

Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts

Fuyong Li¹, Christopher C. Cheng², Jinshui Zheng³, Junhong Liu¹, Rodrigo Margain Quevedo¹, Junjie Li¹, Stefan Roos⁴, Michael G. Gänzle¹ and Jens Walter^{1,2,5,*}

Abstract

Ten strains, BG-AF3-A^T, pH52_RY, WF-MT5-A^T, BG-MG3-A, Lr3000^T, RRLNB_1_1, STM3_1^T, STM2_1, WF-MO7-1^T and WF-MA3-C, were isolated from intestinal or faecal samples of rodents, pheasant and primate. 16S rRNA gene analysis identified them as *Limosilactobacillus reuteri*. However, average nucleotide identity and digital DNA–DNA hybridization values based on whole genomes were below 95 and 70%, respectively, and thus below the threshold levels for bacterial species delineation. Based on genomic, chemotaxonomic and morphological analyses, we propose five novel species with the names *Limosilactobacillus balticus* sp. nov. (type strain BG-AF3-A^T=DSM 110574^T=LMG 31633^T), *Limosilactobacillus agrestis* sp. nov. (type strain WF-MT5-A^T=DSM 110569^T=LMG 31629^T), *Limosilactobacillus albertensis* sp. nov. (type strain Lr3000^T=DSM 110573^T=LMG 31632^T), *Limosilactobacillus rudii* sp. nov. (type strain STM3_1^T=DSM 110572^T=LMG 31631^T) and *Limosilactobacillus fastidiosus* sp. nov. (type strain wF-MO7-1^T=DSM 110576^T=LMG 31630^T). Core genome phylogeny and experimental evidence of host adaptation of strains of *L. reuteri* further provide a strong rationale to consider a number of distinct lineages within this species as subspecies. Here we propose six subspecies of *L. reuteri*: *L. reuteri* subsp. *kinnaridis* subsp. nov. (type strain AP3^T=DSM 110703^T=LMG 31634^T), *L. reuteri* subsp. *murium* subsp. nov. (type strain lpuph1^T=DSM 110570^T=LMG 31634^T), *L. reuteri* subsp. *murium* subsp. nov. (type strain lpuph1^T=DSM 110570^T=LMG 31634^T), *L. reuteri* subsp. nov. (type strain SG^T=DSM 20016^T=ATCC 23272^T), *L. reuteri* subsp. *suis* subsp. nov. (type strain 1063^T=ATCC 53608^T=LMG 31752^T) and *L. reuteri* subsp. *rodentium* subsp. nov. (type strain 100-23^T=DSM 1750^T=CIP 109821^T).

*Correspondence: Jens Walter, jenswalter@ucc.ie

Keywords: evolution; host adaptation; *Limosilactobacillus reuteri* subspecies; novel *Limosilactobacillus* species; phylogenetic lineages. Abbreviations: AFLP, amplified-fragment length polymorphism; ANI, average nucleotide identity; dDDH, digital DNA-DNA hybridization; GGDC, genome-to-genome distance calculator; MLSA, multi-locus sequence analysis.

The GenBank accession numbers for the 16S rRNA gene sequences of Limosilactobacillus balticus BG-AF3-A^T, Limosilactobacillus balticus pH52_RY, Limosilactobacillus agrestis WF-MT5-A^T, Limosilactobacillus agrestis BG-MG3-A, Limosilactobacillus albertensis Lr3000^T, Limosilactobacillus albertensis RRLNB_1_1, Limosilactobacillus rudii STM3_1^T, Limosilactobacillus rudii STM2_1, Limosilactobacillus fastidiosus WF-MO7-1^T and Limosilactobacillus fastidiosus WF-MA3-C are MT823145, MT823143, MT823179, MT823154, MT823181, MT823180, MT823182, MT823183, MT823190 and MT823191, respectively. The GenBank accession numbers for the draft genome sequences of Limosilactobacillus balticus BG-AF3-A^T, Limosilactobacillus balticus pH52_RY, Limosilactobacillus agrestis WF-MT5-A^T, Limosilactobacillus agrestis BG-MG3-A, Limosilactobacillus albertensis Lr3000^T, Limosilactobacillus balticus bal

This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author's institution.

Author affiliations: ¹Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada; ²Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada; ³Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, 430070, PR China; ⁴Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden; ⁵APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, T12 YT20, Ireland.

INTRODUCTION

The vertebrate gastrointestinal tract harbours diverse microbial communities that are referred to as the gut microbiota. Composed of microbes that often function as symbionts, these communities contribute substantially to the health and performance of their vertebrate hosts through the provision of nutrients and vitamins, cues for the development of the immune system and protection from bacterial and viral pathogens [1-3]. Limosilactobacillus reuteri (formerly Lactobacillus reuteri) [4], classified in the genus Limosilactobacillus of the family Lactobacillaceae, is a member of the intestinal microbiota of humans and other vertebrates and has been used as a model organism to study the adaptation of intestinal microorganisms to their hosts [5-8]. The family Lactobacillaceae currently comprises more than 300 species [4], including species that are adapted to vertebrate and invertebrate hosts, free-living lactobacilli and nomadic organisms which oscillate between host-associated and environmental habitats [9]. The genus *Limosilactobacillus* (previously designated as the *L*. reuteri group) contains 17 species, including L. alvi, L. antri, L. caviae, L. coleohominis, L. equigenerosi, L. fermentum, L. frumenti, L. gastricus, L. gorillae, L. ingluviei, L. mucosae, L. oris, L. panis, L. pontis, L. reuteri, L. secaliphilus and L. vaginalis [4, 9, 10], and is considered adapted to vertebrates with very few exceptions (L. fermentum and L. secaliphilus) [9].

The species L. reuteri is extremely well studied due to its wide use as probiotics. Isolates have been obtained mainly from humans and several animal species including mice, rats, pigs, ruminants and birds, as well as fermented food [7, 8]. This species is divided into six phylogenetic clusters that show a clear association with particular vertebrate species [5–7, 11], and the genome content of these lineages is reflective of the niche characteristics in different vertebrate species [6]. These findings point to host specialization, which has been experimentally demonstrated in mice and chicken [5-7, 11]. Molecular factors that confer host specialization and allow stable persistence of L. reuteri in the intestinal tract of animals have been identified and relate to acid resistance, syntrophic interactions with Bifidobacterium, facilitation in biofilms with other lactobacilli, adhesion to non-secretory epithelia and biofilm formation, and sucrose-dependent biofilm formation [11-16]. Species in Limosilactobacillus including L. reuteri are also stable elements in food fermentation, particularly cereal fermentation [17, 18].

ISOLATION AND ECOLOGY

To expand our understanding of the evolution and host adaptation of *L. reuteri*, we sampled wild and zoo animals with the goal of isolating a wider array of *L. reuteri* strains. Ten strains, BG-AF3-A^T, pH52_RY, WF-MT5-A^T, BG-MG3-A, Lr3000^T, RRLNB_1_1, STM3_1^T, STM2_1, WF-MO7-1^T and WF-MA3-C were selected and analysed in the current study. Five of them were obtained from wild rodents during a previous study [13]: strains BG-AF3-A^T, WF-MT5-A^T, BG-MG3-A, WF-MO7-1^T and WF-MA3-C were isolated from the jejunum of yellow-necked mouse (*Apodemus*)

flavicollis), field vole (Microtus agrestis), bank vole (Myodes glareolus), root vole (Microtus oeconomus) and common vole (Microtus arvalis), respectively, in the Vilnius area (Lithuania) (Table 1). Strain pH52 RY was isolated from the intestine of a pheasant (Phasianus colchicus) in Sweden (Swedish University of Agricultural Sciences, Uppsala, Sweden), Lr3000^T from the stomach of a hamster in the USA by BioGaia (Stockholm, Sweden), RRLNB_1_1 from the faecal sample of a red ruffed lemur (Varecia rubra) raised at San Francisco Zoo (CA, USA), and STM3 1^T and STM2 1 from faeces of a striped mouse (Rhabdomvs pumilio) raised at the Henry Doorly Zoo and Aquarium (Omaha, NE, USA) (Table 1). Strains were either isolated on MRS (De Man, Rogosa, Sharpe) or modified MRS (mMRS) medium, and cultivated under anaerobic conditions at 37 °C. mMRS refers to MRS supplied with 10 g l-1 maltose and 5 g l⁻¹ fructose. Colonies were then purified, sub-cultured and preserved as glycerol stocks at -80 °C.

A previous study classified several of these strains as L. reuteri on the basis of partial sequences of 16S rRNA genes that were >98.5% identical to L. reuteri [13]. However, analysis of whole-genome sequences not only revealed that these strains fell into phylogenetic lineages that were distinct from the lineages described for L. reuteri [5, 7], but also showed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with L. *reuteri* type strain DSM 20016^T ranged from 73.4 to 93.6% and from 20.8 to 54.9%, respectively, which are below the ANI (95%) and dDDH (70%) thresholds that are currently accepted for a bacterial species [19-23]. We therefore concluded that these ten strains could not be assigned to any validly published species in the genus Limosilactoba*cillus*. Therefore, in the present study, we propose that these strains represent five novel Limosilactobacillus species based on whole-genome sequencing, 16S rRNA gene sequence analysis, chemotaxonomic analysis and morphological analysis.

PHYLOGENY BASED ON THE 16S rRNA GENE

Genomic DNA of each of the ten strains was extracted from overnight cultures using the Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer's protocol for Gram-positive bacteria. DNA quality and quantity were estimated using a NanoDrop Spectrophotometer ND-1000 (Thermo Fisher Scientific). Libraries for wholegenome sequencing were constructed using the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) and sequenced on the Illumina HiSeqX platform to produce paired-end reads with the length of 150 bp at the McGill University and Génome Québec Innovation Centre (Montréal, QC, Canada). Quality control (QC) of each sequencing dataset was conducted using Trimmomatic (version 0.36) [24] to trim adapters and cut low-quality bases (quality scores <20). Post-QC reads with read length no less than 100 bp were de novo assembled using ABySS (version 2.0) [10, 25] and contigs assigned to the PhiX sequence (NCBI accession: NC_001422.1) were removed.

Table 1. Genomic characteristics, host origins and quality of genome assemblies of ten strains classified as novel Limosilactobacillus species

	L. balticu	s sp. nov.	L. agresti	's sp. nov.	L. albertı	ensis sp. nov.	L. rudii s	sp. nov.	L. fastidiosu	sp. nov.	
	$BG-AF3-A^{T}$	pH52_RY	WF-MT5-A ^T	BG-MG3-A	$Lr3000^{T}$	RRLNB_1_1	$STM3_1^T$	$STM2_1$	WF-MO7-1 ^T	WF-MA3-C	
Host origin	Yellow-necked mouse (Apodemus flavicollis)	Pheasant (Phasianus colchicus)	Field vole (Microtus agrestis)	Bank vole (Myodes glareolus)	Hamster	Red ruffed lemur (<i>Varecia rubra</i>)	Striped mouse (Rhabdomys pumilio)	Striped mouse (Rhabdomys pumilio)	Root vole (Microtus oeconomus)	Common vole (Microtus arvalis)	
GenBank ID	GCA_014145615.1	GCA_014145605.1	GCA_014145585.1	GCA_014145545.1	GCA_014145555.1	GCA_014145525.1	GCA_014145455.1	GCA_014145435.1	GCA_014145505.1	GCA_014145425.1	
IMG Genome ID	2860350408	2860354513	2860352526	2860356824	2860358791	2860361239	2860373262	2860375653	2860378031	2860379800	
Genome size (bp)	2088966	2 169 741	1 899 103	1 863 625	2 452 361	2 354 505	2316339	2 307 466	1720134	1 728 435	
Coverage (×)	874	940	937	896	768	1027	1194	889	1121	1107	
G+C content (mol%)	38.3	38.2	38.0	37.9	38.8	38.5	38.5	38.5	39.1	39.1	
No. of contigs	76	94	73	67	78	72	63	61	44	64	
N50 (bp)	136912	105538	73671	115417	116418	121174	131342	118051	112343	99702	
Total genes	2117	2310	1986	1966	2447	2383	2390	2377	1768	1820	
No. of CDS'	1992	2183	1881	1845	2317	2259	2247	2233	1668	1718	
'CDS, coding sequenc	ġ										

Only contigs with more than 200 bp were kept for downstream analysis. The completeness and the contamination of each genome assembly were estimated using CheckM [26]; the completeness and the contamination of genomes were more than 98% and less than 2%, respectively, demonstrating that strains or DNA from these strains were not contaminated during incubation or DNA isolation.

