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ABSTRACT

Diabetic retinopathy (DR) is one of the most common complications of diabetes and is a leading cause of 
blindness in people of the working age in Western countries. A major pathology of DR is microvascular 
complications such as non-perfused vessels, microaneurysms, dot/blot hemorrhages, cotton-wool spots, venous 
beading, vascular loops, vascular leakage and neovascularization. Multiple mechanisms are involved in these 
alternations. This review will focus on the role of inflammation in diabetic retinal microvascular complications 
and discuss the potential therapies by targeting inflammation. 
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INTRODUCTION

Diabetic retinopathy (DR) is one of  the most common 
complications of  diabetes and is a leading cause of  
blindness in people of  the working age in industrialized 
countries.[1] Approximately 25% of  type 1 diabetic patients 
may have signs of  retinopathy after 5 years of  diabetes, 
increasing to 60% after 10 years. Eventually, after 25 
years, almost all (97%) type 1 diabetic patients will develop 
retinopathy.[2,3] Type 2 diabetic patients may already have 
background retinopathy at the time of  diagnosis, and over 
60% will develop some form of  retinopathy after 20 years.[4] 
According to the International Diabetes Federation (IDF-
Atlas, 4th ed., 2009), diabetes currently affects nearly 285 
million people worldwide, and this number is expected to 
reach 438 million by 2030. It is expected that DR will have 
a growing impact on large populations.

Tremendous efforts have been made to identify mechanisms 
and develop therapies for DR. These studies have led to the 
recognition of  hyperglycemia, hypertension and dyslipidemia 
as major risk factors for DR. Consequently, tight glycemic 
control, blood pressure control and lipid-lowering therapy 
have shown proven benefits in reducing the incidence and 
progression of  DR.[5] In clinic, laser photocoagulation and 
vitrectomy remain the two conventional approaches to treat 
sight-threatening conditions such as macular edema and 
proliferative DR.[6] Vascular endothelial growth factor (VEGF) 
blockers (Pegaptanib, Ranibizumab and Bevacizumab) 
in combination with laser photocoagulation represents 
an emerging novel therapy to reduce macular edema and 
induce neovascular regression.[5-7] In spite of  this progress, 
DR remains a major clinical challenge, and the number of  
patients keeps growing due to difficulty in achieving tight 
glycemic control, metabolic memory, unresponsive to the 
current therapeutic approaches and significant side-effects 
from therapies.[5,6,8-10] There is a great need to develop new 
therapeutic approaches for this devastating disease.

INFLAMMATORY FEATURES IN DIABETIC 
RETINOPATHY

DR is characterized as a microvascular complication of  
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diabetes.[2,11] Vascular alterations in the early stage of  
the disease include alterations in blood flow, death of  
retinal pericytes (perivascular contractile cells), basement 
membrane thickening and subtle increases in vascular 
permeability. With the progression of  disease, obvious 
alterations in the vascular structure can be seen upon 
ophthalmoscopic examination. These include non-perfused 
vessels, microaneurysms, dot/blot hemorrhages, cotton-
wool spots, venous beading, vascular loops and significant 
vascular leakage. The above alternations happen in the 
non-proliferative stage of  DR, in which vision loss is 
mainly caused by macular edema as the consequence of  
increased vascular permeability. In the proliferative stage 
of  DR, neovascularization happens on the retinal surface 
after vascular function is impaired by capillary occlusion, 
non-perfusion and degeneration. In this stage, severe 
vision loss or even blindness may be caused by bleeding, 
hemorrhage and subsequent retinal detachment because 
of  the newly formed fragile vessels.[12] The mechanisms 
by which diabetes causes microvascular complications and 
disease progression in the retina are not fully understood. 
However, studies in patient samples and animal models 
have shown that DR has features of  chronic, subclinical 
inflammation.

