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Abstract

Background: Information on protein-protein interactions affected by mutations is very useful for understanding the
biological effect of mutations and for developing treatments targeting the interactions. In this study, we developed
a natural language processing (NLP) based machine learning approach for extracting such information from literature.
Our aim is to identify journal abstracts or paragraphs in full-text articles that contain at least one occurrence of a
protein-protein interaction (PPI) affected by a mutation.

Results: Our system makes use of latest NLP methods with a large number of engineered features including some
based on pre-trained word embedding. Our final model achieved satisfactory performance in the Document Triage
Task of the BioCreative VI Precision Medicine Track with highest recall and comparable F1-score.

Conclusions: The performance of our method indicates that it is ideally suited for being combined with manual
annotations. Our machine learning framework and engineered features will also be very helpful for other researchers to
further improve this and other related biological text mining tasks using either traditional machine learning or deep
learning based methods.

Keywords: Protein-protein interactions, Mutations, Text mining, Biomedical literature retrieval, Protein interactions
affected by mutations

Background
Each cell of an organism contains a network of chemical
reactions involving various types of molecules. The most
important molecules within these networks are proteins
which play a variety of roles within the cell: enzymes
that catalyze chemical reactions, messengers to transmit
signals to other cells, carriers of atoms and molecules
within and between cells, and other roles some of which
may still be unknown. Proteins rarely act alone, and they
interact with one another or with other biomolecules in
complex biological systems within the processes of life.

There is a growing interest in seeking specific protein-
protein interactions (PPIs) as drug targets, and though this
presents a challenge previously considered insurmount-
able, there have already been some successes [1, 2]. Dis-
ruptions of PPIs by mutations can have severe impact on
health, leading to cancer, degenerative diseases, and other
serious illnesses. There is a rapidly growing body of litera-
ture documenting the mutations that can affect protein-
protein interactions [3–6]. However, such information has
been scattered in the literature as raw text.
A searchable database of information on protein-

protein interactions affected by mutations (abbreviated
as PPIAM in this paper) would be of great benefit to
researchers for developing drugs targeting at PPIs,
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identifying novel biomarkers for a disease, and investi-
gating other topics of potential relevance to precision
medicine. Such information can also be very useful in
automatic knowledge discovery [7] and integrative ana-
lysis of high-throughput genomics data [8–11]. However,
reading and curating the information from literature
manually to build the database would be very time and
resource consuming. Computational methods to extract
such information automatically or filter out irrelevant
texts to assist manual annotations would be very helpful
for building the database. The successful development of
such systems could have an immediate impact to bio-
medical research.
A considerable number of computational methods

have been developed to address a similar problem -
extracting PPI information from literature [12–29].
These methods approached and addressed the problem
using various techniques ranging from relatively simple
co-occurrence, to rule-based pattern matching, to ma-
chine learning and deep learning based methods, which
can be further enhanced by sophisticated natural language
processing (NLP) techniques. However, these methods are
not yet powerful enough to replace human experts in
directly extracting protein-protein interactions from text.
The added challenge of extracting PPIAM makes the
problem substantially more difficult.
In 2004, BioCreative was initiated as an international,

community-wide effort for evaluating text mining and
information extraction methods applied to the biological
and biochemical domains. BioCreative focuses on devel-
oping common standards and benchmark datasets for
evaluating biological text mining systems. Friendly com-
petitions are held among researchers developing systems
to tackle well-defined problems. The systems are then
evaluated based on gold standard datasets compiled and
annotated by experts.
Triage for biological articles or abstracts has received

