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Introduction
An in-depth understanding of molecular host-pathogen inter-
actions is needed to develop effective measures of prevention, 
mitigation, and control of diseases in aquatic and terrestrial 
plant and animal stocks in wild and cultured settings. Recent 
advances in “omics” approaches have greatly expanded the 
potential for integrated analyses of large sets of molecular data 
to reveal markers of desirable traits, such as the resistance to 
adverse environmental conditions and diseases, and to develop 
targets for therapy and strategies for selection programs.1–4

Because whole genome sequencing projects can be limited by 
the complexity and size of the genetic material, the increased fea-
sibility of high-throughput (HT) sequencing technologies has 
boosted the application of transcriptome sequencing (RNA-seq), 
including the dual sequencing of host and pathogen.5 Dual 
sequencing (dual-seq) is the term used to describe sequencing 
approaches aiming to simultaneously capture and analyze patho-
gen and host nucleic acids, while being able to distinguish each of 
their contributions. From a technical point of view, dual-seq lev-
erages on the increased readout of HT sequencers and on the 
relatively reduced error rates associated with these data.6,7 Dual-
seq exploits the fraction of HT-readouts called “sequencing dark 
matter,”8 which basically consist of the off-target reads usually 

discharged during reference (-genome or -transcriptome) map-
ping.9 Initially, these approaches were limited to RNA and, there-
fore, they were described as “dual RNA-seq.”10,11 Indeed, dual 
RNA-seq provides a significant advancement in the under-
standing of molecular interactions ranging from pathogenic to 
commensal and mutualistic relationships in a cost-effective  
manner.12,13 Along with the novelty of the simultaneous sequenc-
ing of host and pathogen transcriptomes, dual RNA-seq allows 
for a time-resolved analysis of molecular interactions occurring 
during infection of organisms, including non-model host species, 
with significant ecological and evolutionary implications.14,15

Proteome-centered studies have advanced at a similar 
pace, often as part of multi “omics” studies, with bacterial 
proteomes,16–18 protein-protein interactions (PPIs) in host-
pathogen systems,19–21 and small open reading frame (sORF) 
micropeptides22,23 representing some of the current frontier 
topics. Proteins are the functional cores to multitudes of pro-
cesses, including viral penetration, propagation, antiviral 
host responses, and viral subversion of host defenses.19,21,24–26 
Thus, the characterization of protein/peptide profiles during 
the host-virus interaction is crucial to elucidate the complex 
events underlying infections and diseases. Viral genomes 
encode a small, although variable, number of proteins, the 
timely interactions of which with the molecular host’s 
machinery can ensure the virus’ replication success, often as a 
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result of PPIs.27 Recent developments in method workflows 
and technological improvements in mass spectrometry plat-
forms enable a detailed characterization of host-virus and 
virus-virus PPIs. Advanced dual proteomic methods in mod-
ern virology include antibody-based immunoaffinity purifi-
cation-mass spectrometry (AP-MS) and the yeast 2-hybrid 
(Y2H) method, among others.28 Furthermore, metabo-
lomics-based approaches can be used to identify changes in 
the profile of small molecules participating in the metabo-
lism of proteins, nucleic acids, lipids, and sugars. Accordingly, 
metabolomic studies can provide additional information 
about how viruses re-wire the host metabolism to promote 
infection and pathogenesis.29–31 Therefore, incorporating the 
metabolomic data into the frame of knowledge resulting 
from other “omics” is expected to accelerate a holistic inter-
pretation of host-virus interactions.