Inflammation is the body’s defense against pathogens 
and is also a critical step in wound healing. This process 

involves multiple mediators such as pro-inflammatory 
cytokines, chemokines and adhesion molecules that initiate 
the interaction between leukocytes and the endothelium 
and guide directional leukocyte migration toward infected 
or injured tissue. Pro-inflammatory cytokines (such as 
tumor necrosis factor [TNF]—α and interleukins) and 
chemokines (such as CCL2 and CCL5) released from 
infected/injured tissue activate the endothelium to increase 
expression of  adhesion molecules (such as E-selectin, 
intercellular adhesion molecule [ICAM]-1, vascular cell 
adhesion molecule [VCAM]-1) and chemokines. Mediated 
by adhesion molecules and chemokines, leukocytes attach 
to the vessel wall, transmigrate through the endothelium 
and move to the infected or injured tissue.[13] While normal 
inflammation is beneficial, excessive or uncontrolled 
inflammation can cause tissue injury and result in diseases.[13]

Although there are no pathogens in DR, analysis of  
inflammatory molecules in vitreous, serum and retina form 
diabetic patients or experimental animals indicate that DR 
is associated with significant increases in pro-inflammatory 
cytokines, chemokines and adhesion molecules. High 
TNF-α levels have been observed in vitreous, serum and 
ocular fibrovascular membranes from patients with DR 
and in retinas from rodent model of  diabetes mellitus.[14-16] 
Interleukin-1β (IL-1β) and its downstream signaling 
molecule caspase 1 are significantly increased in vitreous, 
retinas and serum from diabetic patients and rats.[15,17,18] 
Chemokines such as CCL2, CCL5, CXCL8, CXCL10 and 
CXCL12 are also upregulated in vitreous samples from DR 
patients.[19-21] Increases in IL-6, ICAM-1 and VCAM-1 have 
been shown to be related to the progression of  DR.[21-24]

Correlated with increases in inflammatory molecules, 
DR is associated with recruitment of  leukocytes. The 
numbers of  neutrophils are significantly elevated in both 
retinal and choroidal vessels from diabetic patients and 
monkeys. The accumulation of  neutrophils is correlated 
with upregulation of  ICAM-1 immunoreactivity in the 
vessels and is associated with capillary closure.[25,26] In 
diabetic rodent models, there is a cumulative and sustained 
increase in leukocyte adherence to the retinal vasculature 
(leukostasis) along with the progression of  DR.[27] The 
increase in leukostasis may be attributable to diabetes-
induced increases in ICAM-1 and integrins in endothelial 
cells and leukocytes, respectively, in that blockade of  
ICAM-1 or deletion of  CD18 (ICAM-1 receptor subunit 
on leukocytes) prevents diabetes-induced leukostasis.[27-29] 
In addition to leukocytes in the circulation, microglia that 
are scattered throughout the retina are likely to be involved 
in DR.[30] In DR, they are rapidly activated to release 
inflammatory cytokines such as TNF-α.[31] A2A adenosine 

Figure 1: Cascade of events that contribute to the inflammatory 
response in diabetic retinopathy. Hyperglycemia induces formation of 
advanced glycation end products, generation of reactive oxygen species 
from multiple sources, mainly nicotinamide adenine dinucleotide 
phosphate oxidase and mitochondrial electron transport chain, and 
dysregulation of nitric oxide synthase (NOS) pathway. These changes 
activate NF-kB and, in turn, upregulation of cytokines, chemokines 
and iNOS. This leads to upregulation of adhesion molecules and 
subsequent leukocyte/endothelial interaction
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receptor agonist effectively blocks TNF-α production in 
microglia and markedly decreases hyperglycemia-induced 
retinal cell death (Ibrahim et al., 2011).

In summary, this evidence demonstrates that DR has 
all the characters of  inflammatory disease, and suggests 
involvement of  low-grade chronic inflammation in this 
disease. Tremendous efforts have been made to understand 
how diabetes causes inflammatory reactions in DR in the 
absence of  pathogens.

MECHANISMS OF RETINAL INFLAMMATION

Risk factors of  DR include hyperglycemia, hypertension 
and dyslipidemia. These factors have been shown to 
induce inflammation by a variety of  mechanisms, including 
oxidative stress, NF-kB activation, dysregulation of  nitric 
oxide synthase (NOS) and formation of  advanced glycation 
endproducts (AGEs).