Genome sequences for type strains of L. reuteri (DSM 20016^T; GenBank: GCA_000016825.1), L. antri (DSM 16041^T; GenBank: GCA_000160835.1), L. coleohominis (DSM 14060^T; GenBank: GCA 001435055.1), L. equigenerosi (DSM 18793^T; GenBank: GCA_001435245.1), L. fermentum (DSM 20052^T; GenBank: GCA_000159215.1), L. frumenti (DSM 13145^T; GenBank: GCA 001436045.1), L. gastricus (DSM 16045^T; GenBank: GCA_001434365.1), L. gorillae (DSM 28356^T; GenBank: GCA_001293735.1), L. ingluviei (DSM 15946^T; GenBank: GCA 001435775.1), L. mucosae (DSM 13345^T; GenBank: GCA 001436025.1), L. oris (DSM 4864^T; GenBank: GCA_001434465.1), L. panis (DSM 6035^T; GenBank: GCA 001435935.1), L. pontis (DSM 8475^T; GenBank: GCA_001435345.1), L. secaliphilus (DSM 17896^T; GenBank: GCA_001437055.1) and L. vaginalis (DSM 5837^T; GenBank: GCA 001435915.1) were retrieved from the GenBank database. An additional 32 genome sequences of published *L. reuteri* strains were obtained from the Joint Genome Institute (JGI) genome portal or the GenBank database (Table S1, available in the online version of this article).

Full length (1566-1570 bp) 16S rRNA gene sequences of these strains were extracted from their draft genomes through mapping contigs to the 16S rRNA gene of L. reuteri DSM 20016^T. The 16S rRNA gene similarities among these strains (Table 2) were calculated using the BLAST algorithm [27]. To infer the phylogeny of these ten strains and other related species in Limosilactobacillus, their 16S rRNA gene sequences were aligned using MUSCLE [28] and the maximum-likelihood (ML) phylogenetic tree was inferred based on the generalized time-reversible model and the Gamma distribution (GTR+G) with 1000 bootstrap replicates through RAxML [29] (Fig. 1). Sequence similarity of strains BG-AF3-A^T, pH52_RY, WF-MT5-A^T, BG-MG3-A, Lr3000^T, RRLNB_1_1, STM3_1^T and STM2_1 was \geq 98% when compared to *L. reuteri* DSM 20016^T (Table 2); these strains were closely related to L. reuteri according to the 16S-based phylogenetic tree (Fig. 1), which led to the initial classification of these strains to L. reuteri [13]. Strains WF-MO7-1^T and WF-MA3-C were most closely related to L. vaginalis (Fig. 1) and the identities of their 16S rRNA genes to L. vaginalis DSM 5837^T were 98.5 and 98.4%, respectively (Table 2).

GENOMIC ANALYSES

Draft genomes of the ten *Limosilactobacillus* strains were annotated using the Integrated Microbial Genomes (IMG) system from the Joint Genome Institute [30] and genomic characteristics of these strains are summarized in Table 1. The G+C content of the draft genomes ranged from 37.9 to

Und Und <th></th> <th>L. b.</th> <th>alticus nov.</th> <th>L. aj sp.</th> <th>restis nov.</th> <th>L. alt sp</th> <th>oertensis . nov.</th> <th>L.</th> <th>rudii . nov</th> <th>L. fast sp.</th> <th><i>idiosus</i> nov.</th> <th>L. reuteri subsp. kinnaridis subsp. nov.</th> <th>. ю</th> <th>L. reuteri subsp. porcinus ubsp. nov.</th> <th>L. rei subs muri subsp.</th> <th>teri P. nov.</th> <th>L. reute subsp. reuter subsp. n</th> <th>ri V.</th> <th>L. reute subsp suis suis subsp. n</th> <th>eri IOV.</th> <th>L. reut subsj rodenti subsp. 1</th> <th>teri P. ium nov.</th>		L. b.	alticus nov.	L. aj sp.	restis nov.	L. alt sp	oertensis . nov.	L.	rudii . nov	L. fast sp.	<i>idiosus</i> nov.	L. reuteri subsp. kinnaridis subsp. nov.	. ю	L. reuteri subsp. porcinus ubsp. nov.	L. rei subs muri subsp.	teri P. nov.	L. reute subsp. reuter subsp. n	ri V.	L. reute subsp suis suis subsp. n	eri IOV.	L. reut subsj rodenti subsp. 1	teri P. ium nov.
upbane uppane up	Strain	BG- AF3- A ^T	pH52_ RY	WF- MT5- A ^T	BG- MG3- A	Lr 3000^{T}	RRLNB _1_1	STM3 _1 ^T	STM2_1	WF- MO7 -1 ^T	WF- MA3- C	AP3 ^T CSI	306	г 20-2	lpuph1 [™]	LTH 5448	DSM 20016 ^T	MM2 -3	ATCC 53608 ^T	pg- 3b	100- 23 ^T	TMW 1.656
Medical S 100,100 10 100,100	L. balticus sp. nov.																					
Mg/ Mg Mg <th< td=""><td>$BG-AF3-A^{T}$</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	$BG-AF3-A^{T}$	I																				
Lagenter Integratione <liintegratione< li=""> <liintegratione< li=""> <l< td=""><td>pH52_RY</td><td>6.66</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<></liintegratione<></liintegratione<>	pH52_RY	6.66	I																			
Matrix Bit Second Second <td>L. agrestis sp. nov.</td> <td></td>	L. agrestis sp. nov.																					
Bit 91 91 Lunding 1	WF-MT5-A ^T	99.8	8.66	I																		
Ling and the set of the set	BG-MG3-A	8.66	2.66	6.66	I																	
Light 81 81 81 91 91 91 Light 81 81 92 93 9 9 Light 81 91 93 9 9 9 Light 81 93 93 9 9 9 Light 81 93 93 9 9 9 Light 81 93 93 9 9 9 Light 91 91 93 9 9 9 Light 91 93 93 9 9	L. albertensis sp. nov.																					
Lumber 90 90 91 90 91 Lumber 1 1 1 1 1 Lumber 91 91 91 91 91 91 Stability 92 92 92 92 92 92 Stability 91 91 92 92 92 92 Lumber 91 91 92 92 92 92 Lumber 91 92 92 92 92 92 92 Lumber 91 92 92 92 92 92 92 92 Lumber 91 92	$Lr3000^{T}$	98.7	98.7	98.7	98.6	I																
Linki R10 91 91 92 92 92 92 R10 91 91 92 92 92 92 L1 91 92 92 92 92 92 L1 1 1 1 1 1 1 L1 1 1 1 1 <td< td=""><td>RRLNB_1_1</td><td>98.8</td><td>98.7</td><td>98.7</td><td>98.7</td><td>6.66</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RRLNB_1_1	98.8	98.7	98.7	98.7	6.66	I															
KmJ1 61 92 92 92 92 92 KmJ1 92 92 92 92 92 92 KmJ1 92 92 92 92 92 92 Lakikuu 92 92 92 92 92 93 Lukuu 91 92 92 93 93 93 VtAUT 91 92 93 93 93 93 VtAUT 91 92 93 93 93 93 Luku 93 93 93 93<	L. rudii sp. nov.																					
Image: Mathematic Mathatendemati Mathatendematic Mathematic Mathematic Mathematic Mathm	$STM3_1^T$	98.2	98.2	98.3	98.2	99.2	99.2	I														
Lipstitute VX-NOT1' 91 92	STM2_1	98.2	98.2	98.3	98.2	99.2	99.2	100.0	I													
WE.MOD.1 ¹ 91 92 91	L. fastidiosus sp. nov.																					
WF- 970 970 971 970 971 970 971 970 971 971 971 Lundity Lundity Lundity Lundity Lundity Lundity Lundity 970 971 971 971 971 971 971 Lundity Lundity Lundity Lundity Lundity Lundity Lundity Lundity 970 980 987 982 973 971 973 Lundity Lundity Lundity Lundity Lundity Lundity 970 970 970 971 973 973 Lundity Lundity Lundity Lundity Lundity Lundity 970 970 970 970 970 973 973 Lundity Lundity Lundity Lundity 970 970 970 970 970 970 970 Lundity Lundity 970 970 970 970 970 970 970	WF-MO7-1 ^T	97.1	97.1	97.2	97.1	97.3	97.3	97.3	97.3	I												
L rateri subp. himatrids P and P	WF- MA3-C	97.0	96.9	97.1	97.0	97.2	97.1	97.2	97.2	6.66	I											
AP3 ⁺ 993 997 996 986 987 982 971 - CSB 993 997 996 985 982 982 973 971 99 - Lruterisubp - 997 996 985 982 982 972 971 999 - Lruterisubp - 567 997 985 982 982 972 971 999 - 3c6 ⁺ 997 996 996 983 984 980 993 - 2c-2 996 996 983 984 980 971 - Lruteri - 993 993 993 - -	L. reuteri subsp. kimaridis subsp. nov.																					
CSF8 997 997 997 985 982 972 971 999 - L rauteri subsy- portions. L 1 1 1 1 1 1 L rauteri subsy- portions. 917 916 916 916 915 912 911 919 918 1 3c6 ⁺ 916 917 1 1 L rauteri 1 916 916 916 916 917 1 1 L rauteri 1 910 916 916 916 916 916 917 1	$AP3^{T}$	8.66	2.66	2.66	9.66	98.6	98.7	98.2	98.2	97.3	97.1	I										
L ruteri subsp. porituus subsp. nov. 36 ^c 99.6 99.6 98.5 98.6 98.2 97.2 97.1 99.9 99.8 - 20-2 99.6 99.6 98.3 98.4 98.0 97.1 97.0 99.8 99.7 - L ruteri subsp. nurtium . . 99.7 99.7 . . L ruteri 	CSF8	8.66	266	2.66	9.66	98.5	98.5	98.2	98.2	97.2	97.1	- 6.66										
3.cf ^T 9.j 9.j 9.j 9.j 9.j 9.j 9.j 9.j 1 2.0-2 9.j 9.j 9.j 9.j 9.j 9.j 9.j 9.j 1 2.0-2 9.j 9.j 9.j 9.j 9.j 9.j 9.j 9.j Lrautri Lrautri ubp.nurium	L. reuteri subsp. porcinus subsp. nov.																					
20–2 99.6 99.6 99.5 98.3 98.4 98.0 97.1 97.0 99.8 99.7 – Leventeri subsp.merien subsp.nov.	3 c6 ^T	2.66	9.66	9.66	9.66	98.5	98.6	98.2	98.2	97.2	97.1	9.99 99.9	1									
L reuteri subsp. murium subsp. nov.	20-2	9.66	9.66	9.66	99.5	98.3	98.4	98.0	98.0	97.1	97.0	99.8 99.	2.99 8	1								
	<i>L. reuteri</i> subsp. <i>murium</i> subsp. nov.																					

