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A variety of blood vessel extraction (BVE) techniques exist in the literature, but they do not always lead to acceptable solutions
especially in the presence of anomalies where the reported work is limited. Four techniques are presented for BVE: (1) BVE
using Image Line Cross-Sections (ILCS), (2) BVE using Edge Enhancement and Edge Detection (EEED), (3) BVE using Modified
Matched Filtering (MMF), and (4) BVE using Continuation Algorithm (CA).These four techniques have been designed especially
for abnormal retinal images containing low vessel contrasts, drusen, exudates, and other artifacts.The four techniques were applied
to 30 abnormal retinal images, and the success rate was found to be (95 to 99%) for CA, (88–91%) for EEED, (80–85%) for MMF,
and (74–78%) for ILCS. Application of these four techniques to 105 normal retinal images gave improved results: (99-100%) for CA,
(96–98%) for EEED, (94-95%) for MMF, and (88–93%) for ILCS. Investigations revealed that the four techniques in the order of
increasing performance could be arranged as ILCS,MMF, EEED, and CA. Here we demonstrate these four techniques for abnormal
retinal images only. ILCS, EEED, and CA are novel additions whereas MMF is an improved and modified version of an existing
matched filtering technique. CA is a promising technique.

1. Introduction

Accurate and automatic assessment of retinal images has been
considered as a powerful tool for the diagnosis of retinal
disorders such as diabetic retinopathy, hypertension, and
arteriosclerosis. Blood vessels have varying contrast due to
which the darker vessels (thick vessels) can be extracted
easily using standard techniques mentioned in the literature
while it is difficult to extract the vessels having poor contrast
(thin vessels). Segmentation of blood vessels in retinal images
is a field of interest for scientists since last two decades
[1–4]. Various kinds of eye abnormalities are indicated by
changes in vessel tree structure [5, 6]. A true vessel tree
structure should contain information about precise thickness
of blood vessels in the retinal images. Optic disc and fovea
can be located by tracking the vessel tree [7]. Central retinal
artery occlusion produces dilated tortuous veins, age related
macular degeneration and diabetes can generate new blood

vessels (neovascularization), and the study of retinopathy of
prematurity in premature infants is not possible without the
knowledge of vessel tree structure. Progression of such eye
diseases can only be tracked by noticing the changes in the
vessel tree structure with the passage of time. Techniques
mentioned in the literature [1–32] work well for normal
retinal images. Normal images are those containing high
contrast vessels and uniform background illumination and
which do not contain eye abnormalities such as drusen,
exudates, lesions, and microaneurysms. Extraction of vessel
tree for normal images is notmuch useful in comparisonwith
the abnormal retinal imageswhich convey useful information
about the progression of different eye abnormalities.

A retinal image has blood vessels with varying thick-
nesses (36 micron to 180 micron) and varying foreground
illumination. The contrast of the blood vessels also varies:
higher for thick vessels and lower for thin vessels. In the
presence of anomalies in the retinal images, extraction of

http://dx.doi.org/10.1155/2013/408120


2 Journal of Medical Engineering

tree structure becomes more difficult. A variety of vessel tree
extraction methods exist in the literature [1–32]. Some of
them are kernel based methods such as edge detection filters
[8] and matched filters [9, 10]. In matched filter methods if a
larger kernel is selected, thick vessels are obtained precisely
whereas thin vessels with increased thickness are obtained.
The use of smaller kernels can help to precisely select the
thin vessels with higher correlation, but the thick vessels are
obtained with reduced thicknesses. A conventional matched
filtering technique thus requires a large number of different
sized kernels with different orientations. Different images
corresponding to different kernels are combined to obtain
the final tree structure. Local and region based properties to
segment blood vessels have been reported in [1] using a prob-
ing technique. Pixels are classified as vessels or nonvessels
by iteratively decreasing threshold. An automated tortuosity
measurement technique for tree extraction is reported in
[5]. The method in [5] uses matched filtering, thresholding,
thinning and linear classifier algorithm to obtain vessel tree.
A classification rate of 91% of blood vessel segmentation and
95% of the vessel network was reported. Some relatively new
vessel segmentation techniques which work well for normal
images have been reported in [21–31]. The readers may be
interested in recent work on localisation and segmentation
of optic disc in retinal images [33, 34].

In this paper, we are presenting four vessel tree extrac-
tion techniques. The first one processes the given retinal
image by extracting horizontal line cross-sections which
are thresholded according to local statistical properties of
the line data and the binary lines are combined to obtain
binary vessel tree. We are referring this technique as Binary
Vessel Extraction (BVE) using Image Line Cross-Sections
(ILCS). We are referring the second BVE technique as Edge
Enhancement and Edge Detection (EEED). In this technique
a minimum of the two images: original retinal image and
its blurred version, is generated which is further blurred
by using a LOG filter which gives an enhanced version of
blood vessels. The image is thresholded using OTSU and the
noise is removed from the binary image. The resulting image
gives a free of noise blood vessel tree. The third technique
that we are reporting is the Modified Matched Filtering
(MMF) technique. In MMF preprocessing of the original
retinal image includes application of homomorphic filtering
for contrast enhancement, assignment of thresholded value
(obtained using OTSU) to all image pixels with threshold
value while retaining lower image values for enhancement
of blood vessels. The image is then subjected to conventional
matched filtering and is thresholded by OTSU for vessel tree
extraction. The fourth technique is based on an algorithm
which we are referring to as Continuation Algorithm. In CA
two binary images: one containing thick vessels (reference
image) and the other containing thin vessels plus the thick
vessels (test image), are processed. The vessel tree in the
reference image is extended with the help of vessel tree in the
test image. When further extension is halted, the reference
image contains a complete blood vessel tree. The images
presented in this paper were either taken from STARE [11]
or from Alexandra Eye Pavilion Hospital, Edinburgh, UK.
From the available images only 30 images were chosen for

BVE by these four methods which were abnormal and were
hard to process with the techniques given in the references [1–
31]. Out of the thirty blurred retinal images, we are reporting
the images with highest abnormalities. One image as shown
in Figure 1(a) was processed with all the four techniques for
intercomparison. The three techniques ILCS, EEED, and CA
are novel and the fourth technique MMF is an improved and
modified version of the existing technique called matched
filtering. Matched filtering technique is one of the most
cited techniques in literature and has been included to make
comparison with the rest of the three techniques. We are
describing these four methods for BVE one by one in the
following sections. In this paper, our main emphasis is on the
extraction of blood vessels from abnormal retinal images.We
have also tested these four techniques on 105 normal retinal
images with higher success rates, but we are not reporting
them as they form trivial cases which can be dealt successfully
with most of the techniques given in the references [1–32].

2. Blood Vessel Extraction (BVE) with Image
Line Cross-Section (ILCS)

Retinal images have inhomogeneous illumination pattern
due to built-in shape of retina. To remove inhomogeneity
in illumination [12] the retinal images are processed first
with homomorphic filtering [8]. A typical poor quality highly
abnormal retinal image is shown in Figure 1(a). The image
in Figure 1(a) was processed with homomorphic filter which
is shown in Figure 1(b). Horizontal cross-sections of the
image in Figure 1(b) are extracted one by one for further
processing. A typical horizontal cross-section from the image
in Figure 1(b) is shown in Figure 2(a).

