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LETTER TO TH E EDITOR

Changes in glucagon-like peptide 1 and 2 levels in people
with obesity after a diet-induced weight-loss intervention
are related to a specific microbiota signature: A prospective
cohort study

Dear Editor,
Glucagon-like peptide (GLP)-1 and -2 are enteroendocrine
hormones released postprandially to regulate glucose
metabolism.1,2 For reasons that are unclear, GLP-1/2 secre-
tion is impaired in obesity.3 The enteroendocrine sys-
tem has been linked to gut microbiota,4 but whether
this could be affected by obesity-induced dysbiosis is
unknown. Here, we investigated the relationship between
GLP dynamics and gut microbiota in a prospective cohort
of patients with obesity enrolled in a 6-month restrictive
diet interventional weight-loss trial (trial registration num-
ber ISRCTN12973246), where effective weight loss (≥10%)
was achieved at the end of the follow-up. We determined
the association between GLP secretion in response to
nutrient ingestion and specific metagenomic signatures
using taxonomic profiling and functional analysis.
The main characteristics of the cohort are described

in Table S1. Patients showed improvement in glucose
and lipid profiles at 6 months. Notably, fasting GLP-1/2
levels were significantly lower after weight loss, with a
trend for improved GLP response to a meal tolerance test
(MTT). The intervention had no significant impact on
intra-community (alpha) diversity measured by species
richness or evenness (Figure S1), in agreement with
other reports.5–7 Nonetheless, a higher alpha diversity was
observed in patients with lower plasma urate levels, lower
systolic blood pressure, and lowerweight (p= 0.008, 0.026,
and 0.04, respectively), all related to a “healthy” metabolic
status. No differences were found in inter-community
(beta) diversity, as estimated by the Bray–Curtis distance
(p= 0.216), or whenmicrobial populations at different tax-
onomic levels were compared before and after the inter-
vention (Figure 1A). Remarkably, the unique patient iden-
tifier variable correlated with all tested principal compo-
nents (Figure S2), pointing to individual variation as the
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main driver of the data variability. Accordingly, we rejected
the hypothesis of microbial composition independence
among pre- and post-intervention observations from the
same patient, which stresses the importance of account-
ing for a paired data setting in the downstream analysis
(results obtained at family taxonomic level, Figure 1B).
Association analysis of clinical parameters and gut

microbiota revealed several significant associations
between different bacterial families and body mass index,
HOMA-IR, and/or plasma urates (Figure 1C).
Fasting GLP-1/2 levels were inversely related to

Spirochaetaceae, Peptostreptococcaceae, Clostridiaceae,
Ruminococcaceae, Erysipelotrichaceae, Eubacteriaceae,
and Lachnospiraceae, and positively related to Pre-
votellaceae, Acidaminococaeae, Selenomonadaceae,
Coriobacteriaceae, Veillonelaceae, Odoribacteriaceae,
Bacteriodaceae, Rikenellaceae, Porphyromonadaceae,
Desulfovibrionaceae, and Sutterellaceae. Notably, we
found a contrasting correlation pattern for GLP-1/2
response in the MTT, as Spirochaetaceae showed a
significant positive correlation with GLP-1 response,
whereas the GLP-2 response was negatively correlated
with Acidaminococcaceae, Desulfovibrionaceae, and
Sutterellaceae (Figure 1C).
To address the statistical sparsity issues and the lack of