	L. ba sp.	líticus nov.	L. agr sp. n	estis ov.	L. albei sp. n	tensis lov.	L. r. sp. n	udii 10 V.	L. fastit sp. n	diosus ov.	L. reute subsp. kinnariu subsp. no	rri iis ov.	L. reuter subsp. porcinu. subsp. no	ri s vv.	L. reuter subsp. murium subsp. nov		L. reuter subsp. reuteri subsp. no	i v.	L. reuter subsp. suis subsp. no	i v.	L. reute subsp rodentii subsp. n	ri un ov.
Strain	BG- AF3- A ^T	pH52_ RY	WF- MT5- A ^T	BG- MG3- A	$_{ m Jr}^{ m Lr}$	RRLNB _1_1	STM3 _1 ^T	STM2_1	WF- MO7 -1 ^T	WF- MA3- C	$AP3^{T}$	CSF8	3c6 ^T ,	20-2 I _l	puph1 ^r	LTH 5448 2	DSM 0016 ^T	MM2 -3	ATCC 53608 ^T	pg- 3b	100- 23 ^T	TMW 1.656
lpuph1 ^T	8.66	2.66	2.66	9.66	98.6	98.7	98.2	98.2	97.3	1.79	100.0	6.66	6.66	8.66	I							
LTH5448	9.66	9.66	9.66	9.66	98.3	98.4	98.0	98.0	97.0	96.9	8.66	8.66	2.96	9.66	8.66	I						
L. reuteri subsp. reuteri subsp. nov.																						
DSM 20016 ^T	2.66	9.66	9.66	2.66	98.4	98.5	98.0	98.0	96.9	96.8	2.66	5 2.66	9.66	9.66	99.7	2.66	I					
MM2-3	8.66	8.66	8.66	8.66	98.5	98.6	98.2	98.2	97.1	96.9	8.66	8.66	8.96	2.66	99.8	8.66	6.66	I				
L. <i>reuteri</i> subsp. <i>suis</i> subsp. nov.																						
ATCC 53608^{T}	8.66	2.66	2.66	9.66	98.5	98.5	98.1	98.1	97.3	97.1	6.66	6'66	8.66	6.66	6.66	8.66	2.66	8.66	I			
pg-3b	8.66	2.66	2.66	9.66	98.6	98.7	98.2	98.2	97.3	97.1	6.66	6.66	8.66	8.66	6.66	8.66	2.66	8.66	6.66	I		
L. reuteri subsp. rodentium subsp. nov.																						
$100-23^{\rm T}$	8.66	2.66	2.66	9.66	98.5	98.6	98.2	98.2	97.3	1.79	6.66	6.66	8.66	8.66	6.66	8.66	2.66	99.8	6.66	6.66	I.	
TMW1.656	2.66	9.66	9'66	9.66	98.5	98.5	98.2	98.2	97.3	1.79	8.66	8.66	8.66	2.66	8.66	2.66	9.66	99.8	8.66	99.8	99.8	1
L. oris DSM 4864 ^T	96.1	96.1	96.2	96.2	96.3	96.3	96.7	96.7	97.3	97.2	96.2	96.2	96.1	96.0	96.2	95.9	96.1	96.1	96.1	96.2	96.2	96.2
L. antri DSM 16041 ^T	95.7	95.7	95.7	95.7	96.0	95.9	96.3	96.3	97.2	97.1	95.8	95.7	95.7	95.6	95.8	95.5	95.7	95.7	95.7	95.8	95.8	95.8
L. panis DSM 6035 ^T	96.1	96.0	96.2	96.1	96.2	96.2	96.4	96.4	97.5	97.3	96.1	96.1	96.1	95.9	96.1	95.9	96.0	96.1	96.0	96.1	96.1	96.0
L. pontis DSM 8475 ^T	97.3	97.2	97.3	97.2	97.3	97.2	96.9	96.9	97.6	97.5	97.3	97.2	97.2	97.0	97.3	97.0	1.76	97.2	97.1	97.3	97.3	97.1
L. vaginalis DSM 5837 ^T	96.7	96.6	96.8	96.7	96.9	96.9	96.8	96.8	98.5	98.4	96.7	96.6	96.6	96.4	96.7	96.4	96.6	96.6	96.6	96.7	96.7	96.7
L. frumenti DSM 13145 ^T	97.3	97.2	97.2	1.76	97.4	97.4	1.76	1.76	98.4	98.3	1.76	1.79		96.9	97.1	96.9	97.0	97.1	97.0	1.76	97.1	97.0
L. coleohominis DSM 14060 ^T	95.0	94.9	95.2	95.2	94.9	94.9	95.2	95.2	95.6	95.5	95.0	95.0	95.0	94.9	95.0	94.9	95.0	95.1	95.0	95.0	95.0	94.9

Table 2. Continued

Fig. 1. A maximum-likelihood phylogenetic tree reconstructed using 16S rRNA gene sequences. GenBank or JGI accession numbers of these genomes are provided in parentheses. The tree was inferred based on the GTR+G model with 1000 bootstrap replicates and only bootstrap values above 60% are shown. Strains of five novel *Limosilactobacillus* species are labelled by different colours; labels of six *L. reuteri* subspecies are colour representing vertebrate host origin: green for rodents, red for pigs, blue for humans and orange for poultry. The tree was drawn with iTOL [54].

39.1 mol% and the genome size ranged from 1.72 to 2.45 Mbp (Table 1). A phylogenetic tree of these strains was reconstructed based on the alignments of the genes shared in all genomes (n=100). Briefly, draft genomes of the ten Limosilactobacillus strains, published L. reuteri strains and other type strains of the genus Limosilactobacillus were re-annotated using Prokka with default settings [31]. The Roary pipeline was applied to identify core genes based on these re-annotated assemblies [32] and concatenated core gene alignments were used as the input for RAxML to reconstruct the maximum-likelihood (ML) tree using the GTR+G model with 1000 bootstrap replicates [29]. The core-gene-based phylogenetic tree confirmed that strains BG-AF3-A^T, pH52_RY, WF-MT5-A^T, BG-MG3-A, Lr3000^T, RRLNB_1_1, STM3_1^T and STM2_1 were closely related to L. reuteri lineages but formed distinct phylogenetic clades, while the strains WF-MO7-1^T and WF-MA3-C clustered with *L. vaginalis* (Fig. 2).

To determine which of the distinct phylogenetic clades should be considered as separate species, pairwise ANI values were calculated based on entire genomes using JSpeciesWS and JSpecies with the BLAST algorithm [21, 33] and pairwise dDDH values were estimated using the Genome-To-Genome Distance Calculator (GGDC) [22]. Pairwise ANI and dDDH values of the ten strains of *Limosilactobacillus* with other species of *Limosilactobacillus* and two representative strains from each of six *L. reuteri* lineages are shown in Tables 3 and 4, respectively. The ANI and dDDH values of strains from different phylogenetic clades to type strains of known *Limosilactobacillus* species were lower than 93.6 and 54.9%, respectively, and therefore lower than the threshold for

Fig. 2. A maximum-likelihood phylogenetic tree reconstructed using core genes (*n*=100) identified from whole-genome sequences, showing the evolutionary relationships among five novel *Limosilactobacillus* species, six *L. reuteri* subspecies and other recognized species in the genus *Limosilactobacillus*. GenBank or JGI accession numbers of these genomes are provided in parentheses. The tree was inferred based on the GTR+G model with 1000 bootstrap replicates and only bootstrap values above 60% are shown. Strains of five novel *Limosilactobacillus* species are labelled by different colours; labels of six *L. reuteri* subspecies are colour representing vertebrate host origin: green for rodents, red for pigs, blue for humans and orange for poultry. The tree was drawn with iTOL [54].

assignment to established species (95% of ANI and 70% of dDDH) [19–23]. In contrast, strains within the same phylogenetic clade had ANI values between 97.0 and 100%, and dDDH values between 77.0 and 100% (Tables 3 and 4). Strains WF-MO7-1^T and WF-MA3-C were most closely related to the type strain of *L. vaginalis* (DSM 5837^T) (Fig. 2), but their ANI and dDDH values with *L. vaginalis* DSM 5837^T were below 82 and 26%, respectively (Tables 3 and 4). Strains Lr3000^T and RRLNB_1_1, as well as STM3_1^T and STM2_1 were most closely related to *L. reuteri*, but the ANI and dDDH values of these strains with *L. reuteri* DSM 20016^T were below 82 and 25%, respectively (Tables 3 and 4). The ANI and dDDH values of strains BG-AF3-A^T and pH52_RY as well as WF-MT5-A^T and BG-MG3-A with *L. reuteri* DSM20016^T were much higher (90.7–93.6% of ANI and 43.2–54.9% of dDDH) but still below

94 and 55%, respectively. These analyses demonstrated that the ten strains represent five novel species.

Representative strains of *L. reuteri* that represent the six host-adapted phylogenetic lineages were not sufficiently resolved by the analysis based on 16S rRNA gene sequences (Fig. 1) but formed distinct phylogenetic clades using the core-gene-based analysis (Fig. 2), which is consistent with previous findings [5, 7]. However, ANI and dDDH values of strains belonging to different *L. reuteri* lineages were from 94.6 to 96.6% and from 61.1 to 75.5%, respectively, indicating genetic dissimilarity (Tables 3 and 4). To gain further insight into the genetic dissimilarities and evolutionary relationships among strains belonging to different *L. reuteri* lineages, a core-gene-based phylogenetic tree was reconstructed for 33 *L. reuteri* genomes available in public databases (Table S1)

	5								-			-			`	-)				
	L. balti	cus sp. nov.	L. agresti	s sp. nov.	L. albert	ensis sp. nov.	L. rudii s	p. nov.	L. fastiu sp. n	diosus 10v.	L. reut subs <u>i</u> kimari subsp. 1	teri p. nov.	L. reute subsp porcinu subsp. n	eri 1. 15 ov.	L. reuteri subsp. murium subsp. nov		L. reuts subsp reuter subsp. n	eri 5. 10V.	L. reute subsp suis subsp. n	eri	L. rei sub roden subsp	tteri sp. tium nov.
Strain	BG- AF3-A ^T	pH52_RY	WF- MT5-A ^T	BG- MG3-A	Lr3000 ^T	RRLNB_1_1	STM3_1 ^T	STM2_1	WF- MO7- 1 ^T	WF- MA3-C	AP3 ^T	CSF8	3c6 ^T	20-2	lpuph1 ^T LJ	H5448	DSM 20016 ^T	MM2-3	ATCC 53608 ^T	pg-3b 10	00-23 ^T T	MW1.656
L. balticus sp. nov.																						
$BG-AF3-A^{\rm T}$	I																					
pH52_RY	98.3	I																				-
L. agrestis sp. nov.																						
WF-MT5- $A^{\rm T}$	91.0	91.2	I																			-
BG-MG3-A	91.1	91.4	98.8	I																		
L. albertensis sp. nov.																						
$Lr3000^{T}$	81.9	82.1	81.3	81.8	I																	
RRLNB_1_1	81.6	81.9	81.4	81.7	97.0	I																
L. rudii sp. nov.																						
$STM3_1^T$	79.5	79.2	79.1	79.2	79.8	7.67	I															
STM2_1	79.5	79.2	79.1	79.2	7.67	7.67	100.0	T														
L. fastidiosus sp. nov.																						
WF-M07-1 ^T	73.4	73.4	73.0	73.2	73.0	73.0	73.4	73.4	T													
WF-MA3-C	73.5	73.5	73.2	73.2	73.3	73.2	73.6	73.5	2.66	I												
L. reuteri subsp. kinnaridis subsp. nov.																						
$AP3^{T}$	93.2	93.3	90.6	90.7	82.2	82.4	79.4	79.4	73.5	73.5	T											
CSF8	93.2	93.2	90.5	90.7	82.1	81.9	79.2	79.2	73.3	73.3	98.2	I										
L. reuteri subsp. porcinus subsp. nov.																						
3c6 ^T	92.8	93.0	90.4	90.6	81.5	81.5	0.97	79.0	73.2	73.2	96.3	96.6	I									
20-2	92.7	93.0	90.3	90.6	81.8	81.6	0.67	79.0	73.0	73.4	96.3	96.6	1.66	I								
L. reuteri subsp. murium subsp. nov.																						
																					•	Continued