The data shown in Figure 2(a) is convolved with kern1 =
{0, −0.1, 0}, and the resulting data is shown in Figure 2(b).The
application of the convolution process with kern1 has resulted
in the inversion of the data. The data shown in Figure 2(b)
is then convolved with kern2 = {−0.35, 1, −0.35} and the
resulting data is shown in Figure 2(c). The application of the
convolution process with kern2 has produced vessels with
improved signal to noise ratio. The horizontal axis shown
on the plot of Figure 2(c) corresponds to the threshold level
given by (1). The kern1 and kern2 were determined on the
basis of a set of experiments yielding best results in terms of
signal to noise ratio for blood vessels

threshold = 𝑥 + 𝛼 ⋅ standard deviation
rms2

, (1)

where
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∑
𝑖
(𝑥
𝑖
− 𝑥)
2

𝑛 − 1
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𝑥
2
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(2)

𝑛 is the of number data points in a given line cross section,
𝑥
𝑖
represents the 𝑖th data point, and 𝑥 represents the mean

value of the data in a line cross section. 𝛼 is a constant equal
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(a) (b)

Figure 1: A typical abnormal retinal image in (a) with its homomorphic-processed image in (b).
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Figure 2: A typical cross-section of a retinal image and its processing, (a) a typical horizontal cross-section of the image in Figure 1(b), (b)
convolution of the pattern in (a) with kernel1, (c) convolution of the pattern in (b) with kernel2.

to a value of 3.3 × 10−3, and this value has been found to give
very satisfactory threshold values for all the cross sections in
96% retinal images tested. Some retinal imageswith very poor
contrast required a small variation in the value of 𝛼 to give an
excellent tree structure. Once all the line cross sections of a
retinal image are processed, they are combined to form a 2D
binary vessel tree as shown in Figure 3(a).

This method has been implemented on 30 highly abnor-
mal retinal images, and 78% efficiency was achieved for
high contrast thick blood vessels and for low contrast blood
vessels the efficiency varied from 74 to 78% depending upon
the contrast of the blood vessels against background. Thin
blood vessels with contrast as small as 0.01 were extracted
with 77% efficiency using the proposed method. However,

blood vessels contrast can be further improved by using
histogram equalizationmethod in overlapping windows with
unit step and then applying line cross-section method on
this contrast enhanced image. The image in Figure 3(a) after
length filtering at 10 pixels is shown in Figure 3(b).

Length filtering is an algorithm by which small isolated
structures most probably nonvessels are removed from the
image.The original thickness of all the blood vessels has been
exactly reproduced without any artifacts by ILCS. Widths of
vessels were found to be preserved by the ILCSmethod. Some
retinal images contain a lot of noise andwhen such images are
processed for BVE using ILCS the resulting vessel tree also
contains a lot of noise. An example of such a retinal image
is shown in Figure 4(a), and vessel tree extracted by ILCS is
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(a) (b)

Figure 3: BVE with ILCS, (a) vessel tree extracted from image in Figure 1(b) with processing of image line cross sections, (b) image obtained
from (a) after length filtering at 10 pixels.

(a) (b)

Figure 4: Demonstration of ILCS technique for a noisy retinal image, (a) a typical abnormal and noisy retinal image, (b) vessel tree image
obtained from the image in (a) using ILCS method.

shown in Figure 4(b). The thin vessels in the image shown
in Figure 4(a) have very poor contrast which matches with
noise spread over the image background.The resulting vessel
tree thus contains enhancement of background noise also.
An application of length filtering technique at this stage for
noise removal also removes a significant portion of thin blood
vessels. To make ILCS more effective, we suggest a slight
blurring of such retinal images with a small sized Gaussian
kernel of standard deviation 𝜎 = 0.824 and then suggest the
application of ILCS on resulting blurred retinal images. A
vessel tree obtained in this way is shown in Figure 5(a) and
after application of length filtering at 10 pixels is shown in
Figure 5(b).

Figure 6 shows the results obtained with two different
matched filters (of different lengths andwidths) when applied
to the image shown in Figure 4(a). The vessel trees obtained
with matched filtering technique shown in Figure 6 can be
compared with the result obtained with ILCS shown in
Figure 5(b). The result shown in Figure 6(a) corresponds to

a matched filter kernel of length 2 and width 4, whereas the
result shown in Figure 6(b) corresponds to matched filter of
length 4 and width 6. The drawback of the matched filtering
method, as can be easily seen from these results, is that the
shape of tortuous blood vessels has been greatly exaggerated
near the optic disc region in Figure 6(b). The reason for the
failure is that each matched filter kernel is designed for a
specific environment related to the thickness and linearity
of the vessels. Since in normal retinal images blood vessels
are not very tortuous, therefore matched filtering can work
well, but in case of retinal images with tortuous vessels
(an indication of hypertension), it has not worked due to
mismatching of filter parameters with the nature of vessels.
So in general terms we can conclude that the matched
filtering technique is not appropriate option especially when
the images are abnormal containing drusen or tortuous
vessels. The working principle of the proposed technique
has been explained through the flow chart diagram given
in Figure 7. Some important vessel segmentation techniques
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(a) (b)

Figure 5: Demonstration of ILCS technique for a noisy retinal image blurred with Gaussian filter, (a) vessel tree obtained from the image in
Figure 4(a) after application of Gaussian blurring filter, (b) vessel tree image in part (a) after length filtering at 10 pixels.

(a) (b)

Figure 6: Vessel tree results obtained with conventional matched filtering technique [9], (a) vessel tree obtained using matched filtering
kernel of length 2 and width 4, (b) vessel tree obtained using matched filtering kernel of length 4 and width 6.

reported so far in the literature [1–31] are based on some
sort of thresholding criterion. The techniques either use
threshold selection based on the whole image data (called
global thresholding) or data from the patches of the image
(called adaptive thresholding). The thresholding in ILCS is
based on the horizontal line cross-section of the image under
process and the selection of threshold is based on (1).Theway
the ILCS extracts vessel tree from retinal images is entirely a
new concept.

3. Blood Vessel Extraction (BVE) Using Edge
Enhancement and Edge Detection (EEED)

In this section, we address the issue of extraction of blood
vessels in retinal images using a novel edge enhancement
and edge detection technique. The proposed method also
clears the unwanted edges which are not blood vessels. This
technique is very robust and fast. Most of the techniques

mentioned in [1–31] work well for normal retinal images
containing no abnormalities. As the retinal image becomes
abnormal due to the inclusion of drusen or due to lower
image contrast, the performance of the techniques in [1–
31] falls and the vessel tree structures obtained with those
techniques do not represent the actual blood vessels tree.
To demonstrate the capability of EEED we have chosen an
image shown in Figure 8(a) which is low in contrast and at
the same time contains a large number of drusen spread over
the entire retinal image. The techniques mentioned in [1–31]
do not give satisfactory results particularly for images like the
one shown in Figure 8(a). The main objectives of the EEED
technique are to enhance the contrast of blood vessels and
at the same time diffuse the other abnormal features present
in the retinal image. These objectives need to be achieved
in a single go. Application of Laplacian of Gaussian (LOG)
filter further enhances the vessel contrast and suppresses the
other abnormal image features. The image can then simply
be thresholded using any standard technique, for example,
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Image input

Gaussian blur with standard deviation equal to 0.8

Homomorphic filtering

Image rotated clockwise or anticlockwise

Extraction of horizontal cross-section from image

Thresholding of individual cross-sections using Eq. (1)

Conversion of cross-sections into 2D image

kern1= {0, −0.1, 0}; kern2 = {−0.35, 1, −0.35}

⨂

Figure 7: Flow chart of the proposed vessel segmentation technique
based on line cross-sections.

well known OTSU thresholding technique can be applied to
obtain binary vessel tree.