Oxidative stress happens when ROS are overproduced 
or when endogenous anti-oxidant systems are impaired. 
Mitochondria can generate ROS by leakage of  electrons to 
molecular oxygen at electron transport chain complexes I, 
II and III.[32] In diabetes, the metabolism of  glucose-derived 
pyruvate through the ETC complexes is increased because 
of  high glucose concentration within cells, resulting in 
superoxide overproduction by mitochondria.[33] This 
pathway not only produces more ROS by itself  but also 
initiates other pathways, leading to a breakdown in the 
balance between pro-oxidant and endogenous anti-oxidant 
systems, such as increases in glucose flux through the aldose 
reductase pathway, formation of  AGEs and activation of  
protein kinase c (PKC).[34] All these changes can lead to 
oxidative stress by decreasing the activities of  anti-oxidant 
enzymes[35,36] or further activating the ROS-generating 
machinery inside the cells.[37-41] In addition to mitochondria, 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase is another important source of  ROS in diabetes, 
and studies in other models have suggested a positive 
reciprocal regulation between mitochondria and NADPH 
oxidase-derived ROS.[42,43]

NADPH oxidase is the major source of  ROS in the 
cardiovascular system. It consists of  a NOX catalytic 
subunit, 4 phox subunits (p22phox, p40phox, p47phox 
and p67phox) and the low-molecular weight G protein 
Rac.[44] The p47phox and p67phox subunits are essential 
for activity. Assembly of  the complex is initiated upon 
phosphorylation of  p47phox, which is regulated by many 
intracellular signaling kinases such as PKC, mitogen-
activated protein kinases and Akt.[45-49] The p67phox 

subunit mediates direct binding of  the complex with 
activated Rac, which initiates the electron transfer 
reaction that produces superoxide.[50] These regulatory 
mechanisms contribute to the unique feature of  NADPH 
oxidase-derived ROS as signaling mediator in many 
cellular responses. However, when these mechanisms are 
activated because of  diabetes, they can cause NADPH 
oxidase to overproduce ROS. These mechanisms in fact 
allow NADPH oxidase to function as a key link between 
hyperglycemia and hypertension. Increased NAPDH 
oxidase activity has been found in diabetic patients and 
animals and high glucose-treated endothelial cells.[51-54] 
NADPH oxidase is also potently activated by angiotensin 
II, a product of  the renin–angiotensin system that plays a 
key role in hypertension.[55,56] Overall, these changes lead 
to a net increase in ROS, and diabetes-induced sustained 
oxidative stress is a major cause of  retinal inflammation.

ROS are important intracellular signaling molecules 
in the inflammatory cascade. ROS play a key role in 
inflammatory gene expression by activation of  redox-
sensitive transcription factors such as NF-kB, signal 
transducers and activators of  transcription proteins and 
activator protein 1.[57,58] The activity of  NF-kB is increased 
in high glucose-treated retinal endothelial cells, pericytes 
or glial cells and in diabetic retinas from patients or animal 
models.[59-64] This activation is significantly blocked by 
inhibiting redox systems by blockade of  NADPH oxidase 
or antioxidant treatment,[63,64] indicating a cause-and-effect 
relationship. Activation of  NF-kB has an essential role in 
diabetes-induced retinal inflammation, in that inhibition 
of  NF-kB blocks both high glucose and diabetes-
induced production of  inflammatory molecules in retinal 
cells and retinal tissue, and attenuates leukostasis.[59-61] 
Similarly, studies in animal and tissue culture models have 
demonstrated the involvement of  NADPH oxidase in 
diabetes-induced inflammation and breakdown of  the 
blood–retinal barrier (BRB).[65,66] The results showed 
that diabetes-induced increases in retinal ROS, VEGF 
expression and vascular permeability are accompanied 
by increases in the NADPH oxidase catalytic subunit 
NOX2.[65-67] The experiments further demonstrated that 
deleting the NOX2 gene or inhibiting NADPH oxidase 
prevented diabetes-induced increases in retinal permeability 
and ICAM-1 expression and leukostasis, indicating that 
the NOX2 NADPH oxidase is critically involved in the 
pathology of  DR.[65,66,68] Correlated with the involvement 
of  oxidative stress in diabetes-induced retinal inflammation, 
studies have shown that supplement of  antioxidants such as 
vitamins C and E attenuates the development of  acellular 
capillaries and decreases the number of  pericyte ghosts in 
diabetic rats.[69] Such effects are further enhanced when 
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a more comprehensive mixture of  anti-oxidant diet is 
applied.[69] Clinical studies also show that high doses of  
vitamin E reverse some of  the changes in the retinal vessels 
of  diabetic patients.[70]