8

Anome																							
with the second secon		L. baltis	cus sp. nov.	L. agresti:	s sp. nov.	L. albertei	nsis sp. nov.	L. rudii s	,von .c	L. fastidi sp. no	iosus w.	L. reute subsp. kimarid subsp. no	ri lis .vc	L. reuter subsp. porcinus subsp. no	i s	L. reute subsp muriu subsp. n	ri n ov.	L. reute subsp reuter subsp. n	rri iov.	L. reute subsp. suis subsp. ne	ri ov.	L. re sub roder subsp	uteri sp. titum . nov.
Mai and the contract of	Strain	BG- AF3-A ^T	pH52_RY	WF- MT5-A ^T	BG- MG3-A	$Lr3000^{T}$	RRLNB_1_1	STM3_1 ^T	STM2_1	WF- MO7- 1 1 ^T	WF- MA3-C	AP3 ^T	CSF8 3	c6 ^T 2	.0-2 lj	l Thquq	.TH5448	DSM 20016 ^T	MM2-3	ATCC 53608 ^T	pg-3b 10	00-23 ^T 7	MW1.656
Usingly LettinglyNo <t< td=""><td>lpuph1^T</td><td>93.0</td><td>93.1</td><td>90.5</td><td>90.7</td><td>81.5</td><td>81.5</td><td>79.1</td><td>79.1</td><td>73.3</td><td>73.3</td><td>95.9</td><td>95.8 9</td><td>6.4 5</td><td>96.3</td><td>ī</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	lpuph1 ^T	93.0	93.1	90.5	90.7	81.5	81.5	79.1	79.1	73.3	73.3	95.9	95.8 9	6.4 5	96.3	ī							
InternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalRotational81	LTH5448	93.0	93.1	90.5	90.7	81.5	81.5	79.0	79.0	73.3	73.2	95.5	95.7 9	15.9 5	95.8	97.0	I						
Modeline in the constant of the constant	L. reuteri subsp. reuteri subsp. nov.																						
Modeline in the second of the second o	DSM 20016 ^r	93.6	93.6	90.7	90.8	81.7	81.9	79.4	79.4	73.5	73.4	95.4	95.8 9	9 1.9	96.0	96.5	96.5	I.					
The number of the second	MM2-3	93.5	93.5	60.7	90.7	81.7	81.7	79.2	79.2	73.4	73.4	95.3	95.8 9	9 0.9	96.0	96.4	96.3	100.0	I.				
Microsole (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	<i>L. reuteri</i> subsp. <i>suis</i> subsp. nov.																						
geb 90 90 90 90 91	$ATCC53608^{T}$	94.1	94.2	90.9	91.0	82.2	82.4	79.4	79.4	73.6	73.6	95.4	95.2 5	14.7 5	94.7	95.6	95.6	95.7	95.7	I			
The method were shore and	pg-3b	93.9	94.0	90.6	90.8	81.5	81.7	79.2	79.2	73.1	73.2	95.2	95.3 9	12.1 5	95.1	95.5	95.7	96.1	96.1	0'66	I		
10.23 ¹ 9.19.19.081.781.87.37.37.39.49.49.49.5 <td>L. reuteri subsp. rodentium subsp. nov.</td> <td></td>	L. reuteri subsp. rodentium subsp. nov.																						
TMVL656943943946943943945945954953 <t< td=""><td>$100-23^{T}$</td><td>93.8</td><td>94.0</td><td>90.8</td><td>90.9</td><td>81.7</td><td>81.8</td><td>79.1</td><td>79.2</td><td>73.3</td><td>73.5</td><td>94.8</td><td>94.7 5</td><td>94.8</td><td>94.8</td><td>95.6</td><td>95.8</td><td>96.2</td><td>96.1</td><td>96.3</td><td>96.2</td><td>I</td><td></td></t<>	$100-23^{T}$	93.8	94.0	90.8	90.9	81.7	81.8	79.1	79.2	73.3	73.5	94.8	94.7 5	94.8	94.8	95.6	95.8	96.2	96.1	96.3	96.2	I	
Loris Destribution 716 711 709 713 714 713 714 713 714 710 713 710 713 710 713 710 713 710 713	TMW1.656	94.2	94.3	90.6	90.7	81.4	81.5	78.8	78.9	72.8	73.0	94.6	94.7 5	9 6.9	94.9	95.5	95.6	95.9	95.9	96.2	95.9	97.3	
Lutrit 705 706 708 711 713 703 707 711 706 713 705 711 706 713 705 711 706 713 705 713 703 713 703 713 705 <t< td=""><td>L. oris DSM 4864^T</td><td>71.6</td><td>71.1</td><td>70.9</td><td>71.1</td><td>71.4</td><td>71.0</td><td>71.5</td><td>71.4</td><td>71.3</td><td>71.5</td><td>71.6</td><td>71.3 7</td><td>71.0</td><td>6.07</td><td>1.17</td><td>71.0</td><td>71.5</td><td>71.0</td><td>72.1</td><td>70.9</td><td>71.5</td><td>70.8</td></t<>	L. oris DSM 4864 ^T	71.6	71.1	70.9	71.1	71.4	71.0	71.5	71.4	71.3	71.5	71.6	71.3 7	71.0	6.07	1.17	71.0	71.5	71.0	72.1	70.9	71.5	70.8
Lpans 717 71.5 <th< td=""><td>L. antri DSM 16041^T</td><td>70.7</td><td>70.6</td><td>70.5</td><td>70.8</td><td>1.17</td><td>70.6</td><td>71.0</td><td>70.8</td><td>71.0</td><td>71.1</td><td>71.3</td><td>70.8 7</td><td>20.7</td><td>70.7</td><td>70.7</td><td>70.7</td><td>71.1</td><td>70.6</td><td>71.5</td><td>70.5</td><td>71.0</td><td>70.3</td></th<>	L. antri DSM 16041 ^T	70.7	70.6	70.5	70.8	1.17	70.6	71.0	70.8	71.0	71.1	71.3	70.8 7	20.7	70.7	70.7	70.7	71.1	70.6	71.5	70.5	71.0	70.3
L pontis 708 704 704 706 710 711 714 708 705 706 711 707 713 706 713 706 711 707 713 706 711 707 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 706 710 713 726 730 731 73	L. panis DSM 6035 ^T	71.7	71.7	71.5	71.7	72.0	71.6	71.8	71.7	71.8	72.1	72.3	71.9 7	71.5	71.4	71.7	71.5	72.0	71.7	72.2	71.5	72.2	71.4
$ \begin{array}{r[r]{l} L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	L. pontis DSM 8475 ^T	70.8	70.5	70.4	70.7	70.8	70.6	70.6	70.7	71.0	71.1	71.4	70.8 7	70.5	6.07	70.7	70.6	71.1	70.7	71.3	70.6	71.0	70.4
L frumenti 72.4 72.4 72.4 72.6 72.0 72.4 72.5 72.5 74.0 74.0 73.0 72.6 72.4 72.3 72.5 73.1 72.3 73.1 72.1 73.2 DSM 13145 [°] DSM 13145 [°] T.1.1 71.1 71.1 71.2 71.1 71.6 71.4 71.2 71.1 72.0 71.0 70.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 50.8 71.6 50.9 71.6 50.8 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 50.9 71.6 50.9 71.6 50.9 71.6 50.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 70.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 70.9 71.6 70.9 70.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 70.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 70.9 70.8 71.0 70.9 70.8 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 70.9 70.8 71.0 70.9 70.8 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 71.6 70.9 70.8 71.0 70.9 70.8 71.6 70.9 71.6 71.6 71.9 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6	L. vaginalis DSM 5837 ^T	73.4	73.3	73.1	73.2	73.0	73.3	73.5	73.4	81.5	81.7	74.4	73.5 7	73.1	73.1	73.2	73.4	73.6	73.0	73.6	73.0	73.9	72.9
L. 71.1 71.1 71.1 70.6 71.1 71.2 71.1 71.6 71.4 71.2 71.1 72.0 71.0 70.9 70.8 71.0 70.7 71.3 70.8 71.6 70.9 71.6 20.6 advolventivis DSM 14060 ^T	L. frumenti DSM 13145 ^r	72.4	72.4	72.4	72.6	72.0	72.4	72.5	72.5	74.0	74.0	73.0	72.6 7	72.4	72.3	72.5	72.5	73.1	72.3	73.1	72.1	73.2	71.9
	L. coleohominis DSM 14060 ^T	71.1	L.17	70.6	71.1	71.2	1.17	71.6	71.4	71.2	71.1	72.0	71.0 7	20.9	20.8	71.0	70.7	71.3	70.8	71.6	70.9	71.6	70.3

