & facilitates transport of heterodimeric PER into the nucleus; interacts with JET,
SGG & CRY to regulate the input of light; increases CKIIα phosphorylation of PER

[25, 125]

tim2 timeout paralog of TIM; necessary for laval survivorshiop; promotes chromosomal stability;
enhancs photoreception.

[122, 126]

vri vrille transcription inhibitor of Clk [25–27, 118]
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described by Vera et al. [94]. The assembly was per-
formed on 1,081,284 quality-controlled reads summing
up 94 % of raw sequence data (432,542,060 bases), after
trimming of adaptor sequences (Table 3). Newbler
aligned 92 % and assembled 87 % of quality-controlled
reads, resulting in 25,904 contigs with lengths >50 bases,
14,459 contigs with lengths >500 bases, and 54,418 sin-
gletons (Table 3). The N50 for contig length >500 bases
was 1373 bp. The Newbler assembler considers alterna-
tive splicing that resulted in the integration of contigs
into 21,233 isotigs representing candidate transcripts.
The N50 for isotigs was 1953 bp and the average size for
isotigs was 1515 bp long (Table 3).
Assembly quality was tested by retrieving BLASTx hits

against the Drosophila orthologs in the CEGMA core
eukaryotic genes dataset [95] (Additional file 7). The
contigs alone represent 493 of 523 genes known to exist
as single copies, indicating that the transcriptome is
>94 % complete.
From the total number of contigs and singletons, a

significant BLASTx match was obtained for 13,470
(52 %) and 15,048 (28 %) of transcripts respectively
(Additional file 8). This result implies that between 48 %
(contigs) and 72 % (singletons) of the sequences do not
show homology to any other sequence present in the in-
vestigated databases. However, among the 47,837 or-
phan transcripts, 33,183 have identifiable functional
protein domains plus an additional 7486 have detectable

open reading frames, indicating that they represent
protein-coding genes as well as non-coding transcripts.
Gene Ontology (GO) terms were assigned to 10 % of

singletons and 42 % of contigs; overall 11,342 se-
quences were mapped. Finally, orthoMCL [96] and
OrthoDB [97] analyses of gene orthology revealed that
12,653 contigs and 11,787 singletons show orthology
to one or more organisms in the two gene-orthology
databases (Additional file 8).

Defining orthologous groups
The Wyeomyia smithii transcriptome included all 17
circadian clock genes we sought to identify (Fig. 1).
The clock genes were represented by 15 contigs and
two singletons, ranging from 450 to 3000 nucleotides
(Table 4). As expected, cry2 is absent in D. melanoga-
ster and both tim and cry1 are absent in Nasonia vitri-
pennis [17, 25, 27, 98, 99]. The local BLAST (tblastx)
of each Aedes aegypti ortholog against the W. smithii
transcriptome identified a single best contig or single-
ton to represent 11 of the clock genes. Six other clock
genes belonged to broader gene families and required
additional analysis.
Clk vs. cyc: Drosophila melanogaster Clk and cyc are

represented in two different EOG7 orthologous groups.
Local BLASTS of the A. aegypti orthologs of Clk
(AAEL012562) and cyc (AAEL002049) against the W.
smithii transcriptome identified a W. smithii singleton

0.3CP017734

CP018859

DP210824

CP015481

AG004261

CP009455

WSc07972

DP208079

AG008651

NV006626

AG001958

FB0016054

AE011967

AE001175

FB0025680

AE004146

AE002602

DP210113

WSc05165

WSc00499

phr6-4

cry2

cry1

Fig. 3 Assigning W. smithii orthologs to cry1, cry2, and phr6-4 (6–4 photolyase). The maximum likelihood tree identified a single W. smithii contig
(bold) within each of the three monophyletic clades in the tree. Gene number abbreviations: AE, Aedes aegypti; AG, Anopheles gambiae; CP, Culex
pipiens; DP, Danaus plexippus; FB, Drosophila melanogaster; NV, Nasonia vitripennis; WSc, W. smithii contigs
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(2GK8YT) and a W. smithii contig (Contig 17314), that
best represented clk and cyc, respectively (Table 4).
tim vs. tim2 (timeout): Drosophila melanogaster Clk

and cyc are represented in two different EOG7 ortholo-
gous groups. Local BLASTS of the A. aegypti orthologs
of tim (AAEL006411) and tim2 (AAEL009518) against
the W. smithii transcriptome identified two distinct W.
smithii contigs that distinguished tim (Contig 06527)
from tim2 (Contig 18589), respectively (Tables 4 and 5).
cry1 vs. cry2 vs. phr6-4: Protein sequences belonging