considerable attention [30–39]. The problem of building
models to triage abstracts containing at least one men-
tion of a protein-protein interaction was addressed in
the BioCreative II challenge in 2007 [40]. The most suc-
cessful models employed SVM (support vector machine)
classifiers with n-gram features and NLP preprocessing
techniques such as stemming, part of speech tagging,
and shallow parsing. This problem continued to be
addressed in subsequent challenges, with a system devel-
oped by S. Kim and W.J. Wilbur for the BioCreative III
challenge in 2011 forming the basis for the previously
mentioned tool, PIE the search [41–43]. This system ex-
tracts gene names from articles, identifies MeSH terms,
performs dependency parsing in addition to stemming
and part of speech tagging, and feeds a collection of gen-
erated features to a support vector machine classifier
with Huber loss. Since then, much work has been done

on extracting protein-protein interactions from bio-
logical text, though no system is yet strong enough to
outperform human curators.
The precision medicine track of the Biocreative VI

challenge held in 2017 consisted of two tasks related to
the automatic identification of descriptions of PPIAM in
biomedical texts. For the first task, participants were
asked to build systems capable of identifying if an ab-
stract/paragraph contains at least one mention of a PPIA
M. For the more challenging second task, participants
were asked to develop systems capable of directly
extracting mentions of PPIAM from biomedical texts.
This study describes our work on the first task of preci-
sion medicine track of the BioCreative VI.

Results
The competition results are shown in Table 1. The base-
line model is the SVM classifier trained by the curators
discussed in Methods Section. We submitted our results
as team 433.
For the four other teams that outperformed the base-

line model, Team 421 from the Dalian University of
Technology employed a stacking ensemble of five indi-
vidual neural network models, Team 418 from the
National Technical University of Athens employed a
sophisticated neural network with a reusable sequence
encoder architecture, Team 374 from the University of
Aveiro employed a deep learning approach with combi-
nations of convolutional and LSTM networks, and only
Team 375 from The University of Melbourne applied
manual feature engineering and classical NLP techniques
as what our team did. When evaluated by F1 score,
Team 414 from Marmara University seems to have
benefited from the balance of class labels in the test data.

Table 1 Result of document triage task of the BioCreative VI
precision medicine track. Our team ID is 433. Our method
achieved highest recall and comparable F1 score among all the
methods better than the baseline model

Team Precision Recall F1 AvPr

421 0.6073 0.7997 0.6904 0.7253

418 0.6289 0.7656 0.6906 0.7185

374 0.6070 0.7898 0.6864 0.6929

375 0.5783 0.7713 0.6610 0.6822

433 0.5413 0.8835 0.6713 0.6632

Baseline 0.6122 0.6435 0.6274 0.6515

420 0.5438 0.8736 0.6703 0.6439

419 0.5992 0.6222 0.6105 0.6334

405 0.5484 0.5710 0.5595 0.5871

414 0.5022 0.9801 0.6641 0.5008

379 0.4649 0.3480 0.3981 0.4904
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It is likely that they submitted a run consisting of almost
all positive predictions [44].
After the competition, we fixed several bugs in our

feature engineering pipeline and investigated the impact
of adding features based on pre-trained word embed-
dings. It was our hypothesis that some of the superiority
of the neural network based approaches could be ex-
plained by using information from the word embed-
dings, which is a necessary component of modern deep
learning based NLP.
Post competition improvements are shown in Table 2.

Curiously, adding word embeddings did not improve
cross- validation results on the training set, but substan-
tially improved the results on the test set. It seems that
the word embeddings improved the model’s ability to
generalize. This is reasonable since the pre-trained word
embeddings contain information from a corpus, which is
larger than the data used in this competition by several
orders of magnitude.
Our final model’s average precision on the test set

would have been good enough to achieve the 3rd place
on the competition leaderboard, though a gap in the
performance still remains between our model and the
top two neural network based models.
Figure 1 illustrates how the precision, recall, and F1

score depend on the choice of cutoff p. Our choice of
0.35 for the cutoff was fortunate, being close to the opti-
mal value of 0.36. As pointed out in Method Section, the
naïve model that classifies all abstracts as relevant is
fairly competitive in terms of F1 score. This implies that
in a situation where we expect roughly as many relevant
abstracts as non-relevant ones, it is reasonable to manu-
ally review all abstracts. In real world situations where
non-relevant abstracts vastly outnumber relevant ones,
the triage systems developed for this competition would
be more useful.