BG- AF3-AT PH32_RY WF3-AT MT5-AT L bahlicus sp nov. MT5-AT WT5-AT BG-AF3-AT - BG-AF3-AT - BG-AF3-AT - PH32_RY 89.0 - - PH32_RY 89.0 - L agreefs 45.1 45.1 45.2 BG-MG3-A 45.1 45.1 24.6 Lagreefs 25.1 25.1 25.1 24.6 Lradii 25.1 25.1 25.1 22.3 24.6 <t< th=""><th>F- BG- 5-A^T MG3-A</th><th></th><th></th><th></th><th></th><th>sp. no</th><th>.v.</th><th>subsp. kinnarid subsp. no</th><th>is V.</th><th>L. reuteri subsp. porcinus subsp. nov.</th><th>L. rei sub muri subsp.</th><th>uerr sp. . nov.</th><th>subsp. <i>reuteri</i> subsp. nov.</th><th>subsp. suis subsp. nov.</th><th>subsp. nov.</th></t<>	F- BG- 5-A ^T MG3-A					sp. no	.v.	subsp. kinnarid subsp. no	is V.	L. reuteri subsp. porcinus subsp. nov.	L. rei sub muri subsp.	uerr sp. . nov.	subsp. <i>reuteri</i> subsp. nov.	subsp. suis subsp. nov.	subsp. nov.
Libidificus BG-AF3-A ^T - BG-AF3-A ^T - BG-AF3-A ^T - PH32_RY 89.0 - PH32_NY 89.0 - Lagrestis 89.0 - WF-MT3-A ^T 45.0 45.2 - BG-MG3-A 45.1 45.2 - BG-MG3-A 45.1 45.2 - Lagreensis - - - SP nov. 25.4 25.5 24.5 Labertensis - 25.4 25.3 RRLNB_1_1 25.1 25.1 24.5 Labortensis 25.4 25.3 24.5 RRLNB_1_1 25.1 25.1 22.3 Ladionic 25.5 20.3 20.8 Ladious 20.5 20.4 20.6 WF-MO7-IT 20.5 20.3 20.8 Londrids 20.5 20.3 20.8 WF-MO3-C 20.5 20.4 20.6 WF-MO3-C 20.5 20.3 20.8 Londr		$Lr3000^{T}$	RRLNB_1_1	STM3_1 ^T	STM2_1	WF- MO7-1 ^T }	WF- MA3-C	AP3 ^T (CSF8 3c	.6 ^T 20–2	lpuph1 ^T	LTH5448	DSM 20016 ^T MM2-3	ATCC pg-3b 53608 ^T	100-23 ^T TMW1.
BG-AF3-A ^T - PH32_RY 89.0 - PH32_RY 89.0 - Lagrests 89.0 - Sp. nov. 45.1 45.2 - WF-MT5-A ^T 45.0 45.2 - BG-MG3-A 45.1 25.4 24.5 Labortensis 25.4 25.3 24.5 Labortensis 25.4 25.3 24.5 Lradii 25.1 25.1 24.6 Lradii 25.1 25.1 22.3 Lradii 23.5 20.4 20.6 WF-MO7-I 20.5 20.3 20.8 Lostations 20.5 20.4 20.6 WF-MO3-C 20.5 20.3 20.8 Lostations 20.5 <															
рН32_КУ 89.0															
Lagresis - wP-MT5-A ^T 45.0 45.2 - BG-MG3-A 45.1 45.2 91.2 Lalbertensis 45.1 45.2 24.5 Labbertensis 25.4 25.5 24.5 Labbertensis 25.1 25.1 24.6 Labbertensis 25.1 25.1 24.6 Lradii 25.1 25.1 22.3 VP-MO7-1 20.5 20.3 20.8 Lostations 20.5 20.3 20.8 WP-MO3-C 20.5 20.3 20.8 Lreateri 20.5 20.3 42.4 Subsp. now. 53.0 53.1 42.5 CSF8 53.6 53.1 42.5 Leateri 23.6 53.1 42.5															
WF-MT5-A ^T 45.0 45.2 - BG-MG3-A 45.1 45.2 91.2 Labbertensis 45.1 45.5 24.5 Labbertensis 25.4 25.5 24.5 Labbertensis 25.1 25.1 24.6 Lr3000 ^T 25.4 25.5 24.5 RRUNB_1_1 25.1 25.1 24.6 Lradii 25.1 25.1 22.3 STM3_1 ^T 25.1 25.1 22.3 VF-MO7-1 ^T 20.5 20.4 20.6 WF-MO7-1 ^T 20.5 20.3 20.8 Lifostidiosus 20.5 20.4 20.6 WF-MO3-C 20.5 20.3 20.8 Lreuteri \$2.5 20.4 20.6 MF-MO3-C 20.5 20.4 20.6 Lreuteri \$2.5 20.3 20.8 Low 52.8 53.0 42.4 CSF8 53.0 53.1 42.5 Low															
BG-MG3 A 45.1 45.2 91.2 Lafbertensis 1	,														
Ladbertensis 1. albertensis 25.4 25.5 24.5 Lr3000' 25.4 25.5 24.5 RRUNB_1_1 25.1 25.1 24.6 Lradii 25.1 25.1 24.6 STM3_1' 25.1 22.1 22.3 STM3_1' 22.5 22.1 22.3 WF-MO7-1' 20.5 20.4 20.6 WF-MO7-1' 20.5 20.4 20.6 WF-MO3-C 20.5 20.4 20.6 WF-MO3-T 20.5 20.4 20.6 Lreuteri 8ubsp. nov. 42.4 CSF8 53.0 53.0 42.4 CSF8 53.6 53.1 42.5 Lreuteri 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 Long 53.6 53.1 42.5 Letteri 53.6 53.1 42.5 Letteri 53.6 53.1 42.5 Letteri 53.6 53.1 42.5 Letterrei 53.6 53.1															
Lr3000 [†] 25.4 25.5 24.5 RRLNB_1L_1 25.1 25.1 24.6 Lrudii 25.1 25.1 24.6 STM3_1 [°] 22.5 22.1 22.3 STM3_1 [°] 22.5 22.1 22.3 STM3_1 [°] 22.5 22.1 22.3 STM3_1 [°] 22.5 20.1 22.3 KF-MO7-1 [°] 20.5 20.4 20.6 WF-MO7-1 [°] 20.5 20.3 20.8 Lreuteri 8089 90.4 42.4 CSF8 53.0 53.1 42.5 Lreuteri 52.8 53.0 42.5 Lreuteri 53.6 53.1 42.5 Lreuteri 53.6 53.1 42.5 Rebonus 53.6 53.1 42.5															
RRLNB_JL_J 25.1 25.1 24.6 Lrudii 2 <td>L5 25.2</td> <td>ī</td> <td></td>	L5 25.2	ī													
Lrudii sp.nov. STM3_1 ^T 22.5 22.1 22.3 STM2_1 22.5 22.1 22.3 L/fastidosus sp.nov. WF-MO7-1 ^T 20.5 20.4 20.6 WF-MA3-C 20.5 20.4 20.6 Ureuteri subsp. AP3 ^T 52.8 53.0 42.4 AP3 ^T 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 L'reuteri subsp.	1.6 25.0	77.0	I												
STM3_1 ^T 22.5 22.1 22.3 STM2_1 22.5 22.1 22.3 Lipstidiosus 22.5 20.4 20.6 WF-MO7-1 ^T 20.5 20.4 20.6 WF-MO3-C 20.5 20.3 20.8 WF-MO3-T 20.5 20.3 20.6 WF-MO3-T 20.5 20.3 20.8 Lireuteri 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 Lireuteri subsp. 42.5 Postorius subsp. subsp.															
STM2_1 22.5 22.1 22.3 L_fistiliosus 2.0.5 20.4 20.6 WP-MO7-1 ⁺ 20.5 20.4 20.6 WF-MA3-C 20.5 20.3 20.8 WF-MA3-C 20.5 20.3 20.8 Letterin 20.5 20.3 20.8 Letterin 20.5 20.3 20.8 Ap3 ⁺ 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 Letterin 53.6 53.1 42.5 Letterin 53.6 53.1 42.5 Letterin 53.6 53.1 42.5	.3 22.3	22.8	22.6	I											
L fastidiosus sp nov. WF-MO7-1 ^T 20.5 WF-MA3-C 20.5 WF-MA3-C 20.5 L reuteri kinneridis subsp. AP3 ^T 53.6 53.1 42.5 L reuteri subsp. L reuteri subsp.	.3 22.3	22.8	22.6	100.0	ı										
WF-MO7-1 ^T 20.5 20.4 20.6 WF-MA3-C 20.5 20.3 20.8 WF-MA3-C 20.5 20.3 20.8 Lreuteri subsp. 42.4 AP3 ^T 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 Lreuteri subsp. 42.5 42.5 Lreuteri subsp. 53.6 53.1 42.5															
WF-MA3-C 20.5 20.3 20.8 L ruteri subsp. nov. AP3 ^T 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 L reuteri subsp. nov.	0.6 20.8	20.5	20.2	20.8	20.8	ı									
L. reuteri subsp. kimaridis subsp. nov. A.P.3 ⁻¹ 52.8 53.0 42.4 C.SF8 53.6 53.1 42.5 L. reuteri subsp.	1.8 20.9	20.8	20.5	20.9	20.9	98.6	T								
AP3 ⁴ 52.8 53.0 42.4 CSF8 53.6 53.1 42.5 L. reuteri subsp. provinus															
CSF8 53.6 53.1 42.5 L. reuteri subsp. provinus	.4 42.4	25.5	25.5	22.4	22.4	20.5	20.5	I							
L. reuteri subsp. poremus subsn nov	.5 42.8	25.3	25.0	22.4	22.4	20.4	20.4	89.7	I						
3c6 ^T 52.2 52.3 42.9	.9 43.0	24.7	24.7	22.3	22.3	20.6	20.6	72.0							
20-2 51.7 51.9 42.6	2.6 43.1	25.1	24.7	22.3	22.3	20.4	21.1	71.3	74.8 95	- 0'!					
L. reuteri subsp. muritum subsp. nov.															

11

Fig. 3. A maximum-likelihood phylogenetic tree reconstructed using core genes (n=100) identified from whole-genome sequences, showing the evolutionary relationships among six *L. reuteri* subspecies. The tree was reconstructed using 33 *L. reuteri* genomes available in public databases (n=6 for *L. reuteri* subsp. *kinnaridis*, n=2 for *L. reuteri* subsp. *porcinus*, n=5 for *L. reuteri* subsp. *murium*, n=10 for *L. reuteri* subsp. *reuteri*, n=5 for *L. reuteri* subsp. *suis* and n=5 for *L. reuteri* subsp. *rodentium*) and *L. balticus* BG-AF3-A^T was used as an outgroup. Further information on the involved genome sequences is listed in Table S1. The tree was inferred based on the GTR+G model with 1000 bootstrap replicates and only bootstrap values above 60% are shown. The tree was drawn with iTOL [54].

with the BG-AF3-A^T strain as an outlier. In accordance with previous analyses that were based on multi-locus sequence analysis (MLSA), amplified-fragment length polymorphism (AFLP) or core genome phylogeny [5, 7, 34], strains of *L. reuteri* clustered into six cohesive host-adapted lineages (Fig. 3). Pairwise ANI values of *L. reuteri* strains within the same lineages (98.5±1.0%; mean±SD) were higher than those of strains belonging to different lineages (95.5±0.6%), with little overlap (Fig. 4). These analyses provide phylogenetic and genomic support for the assignation of subspecies status to the six *L. reuteri* lineages.

PHYSIOLOGY AND CHEMOTAXONOMY

Carbohydrate utilization of the five novel *Limosilactobacillus* species and the six *L. reuteri* subspecies was determined with the API 50 CH system (bioMérieux) following the manufacturer's instructions; results are shown in Table 5. Aspects of the fermentation phenotypes of the strains are in agreement with presence/absence patterns of the phosphofructokinase gene, the mannitol dehydrogenase gene (*mdh*) and the gene (*adhE*) encoding a two-domain enzyme combining acetyl coenzyme A (acetyl-CoA) and alcohol dehydrogenase domains in the annotated draft genomes

[10]. The phosphofructokinase gene was absent, while the *mdh* and *adhE* genes were present in all of these ten strains, which matches the gene content of heterofermentative lactobacilli but differs from the gene content of homofermentative lactobacilli [4]. This in silico prediction was verified for all five proposed type strains (BG-AF3-A^T, WF-MT5-A^T, Lr3000^T, STM3 1^T and WF-MO7-1^T) by observation of gas formation from glucose in MRS broth with Durham tubes. The lactate isomers fermented from glucose of these five putative type strains were determined using QuantiQuik D-Lactic Acid Quick Test Strips and QuantiQuik L-Lactic Acid Quick Test Strips (BioAssay Systems): both D-lactate and L-lactate were produced by these five strains from the glucose fermentation. To evaluate the optimal temperature conditions for growth, the five putative type strains were incubated anaerobically in MRS broth (in the 96-well microplate; each well was overlaid with paraffin to keep the oxygen out) at 15, 30, 37 and 45 °C, and OD₆₀₀ was measured hourly using SpectraMax M3 Multi-Mode Microplate Readers (Molecular Devices) for 24h (Fig. S1). None of these five strains grew at 15 °C. Optimum growth of BG-AF3-A^T and Lr3000^T occurred at 45 °C, while 37 °C was the optimum temperature for the growth of WF-MT5-A^T and STM3_1^T (Fig. S1). WF-MO7-1^T did not grow in the 96-well

Fig. 4. Pairwise average nucleotide identity values (ANI; %) of genome sequences belonging to the same or different *L. reuteri* subspecies. ANI values within the same subspecies and between different subspecies were calculated for 33 *L. reuteri* genomes available in public databases (*n*=6 for *L. reuteri* subsp. *kinnaridis*, *n*=2 for *L. reuteri* subsp. *porcinus*, *n*=5 for *L. reuteri* subsp. *murium*, *n*=10 for *L. reuteri* subsp. *reuteri*, *n*=5 for *L. reuteri* subsp. *suis* and *n*=5 for *L. reuteri* subsp. *rodentium*). Further information on the involved genome sequences is listed in Table S1.

microplate (Fig. S1), but its growth occurred at 30, 37 and 45 °C (optimum) in Falcon 15 ml tubes (data not shown). To investigate the pH range for growth, the pH of MRS broth was adjusted to 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0. Growth of BG-AF3-A^T, WF-MT5-A^T, Lr3000^T and STM3_1^T occurred at pH 4.0-8.0, and growth of WF-MO7-1^T occurred at pH 4.5-7.5. The Gram-staining pattern of each strain was checked using Bactident Aminopeptidase strips (Merck) and the potassium hydroxide test (KOH test) [35]. The ten Limosilactobacillus strains were aminopeptidase- and KOHnegative, suggesting that they are Gram-positive bacteria. The catalase activity was examined using the standard methods as described previously [36] and further confirmed through checking the absence of catalase and NADPH peroxidase genes in the annotated draft genomes [37], which showed that these ten Limosilactobacillus strains are catalase-negative.

Peptidoglycan structure of five putative type strains (BG-AF3-A^T, WF-MT5-A^T, Lr3000^T, STM3_1^T and WF-MO7-1^T) was analysed as described previously [38]. The cell morphology of cells grown on MRS agar plates for 24–48 h under anaerobic conditions was observed with a Scope-A1 microscope (Carl Zeiss) (Fig. S2). Results are presented in the species description section. Cellular fatty acid profiles were generated using the Sherlock MIS (MIDI) system by the Identification Service of the DSMZ, for which TSBA40 was used for the initial analysis and TSBA6 was used for calculation. Fatty acid profiles of these ten strains showed variations: $C_{16:0}$ was the major fatty acid in BG-AF3-A^T, pH52_RY, WF-MT5-A^T, BG-MG3-A, STM3_1^T, STM2_1, WF-MO7-1^T and WF-MA3-C, while summed feature 7 (combination of $C_{19:1} \omega 6c$ and/ or $C_{19:0}$ cyclo $\omega 10c$) was more abundant than other fatty acids in Lr3000^T and RRLNB_1_1 (from the same putative novel species) (Table 6). Cluster analysis based on fatty acid compositions suggested that two strains representing each putative novel species had generally more similar fatty acid profiles to each other, compared to strains from other putative novel species, with the only exceptions of BG-AF3-A^T and pH52_RY (Table 6, Fig. S3). This further confirms the delineation of five novel species.