For the extraction of blood vessels with EEED, a retinal
image is first convolved with a large Gaussian blurring kernel.
The blurred image will lose all the details contained in the
retinal image and will contain only the illumination pattern.
Once a Gaussian blurred image is obtained from a retinal
image, another image is formed out of the two images. The
resulting image is actually a minimum of the two images.
The blood vessels in a retinal image normally have intensities
lying in the lower range. The minimum image enhances
this fact; that is, the blood vessels have the lowest values
with enhanced edges in comparison with background. The
background in the minimum image is completely diffused
suppressing information about the drusen and the optic disc.

The minimum image is then blurred a little bit, normally
with a Gaussian blurring technique with a small kernel. This
process helps to develop continuity in the broken pieces
of vessel tree structure. The blurred-minimum image is
then convolved with a LOG filter with a kernel size of (9,
9). The resultant image is contrast enhanced and contrast
reversed withmore prominent vessel trees andmore uniform
background. If the retinal image contains noise comparable
with the contrast of vessel trees, then the noise will also
be enhanced. Due to contrast reversal, the vessels now look
bright with boundaries having dark edges. This is a typical
feature which appears with the use of LOG filters.

The application of the LOG filter gives an image with
uniform background intensity. This feature is similar to the
use of a homomorphic filter on a retinal image. Due to uni-
form background intensity and the vessel tree having higher
intensities as compared with background, the image is simply
thresholded using any optimum thresholding technique. We
used the OTSU algorithm to obtain optimum thresholding

for the image obtained with the LOG filter. The thresholding
process converts the LOG filtered image into a binary image.
The binary image consists of the blood vessel tree structure
and noise. Some images at this stage have more noise and
some have relatively less.

Noise in the binary images can be eliminated using
a length filtering technique or a noise removal technique.
We developed our own noise removal algorithm for binary
images.The algorithmworks in windows of sizes (𝑥, 𝑥) where
𝑥may vary from 4 to 16. In this algorithm all the pixel values
on the boundary of a window are summed up. If all the
boundary pixels have zero values, that is, the sumof boundary
pixel values is zero, then all the pixels within the window
are deleted. The working of this algorithm gave satisfactory
results. After application of this algorithm the image obtained
contained only the vessel tree structure. This method is fast
and does not involve human intervention at any stage.

To illustrate the EEED technique for vessel tree extrac-
tion, we chose a retinal image as shown in Figure 8(a). This
image was convolved with a Gaussian blurring kernel of 𝜎 =
24. The blurred image so obtained is shown in Figure 8(b).
The minimum of the two images, (image in Figure 8(a) and
image in Figure 8(b)) was computed and the resultant image
is shown in Figure 8(c). The image in Figure 8(c) is a vessel
enhanced image on a nonuniform background. The image
in Figure 8(c) was then convolved with a Gaussian blurring
kernel of 𝜎 = 1. This process helps to develop continuity in
the vessel tree structure; otherwise broken or missing pixels
in the binary vessel tree will be observed.The image obtained
in this process is shown in Figure 8(d).

An optimum threshold computed on the image in
Figure 8(d) does not give an appropriate vessel tree because
the illumination of the background is still nonuniform. To
eliminate this nonuniform background problem, we con-
volved the image in Figure 8(d) with a LOG kernel of size (9,
9). The resulting image is shown in Figure 8(e). This image
is contrast reversed in which the blood vessels have brighter
intensities. The bright vessels have dark edges as well. This
is a typical feature of the LOG filter convolution process.
The background is uniform in the image in Figure 8(e).
An optimum threshold was computed for the image in
Figure 8(e) and the binary image so obtained is shown in
Figure 8(f). The image in Figure 8(f) has binary noise which
is not a part of the vessel tree structure.Thenoise in this image
is undesired.

The noise in the image shown in Figure 8(f) can be
removed using a number of techniques. We applied the
length-filtering technique to remove the binary noise which
is either not a part of vessel tree or a small broken isolated part
of a vessel tree. Length filtering algorithm has been explained
earlier. A window of size (8, 8) was chosen and the noise
removal algorithm was applied to the image in Figure 8(f).
The resultant image is shown in Figure 8(g). The image in
Figure 8(g) has much of the noise removed, but there is some
noise which can still be removed. To remove the rest of the
noise in image in Figure 8(g) we applied the noise removal
algorithm with a window size of (16, 16) and obtained a
completely noise free image, which is shown in Figure 8(h).
The image in Figure 8(h) is the final step in our novel EEED
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(a) (b) (c)

(d)

(g) (h)

(e) (f)

Figure 8: Illustration of a vessel extraction technique by EEED, (a) original retinal image, (b) Gaussian blur of the image in (a) with 𝜎 = 24,
(c) minimum of the images in (a) and (b), (d) Gaussian blur of the image in (c) width 𝜎 = 1, (e) result of LOG filter convolution of size (9, 9)
with image in (d), (f) optimum threshold of the image in (e), (g) application of noise deletion filter of window size (8, 8) to image in (f), (h)
application of noise deletion filter of window size (16, 16) to image in (g).

technique for vessel tree extraction. The novel technique for
vessel extraction presented in this section has been tested on
30 retinal images of varying illumination and contrast, and
the success rate without human intervention was (88-89%)
and with human intervention was (90 to 91%). One of the 30
images required human intervention for filtering the image to
produce the best result. We have found that EEED technique
gave excellent results. For normal retinal images, EEED gave
improved results and the success rate varied in the range (96
to 98%) when tested on 105 retinal images.

4. Blood Vessel Extraction (BVE) Using
Modified Matched Filtering (MMF)

In this section matched filtering method for extraction of
blood vessels is used with preprocessing in order to get
improved quality of the extracted blood vessels. The impor-
tant feature in our method is that it produces good quality
totally automatic BVE, which can be useful for the eye care
professionals for patients screening, treatment, evaluation,
and clinical study. In this approach the image background
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at corners is first modified and then a homomorphic filter is
applied to smooth the images. This will enhance the contrast
of the images in comparison with the original images. Since
we are interested in enhancing the signal of the blood vessels
which lie in the range below the threshold value, the image
is automatically thresholded using the OTSU algorithm
keeping the information in the image below the threshold
value and assigning the rest of the image the same value as
the threshold. This will greatly enhance the contrast of the
blood vessels. We have done this because our required data
lies towards the lower end of the image data spectrum. This
act has greatly enhanced the contrast of the image. Then this
image is subjected to the matched filtering technique and
thresholded automatically byOTSU algorithm. 80 to 85%was
the success rate in obtaining correct vessel trees by MMF
without human intervention. An improvement of nearly 2%
occurs if human intervention is involved. This is because
by assigning threshold value to higher intensity spectrum
leads to a decrease in within-class variance and an increase
in between-class variance. Then matched filtering technique
is applied to that enhanced image and resultant image is
thresholded automatically. This method is fast and totally
automatic.Thework presented in this section ismore relevant
to the work reported in [1, 10, 18, 19].

A matched filter technique has been presented for the
purpose of enhancement of blood vessels in retinal images
[19]. This technique is fully automated for thresholding
purposes in order to get a binary tree of blood vessels. The
method used for automatic threshold selection is known as
theOTSUmethodof threshold determination [18].Necessary
modifications have been suggested in order to achieve better
results. The physical concept behind this method is summa-
rized as follows.