Discussion
We developed a model for predicting whether an ab-
stract contains at least one mention of a protein-protein
interaction affected by a mutation (PPIAM) for Docu-
ment Triage Task of the BioCreative VI Precision
Medicine Track. This was done using classical NLP
techniques without the use of modern deep learning
approaches. Our final model achieved satisfactory

performance with highest recall and comparable F1-
score among those models better than the baseline.
Our method uses NLP techniques such as dependency

parsing, TF-IDF word embedding, and XGBoost with
manually engineered features. Deep learning models
were used by some other teams as discussed in Re-
sult Section, but they are not better than our model in
all metrics. Our method has the highest Recall, and
comparable F1 score. We used a simpler model, which is
more efficient in computation. XGBoost is generally
more interpretable than deep learning models. In real
world cases when high recall is desired or computation
resource is limited, our method would show advantage
over other methods. One real world use case is to assist
manual annotation of documents, for which higher recall
from the predictive model is usually desired. In such ap-
plications, one would group all instances of the same
interaction together and annotate first those cases with
highest predicted probabilities of being true. With this
strategy, once an instance is validated, the other in-
stances of the same interaction, for which a model has
less confidences, do not need to be annotated. This will
effectively improve the precision and overall F1 of the
model being used.

Conclusion
The performance of our NLP based machine learning
model makes it an ideal method for being combined
with manual annotations in extracting PPIAM from lit-
erature. Our machine learning framework and engi-
neered features will be very helpful for other researchers
to further improve their biological text mining tasks
using either traditional machine learning or deep learn-
ing based methods.

Methods
Data and evaluation
Training and test datasets were constructed by five pro-
fessional BioGRID PPI database [45] curators. For the
training set, 2852 abstracts were drawn from the IntAct
database which were already annotated for protein-
protein interactions and any mutations influencing them
[46]. Additional articles were selected using PIE the
search [43], a text mining tool for protein interactions,
to identify PubMed abstracts that likely contain protein-
protein interactions. tmVar was then applied to identify
mentions of mutations [47]. Roughly 1200 abstracts were
selected and then manually reviewed and annotated by
the curators. A total of 4082 PubMed abstracts were in-
cluded in the training corpus with 1729 of them labeled
as containing at least one PPIAM (positive) and 2353 of
them labeled as negative. No previously annotated arti-
cles were included in the test corpus. All abstracts were
selected using text mining tools and manually reviewed

Table 2 Post-competition improvement of our method. +w2v
is the revised method with word2vec embedding

Model Validation Precision Recall F1 AvPr

Original 10f CV (Train) 0.6253 0.8208 0.7098 0.7148

Original Test 0.5823 0.8096 0.6774 0.6785

+w2v 10f CV (Train) 0.6264 0.8150 0.7084 0.7138

+w2v Test 0.5651 0.8509 0.6791 0.6962
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by the curators. The test corpus consisted of 1427 ab-
stracts with 704 being assigned a positive label and 723
being assigned a negative label. In the following, we will
call abstracts assigned a positive label relevant and ab-
stracts assigned a negative label not relevant or irrele-
vant. More details on the procedures used to build these
corpora can be found in the BioCreative VI precision
medicine track paper [48].
The participating teams were given the annotated train-

ing dataset and tasked with building models to identify
whether a PubMed abstract mentions at least one PPIAM
using information from the title and body text. Participating
teams were encouraged to build models that can generate
confidence scores by estimating the probability that a given
paragraph of text contains a PPIAM. An unlabeled copy of
the test corpus was provided to each participating team
near the end of the competition and teams submitted the
predicted labels and confidence scores computed by apply-
ing their models on this corpus. Teams were permitted to
submit three sets of predictions. The model was trained
through 10-fold cross-validation on the training data for
hyperparameter tuning. We then fit the model using all the
training data and making predictions on the test data. Sev-
eral standard metrics applicable to information retrieval
problems including precision, recall, F1 score, and average
precision were used. The curators constructed a baseline
linear support vector machine (SVM) classifier that made
use of unigram and bigram features [49, 50].
Precision, recall, and F1 score are all based on compar-