PROPOSAL OF NOVEL SPECIES AND SUBSPECIES WITHIN *L. REUTERI*

According to aforementioned polyphasic analyses and the chemotaxonomic and phenotypic characterization, we propose that these ten strains represent five novel species of the genus *Limosilactobacillus*. We propose the names *Limosilactobacillus balticus* sp. nov. (type strain BG-AF3-A^T=DSM 110574^T=LMG 31633^T), *Limosilactobacillus agrestis* sp. nov. (type strain WF-MT5-A^T=DSM 110569^T=LMG 31629^T), *Limosilactobacillus albertensis* sp. nov. (type strain Lr3000^T=DSM 110573^T=LMG 31632^T), *Limosilactobacillus rudii* sp. nov. (type strain STM3_1^T=DSM 110572^T=LMG 31631^T) and *Limosilactobacillus fastidiosus* sp. nov. (type strain WF-MO7-1^T=DSM 110576^T=LMG 31630^T) for these novel species.

Based on the cohesive phylogenetic lineages that showed little overlap in ANI values and the experimental proof of differences in host adaptation between the phylogenetic lineages [5, 7, 11] and characteristic physiological differences related to the utilization of glycerol [6, 8, 16, 39, 40], decarboxylation of histidine [34], synthesis of folate [34] and the expression of mucus-binding large surface proteins [8, 41, 42], we also propose that the six phylogenetic lineages within L. reuteri represent six subspecies. The following names are proposed: L. reuteri subsp. kinnaridis subsp. nov. (type strain AP3^T=DSM 110703^T=LMG 31724^T), L. reuteri subsp. porcinus subsp. nov. (type strain 3c6^T=DSM 110571^T=LMG 31635^T), *L*. *reuteri* subsp. *murium* subsp. nov. (type strain lpuph1^T=DSM 110570^T=LMG 31634^T), *L. reuteri* subsp. *reuteri* subsp. nov. (type strain DSM 20016^T=ATCC 23272^T=F 275^T [original designation]), L. reuteri subsp. suis subsp. nov. (type strain ATCC 53608^T=LMG 31752^T=1063^T [original designation]) and L. reuteri subsp. rodentium subsp. nov. (type strain 100-23^T=DSM 17509^T=CIP 109821^T).

DESCRIPTION OF *LIMOSILACTOBACILLUS BALTICUS* SP. NOV.

Limosilactobacillus balticus (bal.ti'cus. L. adj. *balticus* pertaining to the Baltic region where the type strain was isolated).

Cells are Gram-positive, non-motile, non-spore-forming, catalase-negative and heterofermentative. Cells are

Characteristic	L. Baltic sp. nov.	su:	L. agrestis sp. nov.	~	. Albertens sp. nov.	is	L. Ru. sp. nc	dii yv.	L. Fastidiu sp. no	.v.	L. Reu subs kinnari subsp. r.	eri J. dis 10v.	L. Reuteri subsp. porcinus subsp. nov.	L. Rei subs muri subsp.	tteri sp. um	L. Reu subsj reute subsp. 1	eri s. iov.†	L. Reute subsp.si subsp. n	eri uis 10 V.	L. Reute subsp. rodentiu subsp. no	ri L. w*	vaginalis [†]
	BG- p AF3-A ^T _	H52 RY	WF- BG MT5-A ^T MG3	L1 -A 300	DT RR	LNB	STM3_1 ^T	STM2_1	WF- MO7-1 ^T	WF- MA3-C	AP3 ^T	CSF8	3 c6 ^T 20-2	lpuph1 [™]	LTH 5448	DSM 20016 ^T	MM2-3	ATCC 1 53608 ^T	lp167-67	100-23 ^T	TMW 1.656	DSM 5837 ¹
L-Arabinose																						
D-Ribose																						
D-Xylose										I												
D-Gala ctose																						
D-Glucose																						
D-Fru ctose																						
D-Mannose																						
Methyl- α-D- glucopyranoside																						
Aesculin/ ferric citrate																						
Maltose																						
Lactose																						
Melibiose																						
Sucrose																						
Raffinose																						
Turanose																						
Potassium gluconate																						
*API 50 CH test data o	of L. reuteri subsp.	murium (lp	uph1 ^T and LTH5448	I) and L. reuter	i subsp. roder	ntium (1 00-2;	3 ^T and TMW1.654	6) were obtained	from [51].													

Table 5. Carbohydrate utilization phenotypes of five novel Limosilactobacillus species, six L. reuteri subspecies and L. vaginalis

Carbohydrates with negative or not determined results for all strains: glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α -D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, D-lyxose, D-

Fatty acid (%)	L. balticu	sp. nov	L. agresti:	s sp. nov.	L. alberte	nsis sp. nov.	L. rudii :	sp. nov.	L. fastidios	us sp. nov.	L. reuteri	L. vaginalis
	BG-AF3-A ^T	pH52_RY	WF-MT5-A ^T	BG-MG3-A	$Lr3000^{T}$	RRLNB_1_1	STM3_1 ^T	STM2_1	WF-M07-1 ^T	WF-MA3-C	DSM 20016 ^T	DSM 5837 ^T
C _{14:0}	2.6	3.6	1.8	5.3	0.5	0.6	1.8	2.0	7.6	7.2	2.3	7.4
iso-C _{15:0}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
iso-C _{l6:0}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0
C _{16:0}	42.3	32.4	48.3	50.4	16.5	16.9	42.2	46.0	33.4	30.2	37.4	23.7
$C_{17:0}$ cyclo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0
C _{16:0} 3-OH	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.0	0.0
$C_{18:1} \omega 9c$	6.4	21.7	5.7	7.3	31.4	30.1	6.5	6.6	17.2	21.2	6.7	33.3
C _{18:0}	3.0	2.5	5.0	2.5	3.3	3.3	5.3	5.7	1.7	2.2	7.1	0.0
$C_{_{18:1}}\omega 7c$ 11-methyl	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C _{17:0} 3-OH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0
iso-C _{19:0}	1.0	1.3	0.4	0.0	2.3	2.5	1.3	1.2	0.0	1.0	0.0	0.0
$C_{_{19:0}}$ cyclo $\omega \&c$	18.9	8.4	20.4	13.6	0.0	0.0	14.2	15.7	0.0	0.0	7.0	0.0
Summed feature 3†	1.5	1.7	1.5	1.9	1.2	1.3	1.3	1.5	2.7	2.0	3.0	4.4
Summed feature 5†	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.1	0.0
Summed feature 7†	14.5	19.3	13.8	15.1	36.8	38.4	20.6	21.2	31.4	30.1	5.4	15.7
Summed feature 8†	9.6	8.7	2.6	4.0	8.1	7.0	7.0	0.0	5.2	4.6	13.9	15.5
*Cellular fatty acid da †Summed feature 3 c feature 8 is an unkno	ata of <i>L. reuteri</i> comprises C _{16:1} wn combinatic	DSM 20016 ^T $\delta = \omega^2 c$ and/or C.	and <i>L. vaginalis</i> E 16:1 Ø6C; summec and/or C _{18:1} Ø6C.	JSM 5837 [⊤] were J feature 5 com	e retrieved fr $prises \ C_{^{18:2}} \alpha$	om the Bacteri 06,9 <i>c</i> and/or C ₁	al Diversity _{8:0} anteiso; s	Metadatabas ummed feat	se (Bac <i>Dive</i> ; htt :ure 7 comprise	ps://bacdive.ds s C _{19:1} ø6c and/	mz.de/). or C _{19:0} cyclo <i>œ</i> 10	lc; summed

Table 6. Cellular fatty acid profiles of the ten strains classified as novel Limosilactobacillus species

rod-shaped, measuring 0.9-3.0×0.6-1.0 µm. Colonies of the type strain BG-AF3-A^T on MRS agar plate incubated at the anaerobic condition at 37 °C for 2 days are whitish, opaque, raised, circular and entire, with a diameter of 1.2-3.2 mm; no colony appears on MRS agar plate incubated at the aerobic condition at 37 °C for 2 days. D-Lactate, L-lactate and gas are produced from glucose fermentation by the type strain BG-AF3-A^T. Growth occurs at 30, 37 and 45 °C (optimum), but not at 15 °C. Growth occurs at pH 4.0–8.0 in MRS broth. For BG-AF3-A^T, the most abundant fatty acid is $C_{16,0}$, followed by $C_{19:0}$ cyclo $\omega 8c$. Acid is produced from L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, aesculin, maltose, lactose, melibiose, sucrose and raffinose; acid is not produced from D-fructose, D-mannose, methyl α -D-glucopyranoside, potassium gluconate, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α -D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. The cellwall peptidoglycan of BG-AF3-A^T contains the amino acids alanine (Ala), glutamic acid (Glu), lysine (Lys), and aspartic acid (Asp), with the molar ratio 1.3 (Ala):0.8 (Asp):1.0 (Glu):1.0 (Lys), suggesting the cell-wall peptidoglycan type A4α L-Lys–D-Asp by [38]. The DNA G+C content of BG-AF3- A^{T} is 38.3 mol%. The type strain is BG-AF3- A^{T} (=DSM 110574^T=LMG 31633^T), which was isolated from the jejunum of yellow-necked mouse (Apodemus flavicollis) caught in the Vilnius area in Lithuania [13].

DESCRIPTION OF *LIMOSILACTOBACILLUS AGRESTIS* SP. NOV.

Limosilactobacillus agrestis (a.gres'tis. L. masc. adj. *agrestis*, wild, referring to the isolation of the type strain from wild rodents).

Cells are Gram-positive, non-motile, non-spore-forming, catalase-negative and heterofermentative. Cells are rodshaped, measuring $0.9-2.7\times0.6-0.8\,\mu\text{m}$. Colonies of the type strain WF-MT5-A^T on MRS agar plate incubated at the anaerobic condition at 37 °C for 2 days are yellowish, translucent, flat, circular shape but irregular edge, with a diameter of 2.2-5.2 mm; no colony appears on MRS agar plate incubated at the aerobic condition at 37 °C for 2 days. D-Lactate, L-lactate and gas are produced from glucose fermentation by the type strain WF-MT5-A^T. Cell growth occurs at 37 °C, slow growth is observed at 30 and 45°C and no growth occurs at 15°C. Growth occurs at pH 4.0–8.0 in MRS broth. For WF-MT5-A^T, the major fatty acids are $C_{16:0}$, followed by $C_{19:0}$ cyclo $\omega 8c$. Acid is produced from L-arabinose and aesculin; the fermentation of D-ribose, D-galactose, D-glucose, maltose, melibiose, sucrose and raffinose is strain-specific; acid is not produced from D-xylose, D-fructose, D-mannose, methyl α-Dglucopyranoside, lactose, potassium gluconate, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -Dxylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. The cell-wall peptidoglycan of WF-MT5-A^T contains the amino acids alanine (Ala), glutamic acid (Glu), lysine (Lys), aspartic acid (Asp), serine (Ser) and threonine (Thr), with the molar ratio 1.1 (Ala):0.8 (Asp):1.0 (Glu):0.7 (Lys):0.1 (Thr):0.1 (Ser), suggesting the cell-wall peptidoglycan type A4 α L-Lys–D-Asp by [38]. The DNA G+C content of WF-MT5- A^{T} is 38.0 mol%. The type strain is WF-MT5- A^{T} (=DSM 110569^T=LMG 31629^T), which was isolated from the jejunum of field vole (Microtus agrestis) caught in the Vilnius area in Lithuania [13].

DESCRIPTION OF *LIMOSILACTOBACILLUS ALBERTENSIS* SP. NOV.