Three properties of the blood vessels in retinal images
may be noted. In a 2D retinal image, blood vessels may have
three possible orientations: one orientation is when the blood
vessels are along the horizontal axis of the image (say 𝑥-axis),
blood vessels may be oriented along the vertical axis (say 𝑦-
axis), or the blood vessels may be at some angle with the
𝑥-axis. The blood vessels at some angle 𝜃 are approximated
by piecewise linear segments. Blood vessels can have small
curvatures with antiparallel curvature edges and these anti-
parallel pairs may also be approximated by piecewise linear
segments.

Blood vessels are darker relative to the surrounding
region in a retinal image due to lower reflectance relative
to the surrounding regions. Blood vessels seem to follow an
invertedGaussian profilewith thewidth of the vessels varying
from 2 pixels to 10 pixels for a standard image.This rangemay
correspond to 36 to 180 microns. To introduce the concept of
matched filtering in retinal images, let us consider (3) which
is used in the theory of communication [22, 32]

𝑠
𝑜
(𝑡) = ∫𝐻 (𝑓) {𝑆 (𝑓) + 𝜂 (𝑓)} ⋅ 𝑒

𝑖⋅2𝜋⋅𝑓⋅𝑡
𝑑𝑓, (3)

where 𝑠
𝑜
(𝑡) is the output, 𝑠(𝑡) is the input with an additive

Gaussian noise 𝑛(𝑡), such that 𝑆(𝑓) = I{𝑠(𝑡)} and 𝜂(𝑓) =
I{𝑛(𝑡)}, where I is the Fourier transform operator and 𝑓 is
the variable in the frequency domain corresponding to the

variable 𝑡 in the time domain.𝐻(𝑓) = I{ℎ(𝑡)} is the transfer
function of the systemwith impulse response ℎ(𝑡). It has been
shown [10] that the filter 𝐻(𝑓) that maximizes the signal to
noise ratio for 𝑠

𝑜
(𝑡) is given by 𝐻opt(𝑓) = I{𝑠(−𝑡)} = 𝑆

∗
(𝑓),

where 𝐻opt(𝑓) is known as the matched filter with impulse
response ℎopt(𝑡) = 𝑠(−𝑡) = 𝑠(𝑡), when 𝑠(𝑡) is an even function.
In a typical communication system, if there are 𝑛 different
inputs 𝑠

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛 received, then these inputs are

passed through a stack of 𝑛 matched filters and the output
with the maximum value is selected.

For the 2D retinal images, 𝑠(𝑡) needs to be defined at the
vessels and may be approximated by an inverted Gaussian
function of appropriate width with Gaussian centred at the
centre of the vessels. As the vessels move away from the optic
disc the width of the vessels narrows down. For the inverted
Gaussian to act as a perfect matched filter for the vessels,
the width of the Gaussian function should also be narrowed
down. As the vessels change their orientation the Gaussian
function needs to be rotated as well. We have suggested
an inverted Gaussian to act as a matched filter for the
enhancement of blood vessels in retinal images. Ideally the
matched filter must have all possible orientations and varying
thickness to enhance vessels with different orientations and
thicknesses. Assuming blood vessels are the signal to be
enhanced, 𝑠(𝑡)may take the form given by

𝑓 (𝑥, 𝑦) = 𝐴{1 − 𝑘 ⋅ exp(−𝑑
2

2𝜎
2
)} , (4)

where 𝑑 is the perpendicular distance between the point
(𝑥, 𝑦) on the vessel and the straight line passing through the
centre of the blood vessel in a direction along its length. 𝜎
corresponds to the spread of the Gaussian intensity profile
of the vessel, 𝐴 is the grey-level intensity of the local
background, and 𝑘 is ameasure of the reflectance of the blood
vessel relative to its neighbourhood. The optimal filter to act
as a matched filter for the vessels may be written as given by.

ℎ (𝑑) = − exp(−𝑑
2

2𝜎
2
) . (5)

The negative sign implies that the vessels are darker than the
background. For simulation purposes, (5) for the matched
filter in its 2D form can be written as given by.

𝐹 (𝑥, 𝑦) = − exp(−𝑥
2

2𝜎
2
)

𝑦
 ≤

𝐿

2
. (6)

This will act as an ideal matched filter for a segment of the
vessels lying along the 𝑦-axis and 𝐿 is the length of the
vessel segment for which the vessel is assumed to have a
fixed orientation. The matched filter above is valid only for a
segment of the vessels of certain Gaussian width. This filter
must have different values of 𝜎 to act as a matched filter
for different widths of the vessels lying along the 𝑦-axis. For
vessels other than along the 𝑦-axis, the filter above needs to
be rotated to act as a matched filter for vessels with different
orientations. In our simulation, we used only one value of 𝜎
but rotated the filter from 0∘ to 180∘ with a step size of 9∘.
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The application of matched filtering with these orientations
generates 21 images. Each shows vessel enhancement for a
particular orientation of the filter. These images are then
combined retaining the maximum value of the pixels among
the 21 images. The resultant image gives a vessels enhanced
version of the retinal image.

It has been observed that by changing the width of the
matched filter, there is a considerable effect on the thickness
of the extracted blood vessels. If the filter is very wide, then
the blood vessels extracted will be thicker in size as compared
with their original width in the image and vice versa. Kernel
with width ranging from 𝑤 = 6 to 𝑤 = 8 is the most accurate
range for vessel extraction in comparison with the original
thickness of the blood vessels.

Figure 9(a) shows an image for blood vessel extraction.
This image was processed with a matched filter at 𝑤 = 6 and
the response of the matched filter is shown in Figure 9(b).
Figure 10 shows the intermediate stage in which the matched
filter response for𝑤 = 6 is shown at angles of 0∘, 45∘, 90∘, and
135∘ for the image shown in Figure 9(a). It shows how blood
vessels at different locations in an image are enhanced with
the rotation of the matched filter kernel.

The results described in Figure 9 are for the suitable
range of width of matched filter kernel, but if we increase
or decrease the width of the matched filter kernel, then the
results obtained are not as good as in the previous case. The
width of the Gaussian is determined by 𝜎 and the sampling
is determined by 𝑤. Appropriate values of both 𝜎 and 𝑤 are
required to obtain optimummatched filter results.Theoverall
response for the matched filter at 𝑤 = 2, 4, 10, 12 is shown in
Figure 11.

It was also found that by changing the length of the
kernel, there was an adverse effect on the quality of image
obtained after the matched filtering technique. Figure 12(a)
is the maximum matched filter response with 𝑤 = 6, but
this time length along the 𝑦-axis has been changed from
(−𝑤, +𝑤) to (−2𝑤, +2𝑤); that is, the length of kernel has
been doubled while the length along the 𝑥-axis remained the
same as (−𝑤, +𝑤). Figure 12(b) shows the result when the
length along the 𝑦-axis has been halved from (−𝑤, +𝑤) to
(−0.5𝑤, +0.5𝑤).

In order to get the coordinates of the blood vessels we
need to threshold the image obtained after the matched
filtering. The selection of an adequate threshold of the grey-
level for extracting objects of interest frombackground is very
important. Most of the methods used to threshold the image
automatically were based on the image histogram. In the ideal
case the histogram for the image should be bimodal. The two
peaks represent the background and the foreground. Ideally
there is a deep and sharp valley between these two peaks,
but practically, for most grey-level images, it is difficult to
detect the exact valley bottom precisely, especially when two
peaks are unequal in height producing no trace of a valley.
If the image histogram is unimodal, such methods do not
work. The algorithm used here for automatic thresholding
is called OTSU [18]. This method is based on discriminant
analysis. In this method threshold operation is regarded as
the partitioning of the pixels of an image into two classes.