to the cryptochrome family were identified and com-
bined from the cry1, cry2, and phr6-4 orthologous
groups, EOG79SRM2 and EOG7P64PH. Local BLASTS
of the A. aegypti sequences from the two OrthoDB
groups against the W. smithii transcriptome identified
three W. smithii candidate contigs. After trimming the 5’
and 3’ UTRs, the contigs were Gblock edited, and, in com-
bination with the other six species, tested for the appro-
priate amino acid substitution model (see Methods). A
maximum likelihood tree rooted with phr6-4 [17, 98, 100]
separated sequences into three distinct clades representing
cry1, cry2, and phr6-4 (Fig. 3). The three W. smithii candi-
date contigs were each placed in a separate clade. We
therefore concluded that Contig 07972 is the ortholog of
cry1, Contig 05165 is the ortholog of cry2, and Contig
00499 is the ortholog of phr6-4.
dbt vs.Ck1α: The OrthoDB group for D. melanogaster

doubletime (EOG72CGPS) contained two gene families,
doubletime (discs overgrown) and Casein kinase 1α. A
gene tree was then assembled using the same protocols
described for the cryptochromes, above. When rooted
with the N. vitripennis sequence NV018300, the
remaining orthologs separated into two distinct clades
one including D. melanogaster dbt and W. smithii Con-
tig 08662, the other one including D. melanogaster Ck1α
and W. smithii Contig 08154 sequence (Fig. 4a). We
therefore concluded that Contig 08662 is the ortholog of
dbt and Contig 08154 is the ortholog of Ck1α.
PP2A-B’ vs. wdb: The OrthoDB group for the D. mela-

nogaster ortholog of PP2A-B’ (EOG7S57VZ) contained
two gene families, PP2A-B’ and widerborst. To

Fig. 4 Assigning W. smithii orthologs of (a) PP2A-B’ and widerborst
(wdb) and (b) Casein kinase 1α (Ck1α) and doubltime (dbt). In a, wdb
emerges as a clade within PP2A-B’ and the W. smithii Contig WSc04554
was assigned to PP2A-B’. In b, W. smithii Contigs WSc08154 and
WSc08862 (bold) were assigned to Ck1α and dbt, respectively. Gene
number abbreviations as in Fig. 3

Table 3 Sequencing results and assembly statistics

Sequencing results Total Aligned Assembled

Number of readsa 1,081,284 999,150 936,525

Number of bases 432,542,060 401,519,734 380,523,665

Assembly statistics Singletons Number of Contigs (Contigs >500 bp) Isotigs

Number of sequences 54,418 25,904 (14,459) 21,233

Number of bases 20,109,580 19,120,348 (16,952,075) 32,183,643

Average sequence size (bp) 355 738 (1,172) 1,515

Length of N50 sequence (bp)b 451 1,249 (1,373) 1,373
aAfter quality filtering steps and removal of outliers such as adaptor sequences and repeats
bN50 is a weighted median statistic, such that 50% of all bases are contained in sequences ≥N50 length
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distinguish these genes in W. smithii, the three A. aegypti
sequences in the same OrthoDB group, were aligned lo-
cally against the W. smithii transcriptome using BLAST.
A gene tree was assembled using the same protocols de-
scribed for cry2 showing that the widerborst gene family
occupied its own monophyletic clade within the PP2A-B’
gene tree (Fig. 4b). The wdb clade included W. smithii
Contig 13912. A separate branch included D. melanoga-
ster PP2A-B’ and W. smithii Contig 04554. We therefore
concluded that Contig 13912 is the ortholog of wdb, and
Contig 04554 the ortholog of PP2A-B’.

Evolutionary divergence
Divergence of W. smithii genes involved in the circadian
clock was determined from relative, cumulative branch

lengths from other taxa (Table 4) using maximum likeli-
hood for phylogenetic inference. Among the 17 circadian
genes (Fig. 1) ProtTest returned six different best-fit
models for amino acid substitution for nine TTFL genes
and five different models for eight PTM genes (Table 4).
The frequency of different models did not differ between
the two categories of genes (two-sided Fisher’s exact test
P = 1.000).
A distance matrix (Additional file 1) was generated for

each maximum likelihood gene tree, showing the relative
branch lengths between each organism for each particu-
lar protein. In order to measure rates of evolution for W.
smithii’s clock proteins relative to the other organisms in
each gene family, relative rate for each clock protein was
calculated from the distance matrices:

Table 4 Circadian clock genes, their role in the clock, properties of their Wyeomyia smithii transcripts and their relationship to
homologs in Drosophila melangaster and Aedes aegypti

Genea Transcriptb A. aegypti AAEL- c E-valued ProtTest Model FBgn- Ortho DB EOG7-e Nucleo- tides Relative Rate