Irrespective of the chosen “omics,” the need to manage large 
amounts of molecular data to correctly infer and validate bio-
logical hypotheses imposes a rigorous step-by-step evaluation 
of the work, including experimental design, sampling proto-
cols, and data processing (eg, statistics, bioinformatics pipe-
lines, visualization, and database matching).32,33

At the cutting edge of the “omics” integration and multi-
platform research, the analysis of host-associated microbiota by 
metabarcoding of marker genes, shotgun metagenomics, and 
metabolomics has provided diagnostics and predictive capabili-
ties that can now help elucidate complex interspecies relation-
ships and perturbations, such as symbiotic, commensalistic, 
opportunistic, and pathogenic.34,35

Despite the steadily increasing number of transcriptomics- 
and proteomics-based studies, not many papers refer to the in 
vivo analysis of host-pathogen interactions. This review aims 
to report and discuss a dual analysis approach and technical 
research aspects related to Ostreid herpesvirus 1 (OsHV-1) and 
its preferred host Crassostrea gigas. This model represents a 
unique case of study because, in the absence of bivalve cell lines 
for in vitro testing, dual analyses require a successful infection 
in vivo, in field, or laboratory conditions.

Dual RNA Sequencing
The first dual RNA-seq studies were focused on viruses and 
fungi affecting humans and mouse-infecting protists.36–41 
Subsequent protocol improvements allowed for both the 
qualitative and quantitative recovery of bacterial RNA and 
expanded the application of the field of dual RNA-seq to 
bacterial infections.11 However, the differences in RNA struc-
ture and quantity between bacteria and eukaryotic hosts make 
the enrichment of infected cells or bacterial RNAs necessary.5 
Rarely, in vivo dual-seq approaches have included viruses as 
pathogens, although both RNA viruses (those viruses whose 
genome and transcriptional products are made by RNA) and 
a part of DNA viruses (those viruses whose replication relies 
on RNA) are suitable dual RNA-seq targets.

Regarding bivalve hosts, dual RNA-seq approaches have 
been performed to study Quahog Parasite Unknown (QPX) 
infections in the hard clam Mercenaria mercenaria,42 Mytilicola 
infections in the mussel Mytilus edulis,43 and malacoherpesvi-
rus infections in the oyster C gigas,44–47 in the ark shell 
Scapharca broughtonii,48 and in the gastropod Haliotis diversi-
color supertexta.49 However, dual RNA-seq can take advantage 
of the availability of both reference genomes only for OsHV-
1/C gigas samples, whereas in all the other dual studies a de 
novo assembly of the host transcriptome is necessary. The 
absence of genome sequences, which are used to accurately 
discriminate between host and pathogen reads, can bias dual 
RNA-seq results of phylogenetically similar organisms 
(eukaryotes such as crustacean Mytilicola spp. and lophotro-
chozoan Mytilus spp.).

For the first time in 2015, 2 research groups performed a 
dual RNA-seq analysis to investigate the OsHV-1 infection of 
C gigas by sequencing samples collected up to 120 hours after 
experimental infection44 and the other based on sequencing 
highly infected oysters collected from the Goro lagoon, Italy.45 
Both studies contributed to the identification of key antiviral 
pathways and candidate markers of viral infections in oysters. 
At the same time, these first dual RNA-seq data have contrib-
uted to an improved understanding of the viral transcriptome, 
demonstrating that the relative ratios between OsHV-1 expres-
sion values are highly comparable over heterogeneous sam-
ples,50 as well as on different hosts.48 These experiments have 
shown that the sequencing coverage plays an essential role in 
obtaining productive dual-seq data, because an abundant  
number of viral reads could be obtained only with more than  
4 billion total sequenced bases (Figure 1). Considering the 
genome size of malacoherpesviruses (around 200 kb), tens of 
thousands of viral reads are needed to attain a considerable 
coverage of the viral open reading frames (ORFs).