In addition to oxidative stress, diabetes-induced vascular 
inflammation is very closely related to nitric oxide (NO), 
which is an important second messenger that regulates 
many physiological and pathological events, including 
vascular dilation and vascular inflammation. Studies 
indicate that NO has a biphasic role in vascular and 
inflammatory diseases, depending on the specific source 
and the amount produced.[71] The constitutively expressed 
NOSs, endothelial NOS (eNOS) and neuronal NOS 
(nNOS), are Ca2+-dependent and regulated to produce 
low levels of  NO. NO from nNOS is involved in neural 
signaling and is also expressed in smooth muscle cells, 
where it has a key role in regulating vascular responses to 
tissue hypoxia. NO from eNOS maintains blood flow and 
prevents platelet aggregation and leukostasis.[72] In fact, 
deleting eNOS results in elevated expression of  inducible 
NOS (iNOS) (an NF-kB-mediated inflammatory molecule) 
in retina that is associated with accelerated development 
and increased severity of  DR.[73] In contrast with eNOS 
and nNOS, iNOS is Ca2+-independent, constitutively 
active and produces large amounts of  NO.[71] It is not 
expressed in normal retinas but is induced in retinal glial 
and microglial cells during inflammatory conditions, 
including DR. NO from iNOS plays a role in causing 
tissue damage and inflammation. Inhibition of  iNOS by 
inhibitor or gene deletion prevents ICAM-1 expression, 
leukostasis and vascular permeability in the diabetic retina.
[74] The NOS pathway is dysregulated by diabetes and 
contributes to the pathogenesis of  DR. On the one hand, 
ROS generated from NADPH oxidase or mitochondrial 
oxidase can rapidly react with NO to form RNOS and 
reduce bioavailable NO, which reduces vessel dilation and 
increases leukocyte adhesion and platelet aggregation, 
leading to inflammation.[71,75] On the other hand, NOS 
can be an important source of  ROS due to “NOS 
uncoupling,” in which the enzyme generates superoxide 
rather than NO when its substrate L-arginine is limited 
by increased arginase activity[71] or when the co-factor 
tetrahydrabiopterin is oxidized. Consistently, inhibition 
of  arginase is shown to increase bioavailable NO, reduce 
superoxide formation and block inflammatory reactions 
during retinal inflammation.[68]

Although hyperglycemia has a direct impact to the 
pathology of  DR, the byproducts of  hyperglycemia, 
particularly AGEs, also have a significant role in retinal 
inflammation in DR. AGEs are formed by non-enzymatic 

glycation and oxidation of  amino groups of  proteins, lipids 
and DNA.[76] This process is accelerated in diabetes in the 
presence of  high glucose and oxidative stress.[76-78] In the 
diabetic retina, the level of  AGEs is prominently increased 
and AGE immunoreactivity is localized in vitreous, internal 
limiting membrane and retinal vasculature.[76] The receptor 
for AGEs (RAGE) is expressed in numerous cells in 
the retina, including Muller cells, endothelial cells and 
neurons.[76] The AGE–RAGE pathway can activate many 
downstream signaling molecules, including NF-kB and 
ROS, to induce inflammatory reactions such as ICAM-1 
expression and leukostasis in the retina and retinal cells.[78,79] 
Blocking AGE with soluble RAGE or inhibiting AGE 
formation with LR-90 significantly reduces diabetes-
induced ICAM-1 expression, leukostasis and VEGF 
expression.[80,81]

In summary, multiple pathways are involved in diabetes-
induced retinal inflammation [Figure 1]. However, it should 
be noted that inflammation is not an endpoint of  the 
above inflammatory mechanisms. Inflammation, in turn, 
further activates these inflammatory mechanisms. For 
example, oxidative stress is both a cause and a consequence 
of  inflammation. Many inflammatory cytokines induce 
oxidative stress and use the NADPH oxidase pathway to 
induce expression of  other inflammatory molecules such 
as CCL2.[82,83] Leukocytes also release ROS in response to 
inflammatory stimuli. Blockade of  IL-6 not only prevents 
angiotensin II-induced leukostasis in the retina but also 
abolishes NADPH oxidase-mediated ROS formation.[84] 
Thus, inflammation serves as a key mediator in the positive 
feedback loop of  inflammatory cascades in DR.