homogeneously distributed variables among individuals
(common to microbiome data analysis), we applied the
FitZig mixture model,8 which allows for discrimina-
tion of taxonomic difference abundances between the
study groups. Differential abundance analysis pre-/post-
intervention revealed more than 40 species or genera with
a significant variation in terms of fold-change and statis-
tical relevance when considered simultaneously (Figure
S3). Abundance ranking analysis revealed noteworthy
interindividual variations, suggesting that communities
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F IGURE 1 Taxonomy composition of the study population. (A) Comparison of relative abundances of different taxa at the family level
between post-intervention (outerchart) and basal (inner chart) faecal microbiota, showing no significant differences. (B) Individual variability
between basal (B) and post-intervention (6 M). The presence of different microorganisms is indicated by colours; the same colour indicates
the same family. Microbial taxa are based on the family level. Significant differences were observed for each individual after diet intervention
(p-value < 0.05). The chi-square test was used for analysis (n = 18 classified as basal (B) and post-intervention (6 M)). (C) Associations of gut
microbiota with clinical variables and intestinal hormones. Heatmap depicting Spearman’s rank correlation coefficient of the relative
abundances at the family level of different gut microbiota and clinical variables and incretin hormones in all individuals. For correlational
studies, all gathered data (basal and 6 months) are included in the analysis. Adjusted p-values: #padj < 0.25; *padj < 0.05.
Peptostreptococcaceae, Clostridiaceae, Ruminococcaceae, Oscillospiraceae, Eubacteriaceae, and Lachnospiraceae showed negative
associations with BMI, HOMA-IR index, and/or plasma urates. By contrast, Streptococcaceae, Prevotellaceae, Selenomonadaceae,
Coriobacteriaceae, Bacteriodaceae, Rikenellaceae, Porphyromonadaceae, and Sutterellaceae showed positive associations with the afore
mentioned parameters. Odoribacteriaceae showed a negative association with body mass index (BMI) and a positive association with plasma
urates
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from the same individual were generally more similar to
one and other than to those of other individuals, with indi-
vidual variability more important than diet–responsive
variation (Figure 1B). These results are in line with previ-
ous studies showing that human gut microbiota response
to diet has a strong individuality and indicating that the
effects of the diet per se as the main source of variability
are markedly diminished, which is the opposite to that
described in mice.9,10
Most of the significantly increased taxa at follow-

up belonged to the Clostridiaceae family, specifically
the genus Clostridium (Figure 2). Analysis of GLP-1/2
dynamics revealed a positive association between Mit-
suokuella_uc and fasting GLP-1/2 levels, but a signifi-
cant negative association between Mitsuokuella_uc and
GLP-2 response in the MTT. Contrastingly, Clostridium sp.
CAG:75, CAG:230, and CAG:127 and Lachnospiraceae bac-
terium 5_1_63FAA (which all increased after the weight
loss intervention) correlated negatively with fasting levels
of GLP-2 but positively with its response in the MTT. Of
note,Clostridium sp. CAG:127 showed a significant positive
correlationwith GLP-2 response. Similarly,Clostridium sp.
CAG: 230 correlated negatively with fasting GLP-1 but pos-
itively with GLP-1 response in theMTT (Figure 2). Overall,
the data indicate that fasting levels of GLPs are inversely
related to their response to the MTT, with higher levels
signalling poor responsiveness. Notably, this behaviour,
which differed for GLP-1 and GLP-2 was, at least in part,
associated with a specific microbiota signature.
The study at functional gene level identified signifi-

cant associations between the expression of non redun-
dant genes aligned in the KEGG database. A total of
116 genes were found to be statistically significant, how-
ever, only 54 of them could be identified and were
distributed into different biologically relevant functions
(Table S2).
Hierarchical clustering of the correlation data matrix

between genes and taxonomy at the gene level revealed
the presence of two highly populated clusters (Fig-
ure 3A). Remarkably, except for Lachnospiraceae bac-
terium 5_1_63FAA, those species that increased in abun-
dance after the intervention and were positively associated

with GLPs response (Clostridium sp. CAG:75, Clostridium
sp. CAG:127, Clostridium sp. CAG: 230) had similar gene
association patterns. These patterns contrasted with those
forMitsuokella_uc, whose abundance decreased at follow-
up and inversely correlated with GLP response. Only a
minor fraction of the total studied genes (12%, seven genes)
could be projected onto a metabolic map (Figure 3B), indi-
cating that most of the altered genes have other biologi-
cal functions. Indeed, no particular pathway was enriched,
suggesting a global modulation of gut microbiota in terms
of metabolism.
Our results lead us to consider that while diet-induced