To avoid unsuccessful sequencing runs, it is important to 
estimate the viral RNA fraction over the total RNA before 
sequencing. Usually, RNA samples are selected on the basis of 
the OsHV-1 DNA loads in the oyster tissues (a proxy to esti-
mate the virus infectivity). However, OsHV-1 DNA and 
OsHV-1 RNA did not correlate well,44 as the abundance of 
viral DNA often does not imply a similar abundance of 
sequenced viral RNA reads (Figure 2). To overcome this prob-
lem, it is necessary to use a viral transcription marker, namely, a 
viral gene, the expression value of which correlates well with 
the expression of the whole viral transcriptome. The OsHV-1 
DNA polymerase (ORF100) has been used to measure the 
copy number of viral DNA in a sample,51 but the ORF100 
expression level is an unreliable predictor of the total amount of 
viral RNA.50 Recently, Mushegian et  al52 annotated the 
OsHV-1 ORF104 as a possible major capsid protein, and we 
proposed this ORF as a reliable estimator of the total viral 
RNA in a sample. To validate this hypothesis, we tested 
OsHV-1 ORF104 and its Haliotid herpesvirus 1 (HaHV-1) 
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homolog ORF68 in oyster and haliotid RNA-seq samples sub-
jected to HT-RNA sequencing (Figure 3). Our data demon-
strated a good correlation between the ORF104 expression 
levels and the number of sequenced OsHV-1 reads. Likewise, 

the ORF68 expression level is a promising marker for the 
HaHV-1 transcription, since the measured values were consist-
ent with the abundance of viral reads in an infected sample 
compared with its paired (uninfected) control.

Perspectives on Dual Non-coding RNA Sequencing
Most dual RNA-seq experiments in bivalves have been per-
formed on polyA-selected RNAs, since this procedural 
approach allows a high specificity in the selection of coding 
RNAs. Conversely, random priming enables the capture of 
the complete RNAome, and size selection procedures can be 
subsequently applied to focus on the desired RNA fraction of 
long or short RNAs.53 To reduce the noise of ribosomal 
RNAs, ribo-depletion commercial kits are commonly used, 
whereas a precise size fractionation on gel can allow the selec-
tion of specific short RNAs (eg, microRNAs [miRNAs] and 
PIWI-interacting RNAs [piRNAs]) from physiological 
RNA degradation products. The use of ribo-depleted librar-
ies in bivalves has been limited, probably because of the pos-
sibly reduced performance of commercial kits on invertebrate 
ribosomal RNA. Regarding recovery of viral genomes, Shi 
et al54 demonstrated the good performance of ribo-depleted 
libraries on invertebrate samples, although a real comparison 
between polyA and ribo-depleted libraries is still lacking. We 
showed that the number of OsHV-1 reads obtained from 2 
paired libraries produced using either polyA selection or ribo-
depletion is very similar (Figure 1—the 2 violet samples 
named Italy_2018). The main difference was in the number 
of reads mappable on the C gigas genome, since only 45% of 
the reads of the ribo-depleted library positively matched the 
current oyster genome release compared with 80% of the 
reads from the paired polyA-selected library.

Figure 1. Read coverage in dual RNA-seq experiments performed on 

malacoherpesvirus-infected mollusks. The diagram shows the distribution of 

total host-pathogen sequenced bases (in billions) versus the 

malacoherpesvirus sequenced bases (in millions) for a selection of RNA-seq 

samples obtained using polyA-selected libraries (only the square-framed 

sample Italy_2018 refers to a ribo-depleted library). High-quality reads were 

mapped on malacoherpesvirus genomes (either OsHV-1 or HaHV-1) using 

the CLC mapper tool by setting the values 0.8 of similarity fraction over 0.5 

of the read length. Sequence Read Archive (SRA) sample IDs: Zhang et al, 

2012 (SRR334248, SRR334249, SRR334250, SRR334251, SRR334252, 

SRR334253, SRR334254, SRR334255, SRR334256, SRR334257, 

SRR334258, SRR334259), Rosani et al45 (E-MTAB-2552), He et al44 

(SRR2002940, SRR2002941, SRR2002942, SRR2002947, SRR2002948, 

SRR2002949), and Bai et al48 (PRJNA471241); samples labeled as 

Italy_2018 represent unpublished data.
HaHV-1, Haliotid herpesvirus 1; OsHV-1, Ostreid herpesvirus 1.