ing the true labels to the predicted labels in the evalu-
ation set, while average precision is based upon

comparing the true labels to the numerical confidence
scores. Precision is given by the number of true positives
divided by the number of abstracts predicted to be rele-
vant by the model. It measures the quality of positive
predictions. Recall is defined as dividing the number of
true positives by the number of relevant abstracts in the
evaluation set. It measures the sensitivity of the model.

precision ¼ true positives
true positivesþ false positives

recall ¼ true positives
true positivesþ false negatives

F1 score is given by the harmonic mean of precision
and recall, which aims to balance the tradeoff between
the two metrics.

F1 ¼ 2
1

precision
þ 1
recall

Given a set of confidence scores predicted on an
evaluation set, one can compute predicted labels in mul-
tiple ways by choosing different probability cutoff, p. All
abstracts with predicted probability greater than p are
predicted as relevant and others are predicted as not
relevant. Average precision (AvPr) is a cutoff-independent
metric given by the area under the precision-recall curve
[51]. It is similar to the ROC-AUC (the area under the
precision-recall curve) metric, and is often used for
information retrieval because it is considered to be a

Fig. 1 Plot of precision, recall and F1 score versus cutoff value
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more informative metric for data with imbalanced
class distribution [52].
In real applications, a large imbalance in class distribu-

tion should exist for this triage problem: there should be
much fewer relevant abstracts than non-relevant ones.
In the corpora used in the competition, this is not the
case. Having balanced class distribution in the test cor-
pus has implications for the metrics used in the compe-
tition. A model that simply classifies all abstracts as
relevant has a better F1 score than the baseline SVM
model [53]. However, when judging by average preci-
sion, the SVM model is clearly superior. None of the
models submitted in the competition achieved an F1
score dramatically larger than the “naïve” all relevant
classifier.
The baseline results show that there are difficulties in

generalizing from the IntAct data to the data manually
reviewed by the curators. This can be seen in Table 3,
which is taken from the precision medicine track corpus
paper [53]. Training and evaluating on abstracts drawn
from IntAct gives much better performance compared
to training on the IntAct abstracts and evaluating on the
remaining abstracts. For our own model, we observed
that cross-validation on the dataset featuring a mixture
of IntAct and manually reviewed abstracts yielded better
results than those seen by training on IntAct and valid-
ating on the test data. We found that this difficulty in
generalization was somewhat mitigated by the inclusion
of features from pre-trained word embeddings.

Modeling process
In an initial preprocessing step, the abstracts were toke-
nized into sentences and words. Then key terms were
identified, and important sentences were then extracted
based on the presence of the key terms. These sentences
were then dependency parsed. A protein-protein extraction
system previously developed was then applied based on
features extracted during the previous steps [28, 54, 55].
Finally, features were extracted from preceding steps in the
pipeline and were used as input for training an XGBoost
classifier [56]. A broad outline of the system is illustrated in
Fig. 2. We now explain each of the steps in more detail.

Preprocessing
The NLTK python package was used for tokenization
[57]. Sentence tokenization was accomplished using
NLTK’s implementation of the Punkt tokenizer custom
trained on all abstracts in the training data [58]. This
was done because the default sentence tokenizer had dif-
ficulty in identifying abbreviations not commonly found
in ordinary English text. Word tokenization was per-
formed with NLTK’s default method.