Let there be 𝐿 grey-levels in a retinal image [1, 2, . . . , 𝐿].
Let 𝑛
𝑖
be the number of pixels at level 𝑖. The total number of

pixels in the image is then given by 𝑁 = 𝑛
1
+ 𝑛
2
+ ⋅ + 𝑛

𝐿
.

The probability of the 𝑖th grey-level is given by 𝑝
𝑖
= 𝑛
𝑖
/𝑁,

where ∑𝐿
𝑖=1
𝑝
𝑖
= 1. Let us assume that we want to divide the

grey-levels in the retinal image into two classes C1 and C2
to separate the background from the foreground, where C1
denotes pixels with levels [1, 2, . . . , 𝑘] and C2 denotes pixels
with levels [𝑘 + 1, 𝑘 + 2, . . . , 𝐿], where 𝑘 is the grey-level
value that thresholds the background from the foreground.
In retinal images information about the blood vessels falls
in the category of lower grey-levels. The probability of class
occurrence and class mean levels are given, respectively, by
the following equations:
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where 𝜔
1
, 𝜔
2
is the probability of class occurrences of C1 and

C2, respectively, and 𝜇
1
, 𝜇
2
are the class means for C1 and

C2, respectively. 𝜇
𝑇
= ∑
𝐿
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𝑖
is the total mean level of the

original image.
It is easy to establish 𝜔
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To determine the “goodness” of the threshold at level 𝑘,
we can use the following discriminant criterion measures or
the measures of class separability used in the discriminant
analysis [31]:

𝜂 =
𝜎
2

𝐵

𝜎
2

𝑇

, (9)

where
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𝑇
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The relationship between 𝜎2
𝐵
and 𝜎2

𝑇
is given by

𝜎
2

𝐵
+ 𝜎
2

𝑤
= 𝜎
2

𝑇
, (11)
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(a) (b)

Figure 9: Response of matched filtering on a typical retinal image, (a) retinal image, (b) maximum matched filter response of image in (a).

(a) (b)

(c) (d)

Figure 10: Matched filter results when kernel with 𝑤 = 6 is applied to the image in Figure 1(a) for four different orientations, (a) image
obtained when matched filter kernel was at an angle 𝜃 = 0∘, (b) image obtained when matched filter kernel was at an angle 𝜃 = 45∘, (c) image
obtained when matched filter kernel was at an angle 𝜃 = 90∘, (d) image obtained when matched filter kernel was at an angle 𝜃 = 135∘.

where 𝜎2
𝑤
is given by

𝜎
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2

𝑇
are the between-class variance and the total

variance of levels, respectively, where 𝜎2
𝑤
is defined as within-

class variance. It should be noted that 𝜎2
𝑤
and 𝜎2
𝐵
are functions

of the threshold 𝑘where 𝜎2
𝑤
is based on second order statistics

while 𝜎
2

𝐵
is based on the first order statistics and 𝜎

2

𝑇
is

independent of 𝑘. Thus the problem is to find the optimum

value of 𝑘 labelled as 𝑘∗ that maximises 𝜂 or equivalently 𝜎2
𝐵
.

We can write

𝜎
2

𝐵
(𝑘
∗
) = max
1≤𝑘<𝐿

[𝜎
2

𝐵
(𝑘)] . (13)

Once the value of 𝑘∗ is determined, the retinal image is split
into two levels at the value of 𝑘∗. This method of finding the
threshold has also been tested for multilevel thresholding in
order to calculate a suitable threshold for the replacement
of black regions at corners by a suitable grey-level as shown
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(a) (b)

(c) (d)

Figure 11: Effect of change in width (𝑤) of the matched kernel on retrieved images, (a) 𝑤 = 2, (b) 𝑤 = 4, (c) 𝑤 = 10, (d) 𝑤 = 12.

(a) (b)

Figure 12: Matched filter response at different values of length of kernel, (a) length of kernel = 2𝑤, (b) length of kernel = 0.5𝑤.

in Figure 9(a). The black regions at corners are not part of
the actual retina. The algorithm worked well by splitting the
image into three classes but was unable to classify that darker
region into a single separate class.

In order to extract the coordinates of blood vessels in
the matched filtered image we have applied the algorithm
described earlier also known as OTSU for thresholding.
Results have suggested that if we use an image in which
the surrounding dark part (corners) is very black, then
the threshold selected by the algorithm is not very good.
However, if we assign those black regions by a value which

is close to image background, then much better results are
obtained. The image in Figure 13(a) is modified when the
black surrounding corners are replaced with the image mean
value.This information is gathered from the image histogram
which gives a distinct peak for the background.Themodified
image is shown in Figure 13(b). Figures 13(c) and 13(d) show
the results of automatic thresholding on matched filtered
output of the images in Figures 13(a) and 13(b), respectively.
If one wants to reveal further detail in the image, for example,
if the blood vessels have very poor contrast against the
background, the threshold decided by the algorithm can be
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(a) (b)

(c) (d)

Figure 13: Effect of image background on vessel tree extraction, (a) original Image, (b) background modified image, (c) automatic
thresholding of image in (a), (d) automatic thresholding of image in (b).

further reduced manually and one can see the results, but in
most cases this will increase the noise in the image.

It has been observed that a better threshold decision takes
account of the data of the surrounding corners as well. If
the data at these edges is just like the image data, then even
better results can be achieved. The reason for better results
with modified surroundings can be explained on the basis
of (11) which shows that the sum of squares of variances
“between the classes” and “within-class” is a constant and
is independent of the threshold 𝑘. In discriminant analysis,
within-class variance shows the scatter of samples around
their class expected value. Thus by replacing the small value
pixels from the surroundings by a higher value the variance
within the class will be reduced. In an unmodified image
the variance within the class is high while after modification
with higher values at these pixels the variance within the class
becomes lower. Since the sum of two variances (within-class,
between the classes) is constant if the within-class variance
is high then the between-class variance will be small and
vice versa. Thus by performing the above action of intensity
modification at the surrounding pixels we have actually
reduced within-class variance and consequently between-
class variance increases. From the results of Figure 13(d) we
can see that we can extract the coordinates of the main blood
vessels in retinal images successfully.

The method for the extraction of blood vessels is further
modified to improve the quality of the extracted blood vessel

tree. In this approach, the image background at corners is
modified and then a homomorphic filter is applied to obtain
smooth image. This will enhance the contrast of the image
in comparison with the original. Since we are interested in
enhancing the signal of the blood vessels which is lying
in the range below the threshold value, the image is auto-
matically thresholded using the OTSU algorithm keeping
the information below the threshold value and giving the
rest of the image the same value as the threshold. This has
greatly enhanced the effect of the blood vessels. Figure 14(a)
shows the original image. Figure 14(b) shows the same image
with modified background. Figure 14(c) shows the image
obtained as a result of application of homomorphic filtering,
and Figure 14(d) shows the image obtained by automatic
thresholding of the image in Figure 14(c) by the OTSU
method keeping the data of the image below the decided
threshold unchanged and the data above the threshold being
replaced by the threshold value. We have done this because
our required data lies towards the lower end of the image
data spectrum. This act has greatly enhanced the contrast
of the image. Then this image is subjected to the matched
filtering technique and thresholded automatically by OTSU.
100% correct results have been obtained for thresholding the
image by this method, and there is no need to play around
with the threshold value for better results as we needed to do
with the conventional matched filteringmethod because now
there is a big difference between background and signal; that
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(c) (d)

(b)(a)

Figure 14: Preprocessing steps for vessel tree extraction, (a) original image, (b) image with modified background of the image in (a), (c)
image after homomorphic filtering of image in (b), (d) image after OTSU thresholding on the image in (c).

is, between-class variance is increased and at the same time
within-class variance has been decreased. The whole process
is automated. Figure 15(a) shows the result obtained with
the conventional matched filtering method, and Figure 15(b)
shows the result obtained with the modified matched filter
method.

