

Supplementary Material

1 COREGISTRATION DETAILS

1.1 Intra-subject registration.

Two-step registration was performed to coregister subject EPI data to the same template space. A wild-type mouse from the middle age group was arbitrarily chosen as the group template. To improve coregistration accuracy, each subject's mean EPI image was downsampled from $256 \times 256 \times 2$ voxels to $128 \times 128 \times 2$ voxels to match the resolution of their corresponding T_2 -weighted image. The downsampled slices were then copied to an empty array of the same dimension as their corresponding T_2 -weighted image, and the z-index for each EPI slice was matched to its corresponding T_2 -weighted image z-index. A mask of the brain was created manually using FSL's fsleyes and then applied to each downsampled mean EPI image using fslmaths. A coplanar T_2 -weighted image was created using the two T_2 -weighted coronal slices that were coplanar to the EPI slices, with all other slices set to zero. A 2D rigid coregistration was then performed using FSL's flirt tool to align each subject's EPI to their T_2 -weighted image and the transformation matrix T_1 was saved.

1.2 EPI to group template registration.

The T_2 -weighted image for each subject was registered to the group template T_2 -weighted image using FSL's flirt tool with 9 degrees of freedom. The resulting transformation matrix T_2 was saved. The transformation matrices T_1 and T_2 (corresponding to subject EPI \rightarrow subject T_2 -weighted coplanar, and subject T_2 -weighted image \rightarrow group template, respectively) were then concatenated and applied to each subject's 4D EPI data to register to the group template.

1.3 Coregistration quality assurance.

The EPI data quality and coregistration accuracy were checked for each subject. Subjects with poor coregistration results or excessive artifacts in the EPI image were removed. To quantitatively measure goodness-of-fit of each subject to the group template, the mutual information (MI) between the coregistered T_2 -weighted coplanar image and the group template T_2 -weighted image was calculated from the joint histogram between the images. The mean \pm SD was MI = 0.83 \pm 0.09 (see Table S1 for details).

 $\textbf{Table S1.} \ \ \text{Mutual information of coregistered subject T_2-weighted images with group template T_2-weighted image.}$

Subject	Genotype	Age group	Age (months)	MI with template
sub-02	APPKI	early	4.80	0.89
sub-03	WT	early	4.50	0.81
sub-04	WT	early	4.80	0.82
sub-06	APPKI	middle	10.84	0.84
sub-07	APPKI	middle	10.87	0.68
sub-09	WT	middle	10.25	0.82
sub-10	WT	middle	10.28	0.85
sub-12	WT	early	4.50	0.82
sub-14	WT	early	4.50	0.89
sub-16	APPKI	early	4.27	0.87
sub-18	APPKI	middle	10.02	0.76
sub-20	WT	middle	10.48	0.86
sub-23	APPKI	early	4.60	0.83
sub-24	APPKI	middle	10.15	0.88
sub-25	APPKI	middle	10.19	0.75
sub-26	APPKI	middle	10.22	0.80
sub-27	APPKI	middle	10.25	0.85
sub-28	WT	middle	10.55	0.81
sub-31	WT	middle	10.64	1.17
sub-36	APPKI	late	15.77	0.79
sub-38	WT	late	16.99	0.83
sub-40	APPKI	late	17.05	0.87
sub-41	APPKI	late	17.15	0.84
sub-43	APPKI	late	20.14	0.87
sub-44	WT	late	19.71	0.89
sub-46	WT	late	17.64	0.81
sub-47	WT	late	17.68	0.73
sub-49	WT	late	17.81	0.64

2 LINEAR MIXED MODEL TABLES

The following tables contain results for linear mixed models used in this study.

Table S2. Descriptive statistics of mouse subjects scanned using MRI. The number of mice (n) and mean and standard deviation (SD) age in months is displayed.

Genotype	Age group	Sex	n	Age (months)	
				Mean	SD
Wild-type	Early Middle Late	9 9 9	4 6 5	4.58 10.47 17.97	0.15 0.17 1.03
App ^{NL-G-F/NL-G-F}	Early Middle Late	9 9	3 7 4	4.56 10.36 17.53	0.27 0.35 1.85

Table S3. Descriptive statistics for interhemispheric correlation by age and genotype.

Genotype	Age group	n	Mean	SD
WT	Early	4	-0.139	0.125
	Middle	6	0.196	0.195
	Late	5	0.425	0.19
App ^{NL-G-F/NL-G-F}	Early	3	0.077	0.159
	Middle	7	0.045	0.193
	Late	4	0.345	0.148

Table S4. Two-way Type II ANOVA results for hippocampal interhemispheric correlation by age and genotype. Model: $r_i = b_0 + b_1 \operatorname{age}_i + b_2 \operatorname{genotype}_i + b_3 (\operatorname{age} \times \operatorname{genotype})_i + \varepsilon_i$. In afex: aov_car(r \sim age_group * genotype + Error(subject)). Significance codes: ***p < 0.001, **p < 0.01, **p < 0.05.