Figure 2. Relative amounts of OsHV-1 DNA and OsHV-1 RNA in 

variously infected Crassostrea gigas. The diagram illustrates the number 

of OsHV-1 DNA copies per microliter compared with the number of OsHV-

1 viral reads obtained by RNA-seq for 6 unpublished oyster samples 

subjected to HT RNA-seq (S1-S6).
HT, high-throughput; OsHV-1, Ostreid herpesvirus 1.

Figure 3. Candidate markers for malacoherpesvirus transcription. The 

diagram illustrates the distribution of OsHV-1 ORF104 and HaHV-1 

ORF68 expression values versus the total number of sequenced viral 

reads. Virus expression values are reported as delta of the Ct of the viral 

reads compared with the corresponding value of a host housekeeping 

gene (Elongation factor-1α for C gigas and Y-box binding protein 1 for H 

diversicolor supertexta).
HaHV-1, Haliotid herpesvirus 1; OsHV-1, Ostreid herpesvirus 1.
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Similarly, studies on small non-coding RNA (sncRNA) of 
bivalves have begun to appear but are still rare. In 2014, Chen 
et al55 sequenced small RNAs of scallops infected by the acute 
viral necrobiotic virus (AVNV), an OsHV-1 variant. The 
authors demonstrated a different sncRNA size distribution 
between the control sample and the viral-infected sample, since 
control sncRNAs are characterized by a 2-peak distribution 
denoting the presence of both 22-nt sncRNAs (miRNAs) and 
31-nt sncRNA (piRNAs), whereas the 22-nt peak was the only 
recognizable peak in the infected sample. Unfortunately, the 
reads have not been submitted to public repositories and it is 
not clear if any sncRNA read matched the viral genome, a situ-
ation symptomatic of the presence of viral-encoded sncRNAs 
or of an active antiviral RNA interference pathway, as widely 
reported in arthropods56 and in few other mollusk species.57

The analysis of the sncRNA reads obtained from the 
OsHV-1-infected oyster sample Italy_2018 (see Figure 1) 
resulted in an sncRNA size distribution similar to the one 
reported for the AVNV-infected sample, with a main 21-nt 
peak including most of the reads (Figure 4—blue bars). 
However, the size distribution of the sncRNA reads mapping 
on the OsHV-1 genome did not present a well-defined size 
distribution, suggesting that these sncRNA reads originated 
mainly from physiological RNA degradation processes 
(Figure 4—orange bars). Because malacoherpesviruses belong 
to Herpesvirales, an order which includes several viruses 
encoding sncRNAs,58 they are interesting models to study 
host-pathogen interactions mediated by sncRNAs. Moreover, 
malacoherpesviruses shared some features with the White Spot 
Syndrome Virus (WSSV) which also encodes 1 sncRNA.59 As 
a matter of fact, the existence of viral-encoded small RNAs is 

not yet confirmed in the published studies and additional 
experiments are needed to further investigate this point.

Dual Proteomics and Metabolomics
Proteomics and metabolomics provide complementary informa-
tion to RNA-seq data during host-pathogen interactions. They 
can provide cost-effective strategies to substantiate inferences 
made from differential gene expression studies, support the func-
tional characterization of gene products and post-translational 
modifications, and supply metabolic information in line with the 
biochemical phenotype. This is clearly reflected by their progres-
sive development and rise in popularity within the fields of 
human and plant virology during the past decade.60–63 These 
techniques are also increasingly being used to investigate different 
host-pathogen interactions in bivalves.64–69 However, in vivo 
applications of proteomics and/or metabolomics specifically with 
molluskan virus models are rare, and dual approaches to distin-
guish virus- from host-encoded proteins and products have not 
yet been explored.