Limosilactobacillus albertensis (al.ber.ten'sis. N.L. masc. adj. *albertensis*, pertaining to Alberta, a province of Canada where the isolates were characterized and identified).

Cells are Gram-positive, non-motile, non-spore forming, catalase-negative and heterofermentative. Cells are rodshaped, measuring $0.8-2.4 \times 0.6-1.2 \,\mu\text{m}$. Colonies of the type strain Lr3000^T on MRS agar plate incubated at the anaerobic condition at 37 °C for 2 days are whitish, opaque, raised, circular and entire, with a diameter of 0.8–1.5 mm; colonies on MRS agar plate at the aerobic condition show similar morphological characteristics as colonies on MRS agar incubated anaerobically, but with a smaller diameter of 0.5–1 mm. D-Lactate, L-lactate and gas are produced from glucose fermentation by the type strain Lr3000^T. Cell growth occurs at 30, 37 and 45 °C (optimum), but not at 15 °C. Growth occurs at pH 4.0–8.0 in MRS broth. The major fatty acids of Lr3000^T are summed feature 7 (combination of $C_{19:1} \omega 6c$ and/or $C_{19:0}$ cyclo $\omega 10c$) and $C_{18:1} \omega 9c$, followed by $C_{16:0}^{(1)}$. Acid is produced from L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, methyl α-D-glucopyranoside, aesculin, maltose, lactose, melibiose, sucrose and raffinose; the fermentation of potassium gluconate is strain-specific; acid is not produced from D-fructose, D-mannose, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -Dxylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. The cell-wall peptidoglycan of Lr3000^T contains the amino acids alanine (Ala), glutamic acid (Glu), lysine (Lys) and aspartic acid (Asp), with the molar ratio 1.1 (Ala):0.8 (Asp):1.0 (Glu):1.0 (Lys), suggesting the cell-wall peptidoglycan type A4a L-Lys-D-Asp [38]. The DNA G+C content of $Lr3000^{T}$ is 38.8 mol%.

The type strain, $Lr3000^{T}$ (=DSM 110573^T=LMG 31632^T), was isolated from the stomach of a hamster in the USA.

DESCRIPTION OF *LIMOSILACTOBACILLUS RUDII* SP. NOV.

Limosilactobacillus rudii [ru'di.i.i. N.L. gen. n. *rudii* of Rudi (Vogel), in recognition of the German scientist Rudi F. Vogel, in recognition of his significant contributions to the taxonomy of lactic acid bacteria as well as the technology and microbial ecology of fermented foods].

Cells are Gram-positive, non-motile, non-spore-forming, catalase-negative and heterofermentative. Cells are rodshaped, measuring 1.1-2.7×0.7-1.2 µm. Colonies of the type strain STM3 1^T on MRS agar plate incubated under the anaerobic condition at 37 °C for 2 days are whitish, opaque, raised, circular and entire, with a diameter of 1.0-2.2 mm; colonies on MRS agar plate at the aerobic condition show similar morphological characteristics as colonies on MRS agar incubated anaerobically, but with a smaller diameter of 0.4-0.8 mm. D-Lactate, L-lactate and gas are produced from glucose fermentation by the type strain STM3_1^T. Cell growth occurs at 30 and 37 °C (optimum), but not at 15 or 45 °C. Growth occurs at pH 4.0-8.0 in MRS broth. The major fatty acid of STM3_1^T is $C_{16:0}$, followed by summed feature 7 (combination of $C_{19:1} \omega 6c$ and/or $C_{19:0}$ cyclo $\omega 10c$) and C_{19.0} cyclo $\omega 8c$. Acid is produced from L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, aesculin, maltose, lactose, melibiose, sucrose and raffinose; acid is not produced from D-fructose, D-mannose, methyl α -D-glucopyranoside, potassium gluconate, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -Dxylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α -D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. The cell-wall peptidoglycan of STM3_1^T contains the amino acids alanine (Ala), glutamic acid (Glu), lysine (Lys), aspartic acid (Asp), serine (Ser) and threonine (Thr), with the molar ratio 1.1 (Ala):1.0 (Asp):1.0 (Glu):0.8 (Lys):0.1 (Thr), suggesting the cell-wall peptidoglycan type A4α L-Lys-D-Asp by [38]. The DNA G+C content of STM3_ 1^{T} is 38.5mol%. The type strain, STM3_1^T (=DSM 110572^T=LMG 31631^T), was isolated from the faecal sample of striped mouse (Rhabdomys pumilio) raised at Henry Doorly Zoo and Aquarium (Omaha, NE, USA).

DESCRIPTION OF *LIMOSILACTOBACILLUS* FASTIDIOSUS SP. NOV.

Limosilactobacillus fastidiosus (fas.ti.di.o'sus. L. masc. adj. *fastidious*, fastidious, referring to the fastidious growth requirements of the type strain).

Cells are Gram-positive, non-motile, non-spore-forming, catalase-negative and heterofermentative. Cells are rodshaped, measuring 0.9-3.0×0.6-0.9 µm. Colonies of the type strain WF-MO7-1^T on MRS agar plate incubated at the anaerobic condition at 37 °C for 2 days are whitish, opaque, raised, circular and entire, with a diameter of 1.2-2.2 mm; no colony appears on MRS agar plate incubated at the aerobic condition at 37 °C for 2 days. D-Lactate, L-lactate and gas are produced from glucose fermentation by the type strain WF-MO7-1^T. No growth occurs in 96-well microplate at 15, 30, 37 or 45 °C; in Falcon 15 ml tubes, cell growth occurs at 30, 37 and 45 °C (optimum) but not at 15 °C. Growth occurs at pH 4.5-7.5 in MRS broth. The most abundant fatty acids of WF-MO7-1^T are $C_{16:0}$, summed feature 7 (combination of $C_{19:1}\omega 6c$ and/ or $C_{19:0}$ cyclo $\omega 10c$) and $C_{18:1}\omega 9c$. Acid is produced from L-arabinose and aesculin; acid production from D-galactose, D-glucose, D-fructose, maltose, lactose, melibiose and raffinose is strain-specific; acid is not produced from D-ribose, D-xylose, D-mannose, methyl α -D-glucopyranoside, sucrose, potassium gluconate, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α -D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. The cellwall peptidoglycan of WF-MO7-1^T contains the amino acids alanine (Ala), glutamic acid (Glu), aspartic acid (Asp) and ornithine (Orn), with the molar ratio 1.5 (Ala):0.9 (Asp):1.0 (Glu):1.1 (Orn), suggesting the cell-wall peptidoglycan type A4 α L-Orn–D-Asp by [38]. The DNA G+C content of WF-MO7-1^T is 39.1 mol%. The type strain is WF-MO7-1^T (=DSM 110576^T=LMG 31630^T), which was isolated from the jejunum of root vole (Microtus oeconomus) caught in the Vilnius area in Lithuania [13].

DESCRIPTION OF *LIMOSILACTOBACILLUS REUTERI* SUBSP. *REUTERI* SUBSP. NOV.

Limosilactobacillus reuteri subsp. *reuteri* (reu'te.ri. N.L. gen. n. *reuteri*, of Reuter; named for G. Reuter, a German bacteriologist after whom the species *L. reuteri* was named).

L. reuteri strains clustered in lineage II (Fig. 3) belong to *L. reuteri* subsp. *reuteri* and they were isolated from humans and herbivores [7, 43]. Strains of this subspecies have ANI values of 98.1–100.0% with each other and ANI values of 94.0–96.5% with other *L. reuteri* strains belonging to different subspecies (Fig. 4). Acid is produced from L-arabinose, D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose and raffinose; acid production from potassium gluconate is strain-specific; acid is not produced from D-xylose, D-fructose, D-mannose, methyl α -D-glucopyranoside, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α -D-mannopyranoside, *N*-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose,

trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and previous studies [5, 43], AFLP and MLSA (using concatenated sequences of ddl, pkt, leuS, gyrB, dltA, rpoA and recA genes) [7], suggest that these strains are genetically homogeneous [8]. Strains of this subspecies possess the *pdu-cbi-cob-hem* cluster (*pdu* cluster) [6, 8], which equips them with the ability to utilize 1,2-propanediol and glycerol as electron acceptors [16, 39, 40] and to produce the antimicrobial compound reuterin [8]. They also produce histamine from histidine that has been linked to their anti-inflammatory phenotype [34]. Strains belonging to this subspecies have been considered as immunosuppressive because they could suppress the proinflammatory cytokines tumour necrosis factor (TNF), monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1 β and IL-12, as well as suppress intestinal inflammation [34]. The type strain, DSM 20016^T (=ATCC 23272^T=F 275^T [original designation]), was isolated from the gastrointestinal tract of an adult human [6, 44, 45], with a DNA G+C content of 38.9mol%.

DESCRIPTION OF LIMOSILACTOBACILLUS REUTERI SUBSP. KINNARIDIS SUBSP. NOV.

Limosilactobacillus reuteri subsp. *kinnaridis* (kin.na'ri.dis. N.L. gen.n. *kinnaridis* of Kinnaris, referring to kinnaris, halfbird, half-woman creatures of South-East Asian mythology and reflecting occurrence of strains of this subspecies in birds and in humans. The name also reflects the use of this subspecies in probiotics, as according to south-east Asian mythology, Kinnaris are believed to come from the Himalayas and watch over the well-being of humans in times of trouble or danger).

L. reuteri strains clustered in lineage VI (Fig. 3) belong to L. reuteri subsp. kinnaridis and they were isolated from poultry and humans [5, 7]. Strains of this subspecies have ANI values of 98.2-100.0% with each other and ANI values of 93.8-96.6% with other L. reuteri strains belonging to different subspecies (Fig. 4). Acid is produced from D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose, raffinose and potassium gluconate; acid production from L-arabinose, methyl α-D-glucopyranoside and turanose is strain-specific; acid is not produced from D-xylose, D-fructose, D-mannose, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -Dxylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and a previous study [5], AFLP and MLSA (using concatenated sequences of ddl, pkt, leuS, gyrB, dltA, rpoA and recA genes) [7] indicate that strains clustered in this lineage are adapted to poultry and also occur in humans. Experimental test has revealed that strains of L. reuteri subsp. kinnaridis displayed elevated fitness in chickens but not in humans [5], suggesting that this subspecies is autochthonous of chicken and share an evolutionary history with poultry. Strains of this subspecies possess the pdu-cbi-cob-hem cluster (pdu cluster) [6, 8], which equips them with the ability to utilize 1,2-propanediol and glycerol as electron acceptors [16, 39, 40] and to produce the broad-spectrum antimicrobial compound reuterin [8, 34]. These strains are immunostimulatory; specifically, they stimulate the production of IL-7, IL-12 and IL-13, but suppress the production of IL-5 [34]. In addition, strains belonging to this subspecies synthesize folate de novo [34]. The type strain, AP3^T (=DSM 110703^T=LMG 31724^T), was isolated from the gastrointestinal tract of an Argus Pheasant, with a DNA G+C content of 38.6 mol%.

DESCRIPTION OF *LIMOSILACTOBACILLUS REUTERI* SUBSP. *PORCINUS* SUBSP. NOV.

Limosilactobacillus reuteri subsp. *porcinus* (por.ci'nus. L. masc. adj. *porcinus* of swine, referring to the host origin of most strains of this subspecies being swine).

L. reuteri strains clustered in lineage V (Fig. 3) belong to L. reuteri subsp. porcinus and they were isolated from pigs [5, 7]. Strains (3c6^T and 20-2) of this subspecies have an ANI value of 99.1% with each other and ANI values of 93.8-96.6% with other L. reuteri strains belonging to different subspecies (Fig. 4). Acid is produced from D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose, raffinose and potassium gluconate; acid production from methyl- α -D-glucopyranoside is strain-specific; acid is not produced from L-arabinose, D-xylose, D-fructose, D-mannose, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -Dxylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and previous studies [5, 43, 46], AFLP and MLSA (using concatenated sequences of ddl, pkt, leuS, gyrB, dltA, rpoA and recA genes) [7] indicate that strains clustered in this lineage are pig-specific. Both 3c6^T and 20-2 possess the *pdu-cbi-cob-hem* cluster (*pdu* cluster) [5, 46], which equips them with the ability to utilize 1,2-propanediol and glycerol as electron acceptors [16, 39, 40] and to produce the antimicrobial compound reuterin [8]. The type strain, 3c6^T (=DSM 110571^T=LMG 31635^T), was isolated from porcine gastrointestinal tract [7, 46], with a DNA G+C content of 38.6 mol%.