Term	df_1	df_2	MSE	F	η_g^2	p	sig.
Age Genotype	2		$0.031 \\ 0.031$	$12.688 \\ 0.384$		$0.0002 \\ 0.5410$	***
$Age \times Genotype$	2		0.031	2.467		0.1070	

Table S5. Post hoc contrasts for main effect of age for interhemispheric ANOVA in Table S4.

Contrast	Estimate	SE	df	t ratio	p	Sig.
Early-Middle			_	-1.808		***
Early–Late Middle–Late		0.0901 0.0772	23 23	-4.621 -3.430	0.0001 0.0023	**

Frontiers 3

Table S6. Linear mixed model fixed effects for hippocampal interhemispheric correlation for each subregion. Model: $r_{ij} = (b_0 + u_{0j}) + (b_1 + u_{1j})$ age $_{ij} + b_2$ genotype $_{ij} + b_3$ (age × genotype) $_{ij} + \varepsilon_{ij}$, for i, \ldots, S subjects and j, \ldots, N regions. In lme4: lmer(r \sim age_months * genotype + (1 + age_months | region)). AIC = -235.3, BIC = -206.8, LL = 125.7, df_{resid} = 253. Significance codes: ***p < 0.001, **p < 0.01, *p < 0.05.

Fixed effects	Estimate	Std. Error	df	t	p	sig.
Intercept	0.021	0.046	10.856	0.463	0.6530	
Age	0.022	0.004	14.278	5.897	< 0.0001	***
Genotype	0.068	0.030	252.000	2.274	0.0240	*
$Age \times Genotype$	-0.014	0.004	252.000	-3.837	0.0002	***

Table S7. Linear mixed model random effects for hippocampal interhemispheric correlation for each subregion from Table S6.

Groups	Name	Variance	SD
Region	Intercept Age	1.562×10^{-2} 6.949×10^{-5}	0.124988 0.008336
Residual	C	2.064×10^{-2}	0.143664

Table S8. Linear mixed model random effects for hippocampal interhemispheric correlation for each subregion from Table S7.

Region		Intercept	Slope (Age)
Left	Right		
CA1	CA1 CA3 DG	0.027 -0.049 0.092	-0.002 0.003 -0.006
CA3	CA1 CA3 DG	-0.082 -0.253 -0.014	$0.005 \\ 0.017 \\ 0.001$
DG	CA1 CA3 DG	$0.107 \\ -0.008 \\ 0.180$	-0.007 0.001 -0.012

Table S9. Intrahemispheric LMM results. AIC = -245.2, BIC = -197.8, LL = 137.6, Deviance = -275.2, df $_{\rm resid}$ = 159. Model was fit in lme4 as lmer (r \sim age * genotype * hemisphere + (1 + age | hemisphere/subregion)). Significance codes: ***p < 0.001, **p < 0.01, *p < 0.05.

Fixed effects	Estimate	Std. Error	df	t	p	Sig.
Intercept	0.547221	0.050308	7.875136	10.877	< 0.00001	***
Age	-0.007120	0.003119	43.194936	-2.283	0.02742	*
Genotype	0.052438	0.037663	168.000105	1.392	0.16567	
Hemisphere	0.090768	0.071147	7.875136	1.276	0.23837	
$Age \times Genotype$	-0.003594	0.004527	168.000105	-0.794	0.42827	
$Age \times Hemisphere$	-0.004247	0.004411	43.194936	-0.963	0.34097	
Genotype × Hemisphere	-0.156741	0.053263	168.000105	-2.943	0.00371	**
Age \times Genotype \times Hemisphere	0.005817	0.006402	168.000105	0.909	0.36480	

 $\label{thm:continuous} \textbf{Table S10.} \ \ \textbf{Intrahemispheric LMM random effects from Table S9}.$

Groups	Name	Variance	SD
Hemisphere/region	Intercept Age	$5.641 \times 10^{-3} 2.835 \times 10^{-6}$	$7.511 \times 10^{-2} 1.684 \times 10^{-3}$
Hemisphere	Intercept Age	$3.653 \times 10^{-10} 2.142 \times 10^{-14}$	$1.911 \times 10^{-5} 1.463 \times 10^{-7}$
Residual		1.084×10^{-2}	1.041×10^{-1}

Table S11. Intrahemispheric LMM random effects for each subregion from Table S9.

Hemisphere	Region	Intercept	Slope (Age)
Left	CA1–CA3 CA1–DG CA3–DG	$\begin{array}{c} -0.04698644 \\ 0.10524476 \\ -0.05825832 \end{array}$	$\begin{array}{c} -0.0010533816 \\ 0.0023594658 \\ -0.0013060842 \end{array}$
Right	CA1-CA3 CA1-DG CA3-DG	$\begin{array}{c} -0.03419498 \\ 0.10021060 \\ -0.06601562 \end{array}$	$\begin{array}{c} -0.0007666118 \\ 0.0022466056 \\ -0.0014799938 \end{array}$

Frontiers 5