Identification of key terms
Protein mentions, interaction words, and mutation-related
words were identified with a simple keyword search. A list
of protein names was taken from the UniProt Swiss-Prot
database [59]. We implemented a text search algorithm to
identify protein mentions based on a simple trie search
[60]. Appositive statements such as “Tubulin folding cofac-
tor A (TFCA), which captures …” were simplified by re-
moving the duplicate mention (e.g., an acronym after its
full name). This instance would be changed to “Tubulin
folding cofactor A, which captures …” .
A dictionary of interaction words was taken from a

previous study. It was constructed based on the personal
knowledge of the authors and manual review of sen-
tences in the literature known to contain protein-protein
interactions [21]. This dictionary has been successfully
employed in similar applications [7, 28, 61–64].
We compiled a dictionary of mutation-related words

for this challenge using a combination of manual and
computational approach. For each term t, we calculated
its frequency f+(t) for the abstracts with the positive label
and compared it to the frequency f−(t) for the abstracts
with the negative label. Terms with a large value of
∣f+(t) − f−(t)∣ were manually reviewed and mutation re-
lated words were identified. During validation, terms not
included in a training fold were excluded when making
predictions on the corresponding test fold. This was
done to avoid a potential information leak. In addition,
terms based on the standard mutation nomenclature,
such as R117H, were identified using regular expressions
and included as mutation-related words [65].

Extraction of important sentences
Important sentences were identified for further atten-
tion. These included sentences containing at least two
protein mentions and an interaction word, and sentences
containing at least one protein mention and one muta-
tion related word. Two protein mentions and an inter-
action word in the same sentence are referred to as a
protein-protein interaction (PPI) triplet. A protein men-
tion and a mutation related word in the same sentence
are referred to as a protein-mutation pair.

Table 3 Baseline model performance on the BioCreative VI
precision medicine track corpus

Data Precision Recall F1 F1 all relevant AvPr

10f CV (IntAct) 0.7184 0.6321 0.6725 0.5507 0.7577

Validation (TM) 0.6210 0.6897 0.6536 0.6842 0.6551

10f CV (all data) 0.6891 0.6260 0.6561 0.5915 0.7225

AvPr: Average precision; 10f CV: 10-fold Cross-validation; TM: Text Mining set,
corpus of abstracts found with the aid of text mining methods
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Dependency parsing
Important sentences were then parsed using the Stan-
ford Fast Neural Network based Dependency Parser
[66]. Given a sentence, the parser constructs a directed
graph with terms from the sentence as nodes and gram-
matical relations between the terms as edges. To sim-
plify the parsing, protein names were replaced with the
single term identifiers such as PROT1, or PROT2.
Figure 3 gives an example of a parsed sentence.

PPI prediction
A model called GRGT (Grammatical Relationship Graph
for Triplets), which was previously developed was then
used to predict the probabilities of each PPI triplet in an
abstract being a true protein-protein interaction [67].
This model extracts features from the shortest paths be-
tween the key terms in a PPI triplet and from semantic
patterns proposed in an earlier work [21].

Features
Feature extraction was accomplished using the popular
Python library scikit-learn [68].

Unigrams and bigrams We began with classic uni-
gram and bigram features. For these, tokens were
stemmed and stop words were removed. To reduce
the dimension of the feature space, only the most fre-
quent unigrams and bigrams in the training corpus
were included, with the number of unigrams and
bigrams to use determined through cross-validation.
Unigrams and bigrams were TF-IDF vectorized, with
the value for each unigram or bigram feature in an
abstract equal to the term frequency-inverse docu-
ment frequency of the term in that abstract [69]. TF-
IDF gives a measure of the importance of a term
within a document. If t is a term and d a document
from a family of documents D, then

Fig. 2 Illustration of our method. In the “Feature Engineering” boxes, the major tools/algorithms used in each step are mentioned in
the parentheses

Fig. 3 An example of dependency parsing. The labeled arcs describe the dependency between two words
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TF − IDF t; d;Dð Þ ¼ TF t; dð ÞIDF t;Dð Þ
where

IDF t;Dð Þ ¼ log
N

d∈D : t∈df gk k
with N being the total number of documents in the data-
set and ‖{d ∈D : t ∈ d}‖ being the number of documents
in the dataset that contain term t. A term is more im-
portant to a document if it occurs many times in that
document, but its importance is penalized if it occurs
frequently in the entire dataset.

