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Opinions and Hypotheses

Lipid droplets are formed in 2-cell-like cells
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Abstract.  Embryonic stem (ES) cells, derived from the inner cell mass of a blastocyst, are believed to pluripotent 
cells and give rise to embryonic, but not extraembryonic, tissues. In mice, totipotent 2-cell stage embryo-like (2-cell-
like) cells, which are identified by reactivation of murine endogenous retrovirus with leucin transfer RNA primer 
(MuERV-L), arise at a very few frequencies in ES cell cultures. Here, we found that a lipid droplet forms during the 
transition from ES cells to 2-cell-like cells, and we propose that 2-cell-like cells utilize a unique energy storage and 
production pathway.
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Introduction

Embryonic stem (ES) cells are derived 
from the inner cell mass of blastocyst and 
maintained in a naïve state they are very 
similar in phenotype and function to the 
mouse preimplantation epiblast [1]. ES cells 
can self-renew indefinitely and give rise to 
all cell types of the body including germ 
cells. However, a small sub-population of ES 
cell cultures have 2-cell stage embryo-like 
(2-cell-like) features, including reactivation 
of murine endogenous retrovirus with leucin 
transfer RNA primer (MuERV-L) [2], greater 
histone mobility and dispersed chromocenters 
[3]. These “2-cell-like cells” have a transcrip-
tion profile and chromatin accessibility very 
similar to those of 2-cell stage embryos [4, 
5]. In addition, previous studies revealed that 
2-cell-like cells can be induced in culture by 
modulating the levels of chromatin assembly 
factor 1 (CAF-1) [3], the non-canonical 
polycomb repressive complex PRC1.6 [4, 
6], the transcription factor Dux [7, 8], the 
Dppa2/4 [9, 10], and the microRNA miR-34a 
[11]. Here, we discuss the mechanism of 

energy storage and production in 2-cell-like 
cells based on our new findings.

Lipid droplets and their possible 
function in 2-cell-like cells

First, we generated stable ES cell lines 
containing a tdTomato reporter under control 
of the MuERV-L long terminal repeat, as 
previously reported [2]. Analysis of several 
clones revealed 2-cell-like cells, identified by 
expression of tdTomato, lack of chromocen-
ters and OCT3/4 protein, and upregulation 
of “2-cell genes”, including Tcstv1, Tcstv3, 
Eif1a-like, and Gm6763 (data not shown). To 
characterize the organelle morphology of ES 
and 2-cell-like cells, we used electron mi-
croscopy to examine FACS-sorted tdTomato 
-positive and -negative cells. We found that 
lipid droplet (LD)-like organelles, resembling 
the LDs in 2-cell embryos, were formed in 
2-cell-like cells, but not in MuERV-L (–) ES 
cells (Fig. 1). Almost all LDs in oocytes can 
be visualized with the fluorescent neutral 
lipid dye BODIPY 493/503 [12]. We also 
detected LDs around the nuclei of 2-cell 

embryos on staining with BODIPY 493/503, 
as previously reported (Fig. 2A). As shown 
in Fig. 2B and C, 90% of MuERV-L (+) cells 
were stained by BODIPY 493/503, indicating 
that the MuERV-L (+) cells indeed contained 
cytoplasmic LDs .

Since 2-cell-like cells show decreased 
glycolytic competence and respiratory activity 
and lower levels of reactive oxygen species 
compared to ES cells, it has been suggested 
that a distinct metabolic state arises during 
the transition from ES cells to 2-cell like 
cells [13]. Given the decreased glycolytic 
and respiratory activity in 2-cell-like cells, 
it is reasonable to assume that the ATP levels 
might be lower in 2-cell-like cells than ES 
cells. However, no significant differences in 
ATP levels were found between 2-cell-like and 
ES cells [13]. Unlike early preimplantation 
embryos (up to 8-cell embryos), 2-cell-like 
cells cannot use exogenous pyruvate and 
lactate as energy sources. Thus, it is unclear 
how 2-cell-like cells obtain a similar amount 
of ATP to ES cells without using glycolysis.

Mouse oocytes/preimplantation embryos 
stored LDs in the cytoplasm, but the roles of 
LDs in mouse oocytes/preimplantation was 
not elucidated due to the low levels of LDs 
relative to porcine oocyte/preimplantation 
embryo. Several studies revealed that LD 
biogenesis is physiologically important during 
early preimplantation development in mouse 
oocytes/preimplantation embryos [12, 14, 
15]. In oocytes, intracellular triacylglycerol 
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Fig. 1. The lipid droplet (LD)-like organelles in MuERV-L-positive cells. (A) Electron microscopic images of MuERV-L-positive, -negative ES cells, and 
2-cell embryo. The right panel shows higher-magnification images of the boxed area. (B) Percentage of LD-like organelles in MuERV-L-positive 
(n = 13) and -negative (n = 13) ES cells. The scale bars of the MuERV-L(–) and (+) cells are 2.5 μm, while that of the 2-cell embryo is 20 μm.

Fig. 2. Lipid droplets (LDs) in MuERV-L-positive cells. (A) Two-cell embryo was stained with BODIPY 493/503 (green) and observed by confocal 
fluorescence microscopy. (B) MuERV-L-positive and -negative ES cells were stained with BODIPY 493/503 and observed by confocal fluorescence 
microscopy. MuERV-L expression was detected by the fluorescence of tdTomato (red) and LDs stained by BODIPY 493/503 (green); nuclei were 
stained with DAPI (blue). (C) The percentages of BODIPY 493/503-positive LDs in MuERV-L-positive (n = 11) and -negative (n = 13) ES cells. 
Scale bars: 10 μm.
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is stored in LDs and LD proteins facilitate the 
lipase-mediated hydrolysis of triacylglycerol 
and release of free fatty acids (FFAs) [16]. 
Intracellular FFAs generated via either 
transport or lipolysis are then catabolized 
to yield ATP in the mitochondrial matrix via 
β-oxidation [16, 17]. Given our observation 
of LDs in 2-cell-like cells, LDs may be used 
to store neutral lipids and generate ATP via 
β-oxidation of FFAs instead of glycolysis. 
Another possibility is that LDs modulate 
transcription; LDs have been implicated in 
suppressing the activity of a transcription 
factor by keeping it out of the nucleus [18, 19].

We hope that this hypothesis sheds light 
on the mechanism that regulates the transition 
from pluripotent cells to totipotent cells.
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