Regarding C gigas and OsHV-1, Corporeau et al70 used a 
two-dimensional gel electrophoresis (2-DE) proteomic 
approach followed by liquid chromatography with tandem 
mass spectrometry (LC-MS/MS) to identify 25 differentially 
expressed proteins between juvenile oysters infected with a low 
load and a high load of OsHV-1 at 24 hpi. Precisely, the oysters 
were injected in the adductor muscle with 100 µL inoculate, 
considered either virulent (high load) or weakly virulent (low 
load) and corresponding to 2 × 109 or 4 × 106 copies of injected 
viral genome, respectively, as quantified by real-time polymer-
ase chain reaction (PCR).70 Key findings included an increase 
in the abundance of voltage-dependent anion channels 
(VDACs) and a switch from aerobic respiration toward aerobic 
glycolysis, or the Warburg effect. Such features of the infection 
process appear to be shared with other viruses, such as human 
papillomavirus (HPV), human cytomegalovirus (HCMV; β-
herpesvirus), Kaposi’s sarcoma herpesvirus (KSHV), and hepa-
titis C virus.71–74 These findings were recently substantiated by 
Delisle et al,75 who developed a specific C gigas VDAC anti-
body and identified associations between VDAC abundance 
and virus susceptibility during field exposures.

Although Corporeau et al70 still remain the only proteomic-
based analysis to date using an OsHV-1 virus challenge, Green 
et al76 employed a similar 2-DE approach to identify the dif-
ferential expression of proteins during an experimental chal-
lenge simulated with viral-like double-strand RNA (dsRNA) 
Poly I:C. In another study, Masood et al77 also investigated the 
oyster response to Poly I:C, using a quantitative shotgun prot-
eomic approach to improve the coverage of the oyster proteome, 
and detected significant changes in the abundance of 720 pro-
teins post injection. Interestingly, poor correlations were found 
between the abundances of coding RNAs and related proteins, 
evidence which advocates the importance of including multiple 
levels of analysis (eg, RNA and proteins, time points).

Figure 4. Size distribution of sncRNA reads in 1 oyster sample infected 

by OsHV-1. Blue bars represent the size distribution (14-41 nucleotides) 

of all the high-quality sncRNA reads obtained from the Italy_2018 

samples (primary x-axis), whereas the orange bars are the sncRNA reads 

mapped on the OsHV-1 genome (secondary x-axis).
OsHV-1, Ostreid herpesvirus 1; sncRNA, small non-coding RNA.
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Metabolomic insights during OsHV-1 infection were also 
recently obtained,78 supporting the involvement of VDAC and the 

Warburg effect. Upregulation of Irg-1 and immune-responsive 
gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD) was 

Figure 5. Rational and perspective use of proteomic and metabolomic analyses in the study of OsHV-1 and Crassostrea gigas interactions. (A) Detailed 

temporal, and spatial, analyses of the global proteome and metabolome during the progression of OsHV-1 infection to reveal dynamic changes in 

metabolism. Broad shotgun proteomics is one appropriate method of choice, being discovery focused and with access to complete genomic information. 

Multiplatform metabolomics is required for comprehensive metabolome coverage. (B) General workflow for investigating host-host or host-virus PPIs during 

infection via affinity purification (AP) using antibodies and shotgun proteomics (requires a priori knowledge of target). (C) Development of a reliable primary 

cell culture infection model (in lieu of an immortalized cell line) will support the use of analytical methods currently suited to in vitro systems, and with the 

potential to produce quantities of purified OshV-1 virions. (D) Workflows are being developed to integrate multiple omics data at different temporal and spatial 

scales, but meaningful integration remains a considerable challenge, requiring careful experimental design and multidisciplinary collaboration. 

ABPP, activity-based protein profiling; AP-MS, antibody-based immunoaffinity purification-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; GFP, 

green fluorescent protein; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid chromatography with tandem mass spectrometry; ORF, open reading 

frame; OsHV-1, Ostreid herpesvirus 1; PPI, protein-protein interaction; SILAC, stable isotope labeling by/with amino acids in cell culture.



6 Evolutionary Bioinformatics 

also implicated, with the detection of itaconate as an inducible trig-
ger at the crossroads of numerous pathways/mechanisms. With 
proteomics and metabolomics thus far being separately applied to 
the oyster-OsHV-1 model to scan single time points and provid-
ing relatively low coverage of the intertwined host-virus proteome 
or metabolome, there is considerable scope to expand their func-
tionalities to assess spatiotemporal molecular dynamics and thus 
enrich the dual analysis approach (Figure 5).