weight loss impacts gut microbiota composition, and the
global metabolic regulation of microbial community inter-
actions maintains a balanced ecosystem. This would agree
with the plasticity of gut microbiota, allowing rapid adap-
tion to environmental changes. In conclusion, our study
shows that GLP secretion, which is dependent on body
weight and metabolic status, is linked to specific gut
microbiota. Further mechanistic studies are warranted to
understand how gut microbiota regulate GLP secretion
and whether those bacterial strains associated with GLP
dynamics might represent novel probiotic approaches to
restore host mucosal GLP response in obesity.
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F IGURE 2 Diet-induced microbiota changes and associations between species and variables related to metabolic health status. Log
fold-change (FC) and Spearman correlation analyses of the relative abundance at the species level of gut microbiota and clinical variables and
incretin hormones in all individuals. For FC analysis, a zero-inflated Gaussian mixture model (fitZig) from the metagenomeSeq R package
was used, contrasting 6 M/basal. The subject factor in the patient identifier variable (IDPAT) is used as a batch effect, as the inter-individual
differences in the microbiota were greater than the changes caused by the diet. As a consequence, the IDPAT variable was introduced as an
adjusting covariate in the model to investigate diet-induced changes after the 6-month weight-loss program. Spearman correlation analysis
revealed a negative correlation between most of the Clostridium species, Hemophilus_uc, and Eubacterium sp. CAG 192 and plasma urates,
whereas Clostridium sp. CAG:75 and Eubacterium sp. CAG 202 were negatively correlated with HOMA-IR index. Proteobacteria sp. CAG:873
andMitsuokella multocida, showed a significant positive correlation with body mass index (BMI) and HOMA-IR, respectively. All
padj < 0.005 in FC and #padj < 0.25; *padj < 0.05 for Spearman correlation analyses
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F IGURE 3 Spearman correlation analysis of microbiota species and metabolic bacterial function for a set of 45 genes. (A) Hierarchical
clustering of the correlation data matrix was conducted at the gene level, which revealed the presence of two highly populated clusters
(labelled as 1 and 2). Annotation of metabolic pathways according to the KEGG database, sorted in alphabetical order: [C]: energy production
and conversion; [E]: amino acid transport and metabolism; [G]: carbohydrate transport and metabolism; [H]: coenzyme transport and
metabolism; [J]: translation; ribosomal structure and biogenesis; [K]: transcription; [L]: replication, recombination, and repair; [M]: cell
wall/membrane/envelope biogenesis; [O]: post-translational modification; protein turnover, chaperones; [P]: inorganic ion transport and
metabolism; [T]: signal transduction mechanism; [U|W]: intracellular trafficking and vesicular transport; [V]: defence mechanism.
Correlations where an associated p-adjusted value was greater than 0.25 were neglected for additional analysis. Genes associated with
replication, recombination, and repair (encoded as [L]), such as MobA/MobB, site-specific recombinases, integrases, and transposases, were
found to positively correlate with an increase in the presence of Clostridium species. A similar pattern was found (with an equivalent number
of enzymes, 4) with post-translational modification enzymes ([O]) and enzymes involved in signal transduction ([T]). An increase in the
abundance of the metabolic enzymes glycosyltransferase_36, dicarboxylate transporter, and carbohydrate-solute binding proteins were
positively correlated with Clostridiaceae family members. Genes associated with amino-acid transport and metabolism ([E]) and inorganic
ion transport ([P]), such as branched-amino acid transporter and ABC-related transporter, were also modified. (B) Gene projection of
statistically relevant enzyme subset on a KEGG-modified metabolic enzyme pathway. This analysis revealed only a minor fraction of the total
studied genes (12%, seven genes) that could be projected into a metabolic map constellation:Aln-; Gln-t-RNA synthase ([J]), PALM hydrolase
([L]), nicotinate-phosphoribosyltransferase ([H]), N-acetylmuranoyl-l-alanine amidase ([M]), glycerol-phosphoryl-diester-phospho-diesterase
([C]), glycosyltransferase 36 ([G]), and branched-amino acid transporter ([E]). All correspond to different biological pathways
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