CkIIα 15735 012094 0 Dayhoff+G+F 0264492 4RCF1 451 0.102

Clk 2GK8YT 012562 0 JTT+G+F 0023076 NSNR1 1,865 0.679

cry2 05165 002602 4E-173 LG+G — P64PH 634 0.298

Cul3 07535 006291 007187 0 LG+G 0261268 TN9FJ 1,771 0.348

cwo 15437 010513 0 LG+G+F 0259938 XDP58 2,313 1.792

cyc 17314 002049 7 E-86 JTT+G 0023094 7TBTD 851 0.390

dbt 08662 002226 1E-144 JTT+G 0002413 2CGPS 527 0.866

jet 03197 012126 1 E-93 LG+G+F 0031652 NSNRX 1,004 1.572

kayα 13013 008953 8 E-145 LG+G+F 0001297 06BFN 1,162 1.625

nmo 17870 004797 0 JTT+G 0011817 JF2MQ 2,130 0.254

Pdp1 02480 005255 8 E-145 LG+I 0016694 2RZNP 3,083 0.602

per 1A331S 008141 1 E-76 JTT+G 0003068 MHBMZ 2,670 1.500

PP2A-B' 04554 014031 0 LG+G 0042693 S57VZ 721 0.463

sgg 17080 005238 0 Dayhoff + G 0003371 D2S3R 2641 0.455

slimb 03120 003371 0 JTT+G 0023423 WHV0D 2,355 0.559

tim 06527 006411 1 E-61 JTT+G+F 0014396 DG81S 2,752 0.793

vri 08372 011371 7 E-133 JTT+I+G+F 0173452 HXQF6 2,465 1.234
aBold font, TTFL; regular font, PTM
bContigs in Roman; singletons in italics, omitting the prefix F5BTJ3O0-
cAedes aegypti BLAST to W. smithii transcriptome
dE-values from reciprocal BLAST of contig or singleton to A. aegypti
eRooted at most-recent common ancestor of Hymenoptera & Diptera

Table 5 Genes closely related to clock genes or in the same gene familya

Related gene W. smithii Contig A. aegypti AAEL- E-value Clock gene FBgn Ortho DB EOG7- Nucleotides

CkIα 08154 007662 0 dco 0015024 2CGPS 483

cry1 07972 004146 0 cry2, phr6-4 0025680 9SRM2 1,228

phr6-4 00499 001175 0 cry1, cry2 0016054 P64PH 1,134

tgo 06945 010343 0 cyc 0264075 Q2ZVC 940

tim2 18589 009518 7 E-45 tim 0038118 2RZMT 589

wbt 13912 003015 008194 1 E-165 PP2A-B' 0027492 S57VZ 4,552
aColumn headings as in Table 4
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Relative rate = (Average branch length for W. smithii
across all taxa for an individual gene) ÷ (average branch
length for all seven taxa across all genes). For a given
protein, when this ratio is greater than 1.0, it indicates
that the protein is evolving faster in W. smithii relative
to other organisms; when this ratio less than 1.0, it indi-
cates that the protein is evolving more slowly in W.
smithii relative to other organisms.
Relative divergence of W. smithii TTFL genes did not dif-

fer from 1.0 but divergence of PTM genes was significantly
less than 1.0 (Table 6). However, relative divergence of
TTFL and PTM genes did not differ significantly from each
other (Fig. 5a). There was a marginally non-significant
negative correlation between relative rate of combined gene
divergence and number of nucleotides in their respective
contigs or singletons (Fig. 5b). To account for the possibility
of Type II error, ANCOVA of core vs. PTM genes with
number of nucleotides as the covariate revealed no signifi-
cant treatment effect (t = 0.621, P = 0.545) and ANOVA of
the residuals from regression of divergence on number of
nucleotides also revealed no significant difference between
core and PTM genes (Fig. 5c).

Discussion
Using the “black sheep” counting technique of universal,
single copy genes to determine the completeness of the
Wyeomyia smithii transcriptome, we estimated that the
W. smithii transcriptome encompasses >94 % of its tran-
scribed genome. This result is not surprising since we
used as the basis for the transcriptome both developing
and diapausing larvae, pupae, and adults sampled at dif-
ferent times of the day and night and under long and
short days (Table 1). In fact, the W. smithii transcriptome
includes all of the 17 circadian clock genes we sought to
identify (Fig. 1); its contigs and singletons translate into
peptides of sufficient length to estimate comparative rates
of evolution of both TTFL and PTM genes between the
W. smithii and the six comparison taxa.
Even if historical directional selection on the circadian

clock has occurred among populations dispersing along
a latitudinal gradient, stabilizing selection at any locality
along that gradient is still important in maintaining daily
time-keeping in concert with a 24-h world. Concordance
between the circadian clock and the external 24-h world