INFLAMMATION IN THE DEVELOPMENT OF 
DIABETIC RETINOPATHY

Because diabetes is found to cause retinal inflammation 
by divergent mechanisms, significant efforts have been 
made to understand how inflammation is involved 
in the microvascular complications in the disease. 
These studies have demonstrated important roles of  
inflammatory cytokines and leukocytes in vascular leakage, 
vessel occlusion and degeneration and pathological 
neovascularization [Figure 1].

Inflammation is a cause of  retinal vascular leakage. The 
microvascular endothelium forms an effective barrier 
to control the movement of  blood fluid and proteins 
across the vessel wall.[85] This barrier is formed by tight 
junctions and adhesion junctions that join endothelial 
cells to each other. Signaling molecules, including pro-
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inflammatory cytokines and chemokines, which induce 
disorganization/redistribution of  junction proteins in 
the retinal endothelium may lead to breakdown of  the 
BRB, resulting in an abnormal extravasation of  blood 
components and retinal edema. TNF-α is known to 
cause significant retinal endothelial permeability within 
a few hours by PKCζ-mediated downregulation of  tight 
junction proteins.[86] Intravitreal injection of  TNF-α leads to 
increased retinal vascular permeability, which is prevented 
by PKCζ inhibitor.[86] Moreover, blocking TNF-α with 
Etanercept, a soluble TNF-α receptor, prevents BRB 
breakdown in the diabetic rat model.[14] Similar increases 
in endothelial permeability are also observed when 
endothelial cells are treated with other cytokines such as 
CCL2 or CXCL8.[87,88] BRB breakdown can also be caused 
by cytokine-induced vascular cell death and by leukocyte-
mediated vascular alternations. Leukocytes recruited in 
inflammation have a key role in causing vascular leakage by 
mechanisms including inducing junction protein alteration, 
releasing cytokines or increasing ROS as well as inducing 
vessel occlusion and injury.[27,28,89]

Inflammation induces retinal vessel occlusion and capillary 
dropout. Retinal vessel occlusion and degeneration is a 
typical feature of  DR. Mechanisms leading to capillary 
degeneration may involve inflammatory cytokine-induced 
endothelial cell death because inflammatory cytokines such 
as TNF-α and IL-1β are also known to increase caspase 
3 activity and potently induce endothelial cell apoptosis.
[86,90] Alternatively, leukostasis in DR may cause capillary 
occlusion when leukocytes block blood flow because of  
their large cell volume and high rigidity. This notion is 
supported by studies showing that transient leukocyte 
attachment to the vessel wall correlates with capillary 
non-perfusion, and capillary reperfusion can occur 
when leukocytes detach and move on.[27] In addition to 
blocking blow flow, leukocytes induce endothelial death 
during leukostasis via Fas ligand (FasL) and Fas-mediated 
apoptosis.[91] The level of  Fas is increased in retinal vascular 
endothelial cells during diabetes, while FasL is increased 
on neutrophils. Blocking Fas or inhibiting ICAM-1/
CD18-mediated leukostasis significantly reduces retinal 
endothelial cell injury, apoptosis and retinal capillary 
degeneration.[28,91]