Frequencies of key terms Three additional features
were the numbers of protein mentions, interaction
words, and mutation words in an abstract divided by the
total number of tokens in the abstract. These are shallow
features that would not distinguish between the sen-
tences “PROT1 interacts with PROT2” and “PROT1
does not interact with PROT2”. Their utility derives
from statistical properties of the corpus rather than any
information about the meaning of the texts.

Shortest path counts in dependency parses The short-
est path between two terms in a dependency graph tends
to contain the important information describing their re-
lation [70]. Consider for instance the shortest (undir-
ected) path between PROT1 and PROT2 in Fig. 4.
It is reasonable that the length of the shortest path be-

tween two terms gives information about the strength of
their relationship.
For each PPI triplet, we found the shortest path be-

tween the two protein mentions and the shortest paths
between each protein mention and the corresponding
interaction word. For each protein-mutation pair, we
found the shortest path between the protein mention
and the mutation word.
Consider two terms, w1 and w2, within a sentence S.

Let sp(w1,w2) denote the shortest path between w1 and
w2, and Lsp(w1,w2) denote the length of the shortest
path between w1 and w2. Given a PPI triplet (p1, p2, iw)
within a sentence S, where p1 is the first protein mention
to appear in S, p2 the second protein mention to appear,
and iw the interaction word. We call sp(p1, p2), sp(p1,
iw), and sp(p2, iw) shortest paths of the first, second, and
third types, respectively. The path lengths Lsp(p1, p2),
Lsp(p1, iw), and Lsp(p2, iw) were then computed. These
path lengths could be features at the triplet level, but

there may be many triplets within the same abstract. To
generate features at the abstract level, we employed a
binning procedure. We construct bins for shortest path
lengths 1, 2, 3, 4, …, 10, and 11+. For each shortest path
type, we counted the number of shortest paths within an
abstract that fall into each bin. This gives a total of 33
additional features. The same procedure is employed for
shortest paths sp(p,mu), between the protein p and mu-
tation word mu in protein-mutation pairs.

PPI triplet predictions
For each PPI triplet in an abstract, we used the previ-
ously mentioned model to predict the probability of it
being a true protein-protein interaction. We employed a
similar binning procedure to generate abstract level fea-
tures from these predictions. Based on an examination
of the histogram of predicted probabilities for all triplets
in all the training set, we constructed the probability
bins [0, 0.3), [0.3, 0.5), [0.5, 0.7), and [0.7, 1.0]. For each
abstract, counts of the number of triplets with predicted
probability p falling into each bin were incorporated as
features.

Additional shortest path features

Unigrams and bigrams along shortest paths As
mentioned earlier, for each protein-mutation pair in an
abstract we generated a dependency parse for its con-
taining sentence and computed the shortest path in the
dependency graph between the protein mention and the
mutation-related word. Unigrams and bigrams along
these shortest paths were included as features, with the
direction of the path taken from the protein to the mu-
tation related word. For example, Fig. 5 shows the short-
est path between PROT1 and variant.
The unigrams along this path are binds, PROT2, and

fails. The bigrams are binds/PROT2 and PROT2/fails.
Abstract level features are then given by the unigrams
and bigrams along the shortest paths in all protein-
mutation pairs in an abstract. As before, these unigrams
and bigrams were TF-IDF vectorized. Stop words were
not removed. We believe that they may carry important
information within a shortest path.

Unigrams and bigrams of dependency relations Uni-
grams and bigrams of dependency relations along these
shortest paths are also included. In the example shown
in Fig. 5, the unigrams are nsubj, nmod, and conj, with
nsubj appearing twice. These were vectorized by count
instead of TF-IDF. Since most dependency relations
appear in a large majority of abstracts, the TF-IDF of
almost all dependency relation terms is equal to or very
near zero.

