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Methylation analysis is a new powerful tool for the classifi-
cation of brain tumors. Capper et  al. classified glioblastoma 
(GBM) into K27, G34, RTK I, RTK II, RTK III (pediatric tumors), 
MYCN (enriched with MYCN amplification), mesenchymal, 
and midline (sharing epigenetic similarities with H3K27M but 
lacking this mutation). Here, we illustrate MGMT methyla-
tion distribution among each of the before mentioned meth-
ylation subclasses of GBM. We observe that most MYCN and 
RTKIII cases, as well as H3K27M midline gliomas, lack MGMT 
promoter methylation. More tumors were methylated within 
RTKI, RTKII, G34, and MID subgroups, whereas more tumors 
were unmethylated within the MES subgroup.

Capper et  al.1 provided a comprehensive classification of 
central nervous system tumors based on DNA methylation that 
demonstrated substantial diagnostic precision over pathologic 
evaluations alone. Methylation profiling also allows for deter-
mination of the methylation status of the O6-methylguanine 
DNA methyltransferase (MGMT) gene promoter that has been 
demonstrated to be prognostic and predictive of response to 
temozolomide in patients with glioblastoma (GBM).2 Here, we 
illustrate MGMT methylation distribution among the methyla-
tion subclasses of GBM described by Capper et al.

The Cancer Genome Atlas (TCGA) generated detailed in-
formation on the genomic and epigenomic alterations leading to 
gliomagenesis.3 At the DNA level, the most common alterations 
involve the receptor tyrosine kinase pathway (eg, amplification 
of EGFR), phosphatidylinositol 3-kinase pathway (eg, deletion 
of PTEN), cell cycle pathway (eg, mutations in CDKN2A/B), p53 
pathway, and telomere length maintaining pathways (eg, TERT 
promoter mutations). Unsupervised hierarchical clustering of 
gene expression data from the TCGA network recognized 4 dis-
tinct molecular GBM subtypes: proneural, neural, classical, and 
mesenchymal.4 This was later specified to proneural, classical, 

and mesenchymal in IDHwt GBM.5 The proneural subtype was 
characterized by abnormalities in IDH or PDGFR, whereas the 
classical and mesenchymal subtypes were characterized by 
EGFR and NF1 mutations, respectively. At the level of gene ex-
pression, MGMT promoter methylation was not characteristic of 
any of the 4 subgroups described above.4

DNA microarray techniques have been applied to study 
the GBM methylome using probes targeting many of the 
known CpG sites. The initial study described the Glioma-
CpG Island Methylator Phenotype and found this to be 
tightly linked to IDH1 mutations and the proneural sub-
type and to predict a better prognosis.6 Additionally, DNA 
methylation clusters 2 and 3 correlated with the classical 
and mesenchymal gene expression groups, respectively. 
A  later study integrated epigenetic, genetic, and expres-
sion analyses and established 5 epigenetic subgroups of 
IDHwt gliomas: 2 with H3F3A mutations (K27 and G34), RTK 
I  (enriched with PDGFR amplification/proneural expres-
sion), RTK II (enriched with EGFR amplification/classical 
expression), and mesenchymal (low copy number varia-
tions).7 Subsequently, a large study of 606 GBM patients 
from the TCGA cohort grouped IDHwt GBM into 3 methyl-
ation clusters: LGm4 (equivalent to RTK II), LGm5 (equiva-
lent to mesenchymal), and LGm6 (enriched with H3K27M 
and pilocytic features).8 Finally, Capper et  al.1 classified 
GBM into K27, G34, RTK I, RTK II, RTK III (pediatric tumors), 
MYCN (enriched with MYCN amplification), mesenchymal, 
and midline (sharing epigenetic similarities with H3K27M 
but lacking this mutation). Reifenberger et  al.9 reported 
MGMT promoter methylation percentage for each of the 
methylation subgroups described by Ceccarelli et al.8

Methylation array data used in this study were utilized as the 
reference cohort for GBM and H3K27M brain tumor classes in 
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the work of Capper et al.1 IDAT files were downloaded from 
the National Center for Biotechnology Information Gene 
Expression Omnibus data repository, accession GSE90496. 
IDAT files were preprocessed and batch adjusted following 
methods described by Capper et  al.1 MGMT promoter 
methylation was performed utilizing the MNPpredict_
MGMT function from the mnp.v11b4 Classifier R package. 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
analysis was performed using the R package Rtsne v0.15 
(cran.r-project.org/web/packages/Rtsne). The following non-
default parameters were utilized: perplexity = 20, theta = 0, 
eta  =  100, exaggeration_factor  =  20, num_threads  =  2. To 
maintain reproducibility set.seed(1) was used. All analyses 
were performed with R-3.6.3.

Overall, 182/347 (52.4%) of GBM cases had methylated 
MGMT promoter, but only 2/78 (2.6%) of H3K27M mid-
line gliomas had methylated MGMT promoter. Among 
the GBM subclasses, MGMT promoter methylation was 
present in GBM_G34: 29/41 (70.7%); GBM_MES: 24/56 
(40.7%); GBM_MID 10/14 (71.4%); GBM_MYCN 1/16 (6.3%); 
GBM_RTK_I: 35/64 (54.7%); GBM_RTK_II: 82/143 (57.3%); 
GBM_RTK_III: 1/13 (7.7%).

We observe that most MYCN and RTKIII classes lack 
MGMT promoter methylation. Similarly, most H3K27M 
midline gliomas are MGMT promoter unmethylated as de-
scribed previously.10 More tumors were methylated within 
RTKI, RTKII, G34, and MID subgroups, whereas more tu-
mors were unmethylated within the MES subgroup. 
However, no clear clustering based on MGMT promoter 
methylation status was observed as illustrated in Figure 1.
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Figure 1.  (A) Clustering of glioblastoma samples (n = 425) using t-SNE dimensionality reduction. Individual samples are color-coded by respective 
class color. (B) Glioblastoma samples colored by MGMT methylation status and labeled by class abbreviation.
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