is an important component of fitness in organisms from
prokaryotes to mammals [6, 7, 10], including W. smithii
[101]. The motivation for our study was to compare the
relative rates of evolutionary divergence of TTFL and
PTM genes between a northern population of W. smithii
that has experienced a continual northward dispersal
into temperate regions of progressively longer summer
day lengths, with both closely related mosquitoes and
more distantly related insects, including Drosophila mel-
anogaster, Danaus plexippus, and Nasonia vitripennis
(Fig. 6). Overall, we found that W. smithii clock genes
are not evolving faster than expected from other insects
(Table 6) and the rate of evolution of TTFL genes does
not differ from PTM genes (Fig. 5).
The best models for amino acid substitution do not

differ between TTFL and PTM genes, although six dif-
ferent models provided the best fit within TTFL genes
and five different models within PTM genes, (Table 4).
Clearly, neither the TTFL nor the PTM proteins represent
a uniform group in terms of their evolution. Conse-
quently, no single substitution model would be appropri-
ate for phylogenetic inference of circadian clock genes
within either functional group or within the two groups
combined. There is, however, greater retention of PTM
than TTFL genes among the six insect taxa we considered.
cry2 is dispensable in Drosophila (although present in
lower Diptera) and tim and cry1 are dispensable in Hy-
menoptera [17, 25, 27, 98, 99]. By contrast, all eight of
the PTM genes are conserved in all six taxa. This obser-
vation indicates that natural selection within and be-
tween orders of insects has acted to conserve PTM
genes more than TTFL genes.
What importance then are the TTFL genes? To be

a functional time-keeper of overt circadian expression,
the circadian clockworks cannot work in isolation but
must communicate circadian time to downstream
clock-controlled genes. “Much is known about how in-
formation is relayed to the Drosophila [melanogaster]
clock and how the central clock itself functions, but less is
understood about how information from the clock is
relayed to the rest of the organism” ([102], p. 352) [103,
104]. Since all of the TTFL genes are transcription fac-
tors or transcription regulators of gene expression, it is
not surprising that the TTFL genes likely provide this
communication to clock-controlled behavioral and
physiological processes [37, 104–114]. The TTFL genes
provide a cyclical expression of genes and a pleiotropic,
time-specific signal to the rest of the organism; the
PTMs maintain this cycle with a period of about 24 h. It
is the genetic co-adaptation, i.e., the co-evolution within
and between these functional groups that enables different
organisms to maintain biochemical, physiological, and
behavioral activities in concert with the external daily
environment.

Table 6 Relative divergence of W. smithii TTFL and PTM clock
genes from other insects

Categorya Mean StErr t df P = 1.0b

TTFL & PTM combined 0.8 0.13 1.55 16 0.14

TTFL only 0.99 0.2 0.49 8 0.96

PTM only 0.58 0.16 2.6 7 0.04
aTTFL, transcription-translation feedback loops; PTM:
post-translational modifiers
bProbability Mean differs from 1.0
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Conclusion
We report the first genome or transcriptome of any mem-
ber of the mosquito tribe Sabethini (subfamily Culicinae).
This transcriptome serves as a point of departure for an-
notating a future scaffolding genome of W. smithii. As an
application of the transcriptome, we compared rates of

Nasonia
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Drosophila

Anopheles
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Aedes

Wyeomyia

Culicidae

Time (100 MYA)
01234

Fig. 6 Phylogenetic relationships of insects used in this study. The
nodes indicate approximate time since the most recent common
ancestor of a given branch. Orders and families (top) based on [128];
genera within the family Culicidae (bottom) based on [129]
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Fig. 5 Rates of amino acid divergence in circadian clock genes of
Wyeomyia smithii relative to other insects (Table 4). a Relative rates (±2SE)
of divergence in the core transcription-translation feedback loop (TTFL)
and of post-transcriptional modifiers (PTM). b relationship between
relative rates of amino acid divergence and the number of nucleotides
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evolutionary divergence of W. smithii circadian clock
genes from six other insect taxa. We found no significant
difference in rates of evolutionary divergence between
genes involved in the central transcription-translation
feedback loop and genes involved in post-translational
modifiers. All of the species we considered exhibit circa-
dian rhythmicity under constant conditions and include
all the PTM genes in Fig. 1. By contrast, the representa-
tion of TTFL genes varies among taxa, including sub-
orders of Diptera. This contrast means that there has to
be genetic coadaptation both within the TTFLs to main-
tain a rhythmic circadian output and between the TTFL
and their PTMs to maintain that rhythmic output with a
period of about 24 h in concert with the 24-h variation in
the external environment.
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