It has been observed that along with the enhancement
of blood vessels in the abnormal images some other features
are also sometimes enhanced and it is essential to eliminate
them. The method used to filter them out is called length
filtering. In length filtering a single identity is assigned
to a single piece of connected objects and the number of
pixels in each connected objects is determined and so they
can be filtered easily. The effect of length filtering is shown
in part (c) and (d) of Figure 15. We have tried to prevent
information (other than blood vessels) being enhanced with
the use of matched filters by making an effort to enhance
the contrast of the blood vessels and at the same time
to reduce the contrast of background features. In some
cases, when the lines are small and disjoint, it is possible
to filter them out completely but when they combine to
form bigger structures then it is difficult to eliminate them.
In Figure 15(b) the small lines in the image can easily be
removed by the length filtering technique, but it is very
difficult to clear the lines in the image in Figure 15(a)
as they combine together to form structures with large
numbers of pixels and any effort to clear those structures

may lead to the loss of blood vessel information. Figure 15(c)
shows the image in Figure 15(a) after length filtering at 136
pixels, and Figure 15(d) shows the image in Figure 15(b)
after length filtering at the same number of pixels.

It has been found that if an image contains thin blood
vessels, then by using a kernel of small width these blood
vessels can be enhanced. One can try kernels of different
widths, and a detailed tree of blood vessels can be extracted
by combining the responses at each pixel from the images
obtained by using kernels of varying widths. The results are
shown in Figure 16. Figure 16(a) shows the original image.
Figure 16(b) shows the blood vessel tree using single kernel of
length 4 andwidth 10, and Figure 16(c) shows the blood vessel
tree obtained using 4 different kernels of different widths and
lengths. Figure 16(d) shows the tree extracted with kernel of
length 2 and width 4 (without length filtering) overlapped
with the unprocessed image. At certain points where the
width of the blood vessels is more than the width measured
by thematched filteringmethod, one can see black lines along
the blood vessels, and where the width is less in the original
scene than the width measured by the matched filter, one can
see a black line in the central region with as outer region of
low intensity which shows the enhanced width due to the
matched filtering method. At the points where the matched
filter correlates exactly with the width of vessels one can
observe an exact overlap. It has also been observed that if
the image is first processed with a high pass filter followed
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Figure 15: Comparison of vessel tree extraction with conventional matched and modified matched filtering techniques, (a) image obtained
with conventional matched filtering approach, (b) image obtained with modified matched filtering technique (thresholded image obtained
after processing with homomorphic filter and matched filter), (c) image obtained after length filtering of image in (a), (d) image obtained
after length filtering of image in (b).

by matched filter method, then superior results are achieved.
This is because the high pass filter can greatly enhance the
edges of the vessels increasing the contrast of the vessels
against background.

5. Blood Vessel Extraction (BVE) with
Continuation Algorithm (CA)

One of the most frequently cited technique, for BVE is a
matched filtering technique.This technique has its own draw-
backs.The size of the kernel formatched filtering technique is
very important. One kernel is not enough to extract thewhole
tree without significant noise. Moreover, extraction of thick
and thin and intermediate sized vessels requires different
sized kernels in the matched filtering technique. Different
binary images obtained with different sized and different
orientation kernels in the matched filtering technique are
combined to give one binary vessel tree image, but in addition
to this some noise filtering techniques are always required
to filter out the segments which are not part of a vessel
tree. The full automation of matched filtering technique
requires careful selection of kernels of different sizes and
orientations and of course a noise filtering technique as well.
Even the best possible result withmatched filtering technique
has some drawbacks. One of the fundamental drawbacks

is a discontinuity in the vessel tree especially where the
vessels are very thin. This is because of the smaller signal
to noise ratio for weaker or thinner vessels. Due to this
discontinuity the application of any noise (broken segments
of vessels) removal or length filtering technique would result
in a vessel tree image which is not complete especially on the
sides where thin vessels end. Sometimes thin vessels provide
more important information to an ophthalmologist about the
progression of a disease.

The other vessel extraction techniques as mentioned in
[1–31] suffer frommore or less similar defects especially when
concerned with thin vessels. The broken thin vessels in the
binary vessel tree if joined could give us a complete vessel
tree, and then the other broken parts which are not the part of
blood vessels can easily be removed using any noise filtering
technique, for example, a length filtering technique. We felt
the need to develop an algorithm that could join the broken
parts of the vessel tree segments to develop continuity and at
the same time identifying the noisy bits in the image for their
removal if necessary.

In this section we present a novel technique for the
development of continuity between the broken thin vessel
segments in a binary vessel tree image avoiding the joining of
broken segments which are not part of the actual vessel tree.
In the proposed technique called Continuation Algorithm
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Figure 16: Results with modified matched filtering technique (a) original image, (b) image formed using one kernel, (c) image formed using
4 kernels of different lengths and widths, (d) image formed by overlapping the scene in (a) and the blood vessel tree in (c).

(CA) we generate two binary tree images of the given retinal
image and process them to obtain a noise free continued
segments vessel tree.The two binary images can be generated
using matched filtering techniques [1, 10, 18, 19].

Theproposed continuation algorithm requires two binary
vessel trees from a given retinal image. We have used the
matched filtering technique for the extraction of binary
tree as it provides appropriate control to obtain two pre-
requisite images for our proposed continuation algorithm.
Other techniques for blood vessel extraction as cited in
the reference list may be used provided two conditions are
satisfied by the binary tree images: (1) the first binary image
(refer to it as reference binary image) should contain thick
blood vessel tree structure which is obtained with matched
kernel of relatively larger size. The reference image would
contain only thick vessels and no noise, that is, no broken
segments. If there are any broken segments length filtering
or any other noise filtering technique could be used. (2)The
second binary image (refer to it as test image or image2)
should contain thick as well as thin vessel tree structure as
it is obtained with matched filtering the retinal image with a
smaller kernel size. As the image2 contains thin vessels, it also
contains a lot of noise.

A typical low quality abnormal retinal image chosen for
simulation using CA is shown in Figure 1(a). The image
chosen for the simulation is abnormal in the sense that it
consists of drusen, it is a poor quality image in terms of
contrast, the contrast of thin vessels is extremely poor, and
it is hard to visualise the ending points of thin vessels being
submerged in the background noise. Two binary vessel trees
are extracted from a retinal image using the matched filter
technique. One binary tree image called the reference image
consists of a thick vessel tree and can be made free of noise
by the application of a length-filtering algorithm if required.
The reference image is shown in Figure 17(a). The second
binary tree image (called image2) required by the algorithm
consists of thick as well as thin vessels. A lot of noise appears
in the image as a result of the application of matched filtering.
This image is shown in Figure 17(b). The noise in this image
cannot be filtered out using a length-filtering technique as
most of the thin vessel structures will also be filtered out.
Matched filters with different kernel sizes and with different
orientations were used to obtain the two binary vessel trees.
Themain drawback of the matched filtering technique is that
it is poor at extracting noise-free thin vessels.
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(a) (b)

Figure 17: Display of two binary images needed for Continuation Algorithm, (a) reference image obtained with matched filtering technique
and thresholded with OTSU, (b) second binary vessel tree image obtained with smaller matched filtering kernel and thresholded with OTSU.