Inf lammation is  a lso involved in pathological 
neovascularization in DR. Chronic inflammation is known 
as a key player in angiogenesis in many diseases such as 
rheumatoid arthritis and cancer. Leukocytes, recruited by 
inflammatory cytokines produced in the disease tissue, 
enhance the formation of  new vasculature by releasing 
angiogenic factors and increasing the activity of  matrix 

metallopeptidase.[92] Direct investigation of  inflammation 
in proliferative DR is not feasible because there are 
no small animal models that can develop reproducible 
proliferative DR, as occurs in humans. Therefore, studies 
of  retinal neovascularization are carried out in rodent 
models of  oxygen-induced retinopathy, in which retinal 
vessel obliteration is induced with hyperoxia. These studies 
have shown that inflammatory genes are upregulated 
at the onset of  the hypoxia as well as during the period 
of  neovascularization.[93,94] Blockade of  inflammatory 
cytokines, such as TNF-α, attenuates neovascularization.[95,96] 
In addition to inflammatory cytokines, monocytes/
macrophages are found to be present in the neovascular 
tufts, and depleting the monocyte lineage with clodronate-
liposomes leads to the suppression of  pathological but not 
physiological retinal angiogenesis.[97]

CONCLUSIONS AND PROSPECTIVE

Although there is no pathogen in the diabetic retina, DR 
has all the common features of  inflammation, such as 
increase in inflammatory molecules in retina, vitreous and 
plasma, leukocyte recruitment and tissue edema. These 
changes are caused by diabetes-induced disorders such 
as oxidative stress, dysregulation of  the NOS pathway, 
AGEs formation and NF-kB activation [Figure 1]. 
Inflammation is now recognized as an important player 
in the pathogenesis of  DR, and a number of  studies 
have been designed to address whether blockade of  
specific inflammatory molecules can be beneficial for DR. 
Subcutaneous administration of  TNF-α trap (a soluble 
TNF-α receptor/Fc construct, Etanercept) significantly 
blocks retinal inflammation, retina cell injury and vessel 
leakage in diabetic rats.[14,98] In one clinical study with 
four patients, Infliximab, a TNF-α-neutralizing antibody, 
was shown to improve visual acuity and reduce macular 
thickness in patients who failed to improve in response to 
laser photocoagulation treatment.[99] Leukocyte function-
associated antigen-1 (LFA-1, an integrin) expressed in 
leukocytes is important for leukocyte–endothelial cell 
interaction by binding to ICAM. Topical delivery of  SAR 
1118, a small antagonist of  LFA-1, dose-dependently 
reduced leukostasis and retinal vascular leakage in a 
diabetic rat model.[100] In addition to ICAM-1, blockade 
of  VCAM-1-mediated leukocyte attachment with anti-
CD49a neutralizing antibody significantly attenuated the 
diabetes-induced leukostasis and vascular leakage.[101] In 
spite of  the rapid progress in this field, there are many 
issues that remain to be addressed before effective anti-
inflammatory therapy can be designed to treat DR. For 
example, inflammation is involved in almost all diseases 
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and, therefore, it is unclear why inflammatory reactions 
in most diseases do not affect retinal vasculature. Is there 
crosstalk between diabetes-induced inflammation and other 
chronic disease-induced inflammation in relation to the 
pathogenesis of  DR? Although inflammation is involved 
in the pathogenesis of  DR, there is a higher incidence 
of  DR in type 1 diabetic patients than in type 2 diabetic 
patients. Is it because of  the fact that type 1 and type 2 
diabetes induce different inflammatory reactions? Retinal 
inflammation might be more severe in type 1 diabetes 
as this disease is associated with aberrant autoimmunity. 
However, there is no study to address such difference at 
this moment. Given that diabetes induces the production 
of  inflammatory molecules in both retinal local cells and 
blood leukocytes, what is the individual role of  retinal local 
cells and leukocytes in inflammatory reactions and vascular 
injury in DR? What are the specific subtypes of  leukocytes 
that are involved in DR? Many inflammatory molecules 
have redundant functions and cause activation of  similar 
downstream targets such as NF-kB. What is their specific 
role and what are their reciprocal interactions in DR? 
These mysteries have led to challenges when considering 
any of  the inflammatory molecules as a drug target as 
blockade of  any one of  them may be effective if  the 
molecule is indispensible. However, the blockade can also 
be ineffective, or even worse, if  compensation happens or 
goes in an unwanted direction. Further studies may resolve 
these issues and bring novel therapies for DR by controlling 
inflammatory reactions precisely and at the right time.
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