With access to genomic and/or transcriptomic informa-
tion, modern LC-MS/MS platforms and data workflows can 
typically yield identification of 1000 to 3000 proteins in a 
sample; anticipated improvements in chromatography are 
likely set to enhance this by increasing the peptide separation 
quality and sampling depth.79 Perhaps, more challenging for 
host-virus interaction studies involving proteomics is being 
able to separate those features representing anti- and pro-
pathogenic cellular responses, for instance, to identify which 
pathogen-encoded proteins interact with which host proteins 
to suppress or hijack normal host protein function, and char-
acterize these networks in both space and time.80

Owing to the importance of PPIs during infection, their anal-
ysis in numerous host-virus models (eg, hepatitis C virus, influ-
enza A virus, Zeka virus, potato leafroll virus [PLRV])81,82 
currently represents a major goal. To capture these PPIs, protein 
complexes can be isolated using affinity purification (AP), either 
with a tagged “bait” protein, or if an antibody is available via co-
immunoprecipitation (co-IP). AP followed by digestion and 
LC-MS/MS of the peptides is a particular method which has 
gained considerable traction in virology.83 A major advantage of 
AP-MS is that it does not require prior knowledge of the bait 
protein’s interaction partners (thus providing novel insight into a 
particular protein of interest). It also allows unbiased detection of 
PPIs under physiological conditions, and it can be used for in vivo 
studies.28,84 Recent analysis of malacoherpesvirus proteins50,52 
additionally provides unique information to facilitate develop-
ment and scope for AP-MS methods to be used for this particu-
lar host-virus model. Undoubtedly, the application of dual 
proteomics techniques could be expanded greatly by advancing 
the feasibility of primary cell cultures of bivalve embryos and 
haemocytes.85–87 In fact, the identification of oyster-OsHV-1 
PPIs is essential to understand the biology of the infection and 
could lead to novel targets for monitoring disease progression, 
manipulation of mechanistic components for functional studies, 
and to the development of innovative strategies enabling a 
reduced oyster susceptibility to the virus.

Metabolomic methods are already well established, and 
analytical platforms (such as proton nuclear magnetic reso-
nance [1H NMR], gas chromatography-mass spectrometry 
[GC-MS], liquid chromatography-mass spectrometry [LC-
MS], capillary electrophoresis-mass spectrometry [CE-MS]), 
bioinformatics pipelines, and spectral databases are improving 
rapidly, with a range of sensitive HT technologies currently 
being developed.88,89 However, unfortunately, there is not yet a 

single platform that can measure all metabolites due to their 
different physicochemical properties (as opposed to transcrip-
tomic and proteomic approaches based on the detection of only 
nucleic and amino acids, respectively). Thus, multiplatform 
studies and various metabolite extraction techniques are 
required to obtain an extensive coverage of the metabolome. 
Such methods are readily available,31 and different frameworks 
for the dual metabolomics analysis of host-pathogen interac-
tions have been developed.90,91 With such approaches starting 
to be incorporated, the primary challenge for comprehensive 
host-virus interaction studies which combine multiple ‘omics 
technologies will with no doubt revolve around methods for 
data integration and interpretation.

Conclusions and Perspectives
At present, one of the best models for studying viral host-
pathogen interactions in mollusks is represented by 
Malacoherpesviridae, which affect oysters (OsHV-1) or abalo-
nes (HaHV-1). Whereas future dual analyses can enrich the 
molecular data already available for this model, it is important 
to explore the functional roles of the viral proteins predicted 
from the sequenced ORFs, comparatively for OsHV-1 and 
HaHV-1. At the same time, the development of molluskan 
cell lines could provide a valuable resource to dissect and ana-
lyze each step of the viral infection, with the final aim to find 
inhibitors or inhibition strategies effective at the earliest 
phases of the malacoherpesvirus infection.
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