Thebinary reference image ismultiplied by a large integer,
say 100. The pixel values in the image are either 0 or 100. For
each pixel (𝑖, 𝑗) in the reference image where the value is zero
that is, refimg (𝑖, 𝑗) = 0, and for the same pixel (𝑖, 𝑗) in the
second binary image where the value is 1, that is, img2 (𝑖, 𝑗) =
1, a sum of pixel values is calculated as

sum = refimg (𝑖, 𝑗 + 1) + refimg (𝑖 + 1, 𝑗 + 2)

+ refimg (𝑖 + 1, 𝑗 + 3)

+ refimg (𝑖 + 1, 𝑗 + 1) + refimg (𝑖 + 2, 𝑗 + 3)

+ refimg (𝑖 + 2, 𝑗 + 1)

+ refimg (𝑖 + 3, 𝑗 + 2) + refimg (𝑖 + 3, 𝑗 + 1)

+ refimg (𝑖 + 1, 𝑗) .

(14)

If the sum ≥ 100, then the pixel value in the reference image is
set to 100, that is, refimg (𝑖, 𝑗) = 100. This process is repeated
indefinitely unless all the zero value pixels in the refimg find
no unity value pixel in the img2 for all (𝑖, 𝑗) in the refimg.
The algorithm works in four steps. First it extends the tree in
the reference image from top to bottomusing the information
from the second binary image.The tree extension obtained in
the first step is shown in Figure 18(a). The vertically flipped
version of the image shown in Figure 18(a) is then passed
to the algorithm. The image after the second application
of the algorithm is shown in Figure 18(b). The image in
Figure 18(b) is then flipped horizontally and the algorithm
is applied. The resultant image is shown in Figure 18(c).
The image in Figure 18(c) is then flipped vertically and after
the fourth application of the algorithm the resulting image
is filliped horizontally and is shown in Figure 18(d). The
comparison of the two images (image in Figure 17(b) and
image in Figure 18(d)) reveals that our proposed continuation
algorithm gives reasonably accurate vessel tree structure of a
poor quality retinal image. The algorithm has been tested on
30 images for vessel tree extraction and the performance has
been found to be satisfactory.

6. Discussion and Comparison of
Proposed Vessel Extraction Techniques

In this paper, we have presented four vessel tree extraction
techniques. Each technique was tested on the same set of
30 highly abnormal poor quality retinal images. The four
techniques have also been evaluated on 105 normal retinal
images. Most of the techniques in the literature can work
well on normal images but fail to perform well on abnormal
retinal images. In this paper, we have focussed mainly on
the abnormal retinal images. A set of four typical abnormal
images are shown in Figures 1(a), 4(a), 9(a), and 14(a). The
image in Figure 1(a) was processed by all the four techniques
and their results have been reproduced for comparison in
Figure 19. Images in Figures 1(a) and 4(a) were processed
with ILCS, image in Figure 1(a) was processed by EEED,
images in Figures 1(a), 9(a), and 14(a) were processed by
MMF technique and the image in Figure 1(a) was processed
with CA. We have chosen to present the image in Figure 1(a)
as a typical abnormal retinal image for comparison.

The four techniques in the order of increased simplicity
are MMF, ILCS, EEED, and CA. MMF being relatively more
complex has been discussed in greater detail and three retinal
images have been presented to support the technique. ILCS
which is comparatively less complex has been demonstrated
with two retinal images and the rest of the two techniques
EEED and CA being much simpler have been supported by
one image each. The images obtained with EEED and CA
shown, respectively, in Figures 19(b) and 19(d) are superior
in quality to the images obtained with ILCS and MMF
shown, respectively, in Figures 19(a) and 19(c). The vessel
tree structure obtained with ILCS (Figure 19(a)) contains
more isolated segments or broken vessels whereas the broken
vessels in the image Figure 19(c) by MMF are relatively less.
The image in Figure 19(b) by EEED contains a few broken
pieces of vessels and the image in Figure 19(d) by CA contains
almost no broken vessel part. This is the beauty of CA
method.
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Figure 18: Application of Continuation Algorithm to a typical poor quality retinal image, (a) image obtained from the image in Figure 17(a)
in the first pass of continuation algorithm, (b) image obtained in the second pass of continuation algorithm applied on the vertically flipped
version of the image shown in (a), (c) image obtained in the third pass of continuation algorithm applied on the horizontally flipped version
of the image shown in (b), (d) image obtained in the fourth pass of continuation algorithm applied on the vertically flipped image in (c) and
shown after horizontal flip.

The MMF technique was found to be computationally
more expensive.The four techniques (ILCS, EEED,MMF, and
CA) were run for the image in Figure 1(a) on the machine:
Pentium(R) D CPU 3.4GHz, 2GB of RAM, Microsoft
Windows XP Professional Service Pack 2 Version 2002 and
Mathematica 4.1 in a stand-alone mode. The measured
computational time was 1min. 14 seconds 200 milliseconds
for ILCS, 1min. 1 second 99 milliseconds for EEED, 1min.
49 seconds 460 milliseconds for MMF, and 40 seconds 69
milliseconds for CA. The four techniques can be arranged in
the order of increasing time consumption asCA, EEED, ILCS,
andMMF. For rest of the 29 images the trend was maintained
but with small relative differences in measured time values.

The four images shown in Figure 19 were presented to
three expert human graders for evaluation purposes. Their
averaged ratings for the images in Figures 19(a), 19(b), 19(c)
and 19(d), respectively, were 76%, 88%, 82%, and 97%. For
the rest of the images, CA was always evaluated in the range
(95 to 99%), EEED was always evaluated in the range (88
to 91%), MMF was always evaluated in the range (80 to

85%), and ILCS was evaluated in the range (74 to 78%).
These results were found when the relevant codes were run
in fully automatic mode requiring no human intervention
during the processing time. It has also been observed that
the techniques ILCS and MMF can be improved by 1 to
2% if human intervention is involved for some images. The
techniques CA and EEED were found to be fully automatic
and even a human intervention could not improve the results
obtained with them. The four techniques in the order of
improved automation may be listed as MMF, ILCS, EEED,
and CA. These techniques when analysed on normal retinal
images gave improved results: (99% to 100%) for CA, (96% to
98%) for EEED, (94% to 96%) forMMF, and (88% to 93%) for
ILCS. It is worth noticing that even the results of the expert
human graders varied by 2.5% and we averaged their results
for comparison with our results.

Most of the techniquesmentioned in [1–31] extract binary
vessel trees of retinal images embedded in noise. Such
techniques extract the vessel trees along with noise like the
one shown in Figure 17(b). Some types of noise filters are then
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Figure 19: Display of blood vessel trees obtained with four different techniques, (a) vessel tree image obtained using ILCS technique, (b)
vessel tree image obtained using EEED technique, (c) vessel tree image obtained using MMF technique, (d) vessel tree image obtained using
CA.

used to remove noise but at the cost of losing parts of the
vessels which are very thin. The reason is that the very thin
parts of the vessel trees are usually treated as discontinued
segments by the existing noise removal techniques.The trade-
off in removing the noise is to lose parts of the vessel trees
which are very thin and the resulting vessel tree structures
do not represent the true picture. The existing vessel tree
extraction techniques either give up the extraction of thinnest
part of vessel trees like the image shown in Figure 17(a) or
produce images with a lot of noise as shown in Figure 17(b).
The proposed continuation algorithm presents a reasonable
solution to these problems. It retrieves noise free vessel tree
images and at the same time preserves the thinner vessel
segments in the vessel trees.