Fig. 4 The shortest path between PROT1 and PROT2 in the example
shown in Fig. 3 (they are shown as “Protein A” and “Protein B”
in Fig. 3)
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Frequencies of key terms
Frequencies of key terms along the shortest paths were
also included as features. We used the number of pro-
tein mentions in all shortest paths divided by the total
number of terms in all shortest paths, and similarly for
interaction words and mutation related words. Note that
we do not include the protein mention at the start nor
the mutation word at the end as members of a shortest
path.

Incorporating PPI probabilities
The terms in the shortest path between a protein and
mutation word should contain information that may
help decide if the mutation affects the protein. However,
it may not contain information about whether the ab-
stract describes an interaction containing that particular
protein. Information describing an interaction may be in
a different sentence. We attempted to capture such in-
formation with the following scheme.
Given a protein-mutation pair (Prot, mu) in an ab-

stract A , we identified all PPI triplets in A that contain
the protein Prot and found the highest probability p pre-
dicted by our PPI extraction algorithm among all such
triplets. If p > 0.5, we call (Prot, mu) a positive pair,
otherwise we call (Prot, mu) a negative pair.
All terms within the shortest paths corresponding to

positive pairs then had a nonsense string appended, and
the terms in the shortest paths corresponding to nega-
tive pairs had a different nonsense string attached so
that they could be distinguished. Unigram and bigram
features were then extracted for these augmented terms.
The same procedure was also carried out for unigrams
and bigrams of dependency relations. A new collection
of shortest path features was also calculated. It consists
of counts of positive pairs with path lengths in the bins
1, 2, 3, 4, …, 11+ and counts of negative pairs with path
lengths in the bins 1, 2, 3, 4, …, 11 + .

Word embeddings
Significant improvement was seen when incorporating
features based on pre-trained word embeddings. These
were added after the competition. Word embeddings are
generally dense, relatively low dimensional vector repre-
sentations of words. We used a collection of word em-
beddings trained by Pysallo et al. on what was at the
time a complete collection of PubMed abstracts and
PubMed Central articles [71]. These were trained using
the popular word2vec framework [72]. We built abstract
level features from the word embeddings by taking the

TF-IDF weighted average of all word embeddings in an
abstract after removing the stop words. We also used
the ordinary average of all word embeddings along the
shortest paths from all protein-mutation word pairs
within an abstract as features.

Models
In our initial experiments, we used the scikit-learn
implementations of the random forest and linear SVM
classifiers as baseline models [73, 74]. These were
chosen because their performance is not as sensitive to
the choice of hyperparameters as other commonly used
models. Random forest models are typically sufficient to
grow trees to maximum depth and ensemble as many
trees as possible. Decision tree methods have the added
benefit of not being sensitive to the scale of the features
[75]. The linear SVM has a single regularization param-
eter that determines the penalty given for misclassifica-
tion. We found that the effect of this parameter was
consistent across different feature sets and set it to the
default value in our experiments.
In our final model, we used a regularized gradient

boosted trees classifier from the popular XGBoost library
[56]. This is a powerful “off-the-shelf” model that has
been successful in many data science competition.
Hyperparameters were tuned using a grid search [76]. At
the time of the competition, hyperparameters were
chosen to optimize the ROC-AUC metric. For all the
work done after the competition, this was changed to
optimize the average precision.
Since gradient boosted trees do not tend to give accur-

ate probability estimates, we used Platt scaling to cali-
brate these values to accurate probabilities [76]. This
involved fitting a logistic regression to predict the class
labels from the probabilities predicted by the gradient
boosted trees model. This works because logistic regres-
sion predicts accurate probabilities by design. This prob-
ability calibration did not affect the competition metrics
but was useful for interpreting our system’s output. An
optimal cutoff value of 0.35 for the predicted probability
p was chosen through cross-validation.
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