Some of the existing vessel tree extraction techniques
[1–32] produce reasonable tree images for only those reti-
nal images which are good in quality, in contrast and in
appearance and in which the vessel tree can be perceived
easily with naked eye. The existing techniques do not seem
to give reasonable solution when applied to the poor quality
images like the ones as shown in Figure 1. We deliberately
chose an image with poor quality, with poor contrast, and
with poor appearance in which the thinner parts of the

vessel tree structure are hardly visible with naked eye. The
image (Figure 1(a)) also contains a lot of drusen which act
as embedded noise. In the presence of these abnormalities
in the processed image, the proposed method based on
continuation algorithm seems to give accurate results in the
extraction of full tree structure retaining the thinner vessel
parts and at the same time removing the noise as its inherent
capability. The technique does not require the application of
any noise removal technique during its processing steps if the
matched filter is carefully chosen in obtaining the reference
image used in the proposed technique.

The proposed continuation algorithm ensures continuity
in the extracted vessel trees till the end of the thinner parts
of the vessel segments. This is the first main characteristic of
the CA technique. The existing vessel extraction techniques
find it hard to ensure this characteristic and a discontinuity
is observed especially with poor quality and noisy images.
The built-in feature of the continuation algorithm is such
that it removes the noise during its processing steps and
does not require any postprocessing which is its second
main characteristic. This type of characteristic is lacking in
existing techniques and some existing techniques may add
noise in the vessel tree images during processing and require
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some postprocessing for noise removal. If retinal images
are available from the same Fundus camera, the matched
filtering kernel used in obtaining the reference image will
be fixed and the continuation algorithm can work without
any human intervention. This will also exempt the user from
any sort of pre-processing. This feature is also unique to the
proposed CA technique. That is, CA does not require any
pre- or postprocessing in the sense required by other vessel
extraction techniques.

7. Conclusion

Four different methods for BVE have been reported in this
paper. Filtering of noise (removal of nonvessel segments) is
an essential part ofmany BVEmethods for clean outputs.The
CAmethod does not require any sort of filtering at any stage.
The other three methods (ILCS, EEED, MMF) and most of
the methods given in the references require some sort of
filtering to remove the broken vessel pieces, pieces of leftovers
of other removed segments which were not vessels and the
background noise.

We have mentioned the success rate for each of the four
techniques. If the success rate for a given technique is, for
example, 95%, then itmeans that only 5 pixels out of 100 pixels
differed from the averaged ground truth image constructed
by the three expert human graders. The success rate of 95%
does not mean that a particular technique worked only for
95 images out of 100. All the four techniques worked for
all the test images including 30 abnormal images and 105
normal retinal images but with different accuracies. Results
of the three expert human graders in the form of ground
truth images were found to vary by a maximum of 2.5%.
The interpretation of our success rate is different from the
meaning of the success rate used in the literature.

Two noise removal techniques were developed to remove
noise from the final binary vessel trees. One was the length-
filtering technique and the other was a noise removal algo-
rithm. Results have been presentedwhich indicate the perfor-
mance of these noise removal techniques. When employing
a length filter technique a threshold value is passed to
the algorithm. Nonvessel structures having pixel values less
than the threshold value are deleted. The appropriate value
for the threshold has been found to vary from 10 to 50
depending upon the noise level in the input retinal image.
From automation point of view a value of 50 for the threshold
gives good results. In the length filtering algorithm the
isolated structures in the binary vessel tree are grouped and
the number of pixels in each group is computed. Groups with
number of pixels smaller than a threshold are removed. The
noise removal algorithm works in an entirely different way.
A square window of size (𝑥, 𝑥) pixels is centred at each pixel
position in the binary vessel tree. If all the boundary pixels
are zero, then the data within the window is all set to zero.
The appropriate window sizes vary from (8, 8) to (16, 16).
This algorithm was found to give satisfactory results, and the
validity has been established on 30 abnormal retinal images
and 105 normal retinal images. The noise removal algorithm

is computationally less expensive than the length-filtering
algorithm.

The most commonly discussed method in the literature
is matched filter method. We have suggested a modification
to the existing method that gives better results as compared
with the results obtained using the ordinary or conventional
matched filtering technique. Ourmethod ofmatched filtering
includes some preprocessing of the retinal images. In the
ordinary or conventional method, a matched filter is directly
convolved with a retinal image, which also enhances nonves-
sel structure in the retinal image and gives rise to noise in the
binary vessel tree structure. In our method, homomorphic
filtering is first applied to the retinal image. A threshold value
is computed for the image using the OTSU thresholdmethod
and all the data in the image greater than the threshold is
replaced by the threshold value. The resulting image may
have uniform background illumination with vessel structure
more enhanced as compared with the preprocessed retinal
image. A matched filtering technique is then applied to
extract the vessel tree structure. A threshold value is then
computed using the OTSU method and a binary vessel tree
is produced with reduced nonvessel structure in the image.
The modifications we have suggested have greatly improved
the vessel tree structure as comparedwith that obtained using
only the conventionalmatched filter technique. Drawbacks of
using only one matched filter to recover the vessel tree have
been discussed. We have also introduced a multimatched
filtering technique in which a preprocessed retinal image
is convolved with matched filters of different kernel sizes
and corresponding binary vessel tree images are combined
at the end. The resulting image has thick and thin vessels
recovered precisely. The results reveal that the modified
matched filtering technique could be a promising technique
for BVE in retinal images. Kernels of different lengths and
widths with all possible orientations (with a minimum step
of 9∘) should act as matched filters for a given retinal image.
The matched filtered images are then combined to construct
vessel tree structures. Preprocessing of retinal images and
post processing of uncleaned binary trees are the important
ingredients of vessel tree extraction process byMMFmethod.

In the continuation method two binary vessel trees using
matched filtering techniques are used. One of the binary
vessel tree images contains only thick vessels and is noise
free which we named as the reference image. The second
binary vessel tree image contains thick vessels, thin vessels,
and a lot of noise. The two binary images are used in
the developed algorithm. The proposed method extends the
vessel tree in the reference binary image with the help of the
other binary vessel tree structure. This process is repeated
four times for different orientation of the images generated
from the reference imagewith the application of continuation
method. This process extends the vessel tree in the reference
image according to the vessel tree in the second binary
image except where the nonvessel structure (noise) occurs.
The final vessel tree obtained from the reference image with
successive applications of the continuation algorithm is an
exact copy of the second binary vessel tree image except
that the nonvessel tree structure is absent. This image has
thick and thin vessel tree structures and is noise free. This
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technique does not require noise filtering at any stage as
required by other vessel tree extraction methods. Most noise
filtering techniques also filter out some parts of the vessel tree.
We have tested our continuation method on 30 poor quality
abnormal retinal images and on 105 normal (good quality)
retinal images and found the technique to work satisfactorily.
The success rate of the CA method was 95% to 99% when
tested over 30 abnormal retinal images which approach to 99-
100% for normal retinal when tested over 105 normal images.
The technique is superior to existing vessel tree extraction
techniques and the other three techniques (ILCS, EEED, and
MMF).

We conclude that the four techniques for vessel tree
extraction from retinal images are good additions to the exist-
ing vessel segmentation techniques and the two techniques:
EEED and CA, are especially important as they satisfied the
human graders who recommended these two techniques for
BVE from retinal images on commercial grounds.
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