DESCRIPTION OF *LIMOSILACTOBACILLUS REUTERI* SUBSP. *MURIUM* SUBSP. NOV.

Limosilactobacillus reuteri subsp. *murium* (mu'ri.um. L. plur. gen. n. *murium* of mice, referring to the adaptation of strains of the subspecies to rodents including mice).

L. reuteri strains clustered in lineage I (Fig. 3) belong to L. reuteri subsp. murium and they were isolated from rodents [5-7]. Strains of this subspecies have ANI values of 96.8–99.1% with each other and ANI values of 94.5–96.5% with other L. reuteri strains belonging to different subspecies (Fig. 4). Acid is produced from L-arabinose, D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose and raffinose; acid production from potassium gluconate is strain-specific; acid is not produced from D-xylose, D-fructose, D-mannose, methyl α -D-glucopyranoside, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and a previous studies [5], AFLP and MLSA (using concatenated sequences of *ddl*, pkt, leuS, gyrB, dltA, rpoA and recA genes) [7] indicate that strains clustered in this lineage are rodent-specific. Strains of L. reuteri subsp. murium displayed elevated fitness in mice through the colonization and biofilm formation on the forestomach epithelium [5, 7, 11], suggesting that their evolution with rodents was adaptive and led to host specificity. Large surface proteins (>750 aa) exist among strains belonging to this subspecies, which involve in epithelial adhesion and biofilm formation [6]. Strains of this subspecies produce the enzyme urease for acid resistance and rarely produce the antimicrobial compound reuterin [6, 8]. The type strain, $lpuph1^{T}$ (=DSM 110570^T=LMG 31634^T), was isolated from mouse gastrointestinal tract [6, 7], with a DNA G+C content of 38.4mol%.

DESCRIPTION OF LIMOSILACTOBACILLUS REUTERI SUBSP. SUIS SUBSP. NOV.

Limosilactobacillus reuteri subsp. *suis* (su'is. L. gen. n. *suis*, of swine, reflecting the host origin of most strains of this subspecies being the swine intestinal tract).

L. reuteri strains clustered in lineage IV (Fig. 3) belong to *L. reuteri* subsp. *porcinus* and were isolated from pig [5, 7]. Strains belonging to this subspecies have ANI values of 98.7–99.5% with each other and ANI values of 94.6–96.3% with other *L. reuteri* strains belonging to different subspecies (Fig. 4). Acid is produced from L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose and raffinose; acid is not produced from D-fructose, D-mannose, methyl α -D-glucopyranoside, aesculin, potassium gluconate, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-Dmannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and previous studies [5, 43, 46, 47], AFLP and MLSA (using concatenated sequences of *ddl*, *pkt*, *leuS*, gyrB, dltA, rpoA and recA genes) [7] indicate that strains clustered in this lineage are pig-specific. A mucus-binding protein (Mub) that could bind mucus and/or IgA [8, 41, 42] exists within this subspecies and it specifically supports the colonization of this subspecies to the porcine gastrointestinal tract. Strains within this subspecies have been applied as probiotics to improve porcine intestinal health, enhance production, prevent diarrhoea, release stress and immune modulation [48]. The type strain, ATCC 53608^{T} (=LMG 31752^T=1063^T [original designation]), was isolated from porcine gastrointestinal tract [7, 49, 50], with a DNA G+C content of 39.0mol%.

DESCRIPTION OF *LIMOSILACTOBACILLUS REUTERI* SUBSP. *RODENTIUM* SUBSP. NOV.

Limosilactobacillus reuteri subsp. *rodentium* (ro.den'ti.um. L. pl. gen. n. *rodentium* of gnawing animals, reflecting adaptation of the subspecies to rodents).

L. reuteri strains clustered in lineage III (Fig. 3) belong to L. reuteri subsp. rodentium and were mainly isolated from rodents [5-7]. Strains of this subspecies have ANI values of 96.1-98.9% with each other and ANI values of 93.8-96.3% with other L. reuteri strains belonging to different subspecies (Fig. 4). Acid is produced from D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose, raffinose and potassium gluconate; acid production from L-arabinose and D-xylose is strain-specific; acid is not produced from D-fructose, D-mannose, methyl α -D-glucopyranoside, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (Fig. 3) and a previous study [5], AFLP and MLSA (using concatenated sequences of *ddl*, pkt, leuS, gyrB, dltA, rpoA and recA genes) [7] indicate that strains clustered in this lineage including the sourdough isolates are rodent-specific. Strains of L. reuteri subsp. rodentium displayed elevated fitness in mice through the colonization and biofilm formation on the forestomach

epithelium [5, 7, 11], suggesting adaptive evolution with rodents that led to host specificity. Large surface proteins (>750 aa) exist among strains belonging to this subspecies, which involve in epithelial adhesion and biofilm formation [6]. A xylose operon is highly conserved for this subspecies, especially for strains originating from rodents [6], and thus most strains of this subspecies could metabolize xylose that is an important substrate for gut bacteria [51]. In addition, strains of this subspecies produce the enzyme urease for acid resistance and rarely produce the antimicrobial compound reuterin [6, 8]. Sourdough isolates of this subspecies (LTH2584, TMW1.106, TMW1.112 and TMW1.656) produce reutericyclin, a unique antimicrobial tetramic acid with activity against Gram-positive bacteria [52]. The type strain, $100-23^{T}$ (=DSM 17509^T=CIP 109821^T), was isolated from the rat gastrointestinal tract [11, 53], with a DNA G+C content of 38.7 mol%.

Funding information

This work was supported by the Campus Alberta Innovates Program (CAIP), the Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Irish Government's National Development Plan (Science Foundation Ireland) awarded to J.W. F.L. was financially supported by the Alberta Innovates Post-graduate Fellowship; M.G. is supported by the Canada Research Chairs Program.

Acknowledgements

The authors thank Drs. Yuan Yao Chen (University of Alberta, Canada) and Xiaoxi B. Lin (University of Alberta, Canada) for their advice and technical assistance. We are grateful to Drs. Susanne Verbarg and Peter Schumann at the DSMZ (Germany) for their assistance in chemotaxonomic and morphological analyses.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

- 1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. *Nature* 2011;474:327–336.
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature* 2010;464:59–65.
- Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. *Nat Rev Immunol* 2009;9:313–323.
- Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus *Lactobacillus*: Description of 23 novel genera, emended description of the genus *Lactobacillus* Beijerinck 1901, and union of *Lactobacillaceae* and *Leuconostocaceae*. Int J Syst Evol Microbiol 2020;70:2782–2858.
- Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of *Lactobacillus* reuteri to different vertebrate species. *Appl Environ Microbiol* 2017;83:e00132–17.
- 6. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. The evolution of host specialization in the vertebrate gut symbiont *Lactobacillus reuteri*. *PLoS Genet* 2011;7:e1001314.
- Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN et al. Diversification of the gut symbiont *Lactobacillus reuteri* as a result of host-driven evolution. *Isme J* 2010;4:377–387.
- 8. Walter J, Britton RA, Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the *Lactobacillus reuteri* paradigm. *Proc Natl Acad Sci U S A* 2011;108 Suppl 1:4645–4652.

- 9. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T *et al*. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. *FEMS Microbiol Rev* 2017;41:S27–S48.
- Zheng J, Ruan L, Sun M, Ganzle M. A genomic view of *Lactobacilli* and *Pediococci* demonstrates that phylogeny matches ecology and physiology. *Appl Environ Microbiol* 2015;81:7233–7243.
- 11. Frese SA, Mackenzie DA, Peterson DA, Schmaltz R, Fangman T et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. *PLoS Genet* 2013;9:e1004057.
- 12. Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE *et al.* Characterization of the ecological role of genes mediating acid resistance in *Lactobacillus reuteri* during colonization of the gastrointestinal tract. *Environ Microbiol* 2016;18:2172–2184.
- Lin XB, Wang T, Stothard P, Corander J, Wang J et al. The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. *Isme J* 2018;12:2770–2784.
- 14. Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F et al. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of *Lactobacillus reuteri* in the murine gut. *Appl Environ Microbiol* 2005;71:979–986.
- Walter J, Loach DM, Algumber M, Rockel C, Hermann C et al. D-alanyl ester depletion of teichoic acids in *Lactobacillus reuteri* 100-23 results in impaired colonization of the mouse gastrointestinal tract. *Environ Microbiol* 2007;9:1750–1760.
- Cheng CC, Duar RM, Lin X, Perez-Munoz ME, Tollenaar S et al. Ecological importance of cross-feeding of the intermediate metabolite 1,2-propanediol between bacterial gut symbionts. *Appl Environ Microbiol* 2020;86:e00190–20.
- Ganzle MG, Zheng J. Lifestyles of sourdough lactobacilli Do they matter for microbial ecology and bread quality? Int J Food Microbiol 2019;302:15–23.
- Zheng J, Zhao X, Lin XB, Ganzle M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci Rep 2015;5:18234.
- Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. *Int J Syst Evol Microbiol* 2014;64:346–351.
- Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91.
- Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. *Proc Natl Acad Sci U S A* 2009;106:19126–19131.
- Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequencebased species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics* 2013;14:60.
- Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466.
- 24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* 2014;30:2114–2120.
- 25. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ *et al.* ABySS: a parallel assembler for short read sequence data. *Genome Res* 2009;19:1117–1123.
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 2015;25:1043–1055.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410.
- 28. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 2004;32:1792–1797.

- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 2014;30:1312–1313.
- Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. *Nucleic Acids Res* 2019;47:D666–D677.
- 31. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014;30:2068–2069.
- Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 2015;31:3691–3693.
- Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 2016;32:929–931.
- Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, et al. From prediction to function using evolutionary genomics: humanspecific ecotypes of Lactobacillus reuteri have diverse probiotic functions. *Genome Biol Evol* 2014;6:1772–1789.
- Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127.
- Gerhardt P, American Society for M. Manual of methods for general bacteriology. In: Gerhardt Philipp, Murray RGE (editors). *Morphology*. American Society for Microbiology; 1981.
- McFrederick QS, Vuong HQ, Rothman JA. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int J Syst Evol Microbiol 2018;68:1879–1884.
- Schumann P. Peptidoglycan structure. In: Rainey F, Oren A (editors). Methods in Microbiology. Academic Press; 2011. pp. 101–129.
- Lüthi-Peng Q, Dileme FB, Puhan Z. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 2002;59:289–296.
- Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. Flux analysis of the *Lactobacillus reuteri* propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. *Microb Cell Fact* 2014;13:76.
- Roos S, Jonsson H. A high-molecular-mass cell-surface protein from *Lactobacillus reuteri* 1063 adheres to mucus components. *Microbiology* 2002;148:433–442.

- 42. MacKenzie DA, Tailford LE, Hemmings AM, Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. *J Biol Chem* 2009;284:32444–32453.
- 43. Yu J, Zhao J, Song Y, Zhang J, Yu Z et al. Comparative genomics of the herbivore gut symbiont *Lactobacillus reuteri* reveals genetic diversity and lifestyle adaptation. *Front Microbiol* 2018;9:1151.
- 44. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K et al. Comparative genome analysis of *Lactobacillus reuteri* and *Lactobacillus fermentum* reveal a genomic island for reuterin and cobalamin production. DNA Res 2008;15:151–161.
- Kandler O, Stetter K-O, Köhl R, sp Lreuteri. Lactobacillus reuteri sp. nov., a new species of heterofermentative lactobacilli. Zentralbl Bakteriol Hyg Abt IOrig C 1980;1:264–269.
- 46. Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S *et al.* The pan-genome of *Lactobacillus reuteri* strains originating from the pig gastrointestinal tract. *BMC Genomics* 2015;16:1023.
- Lee JY, Han GG, Choi J, Jin GD, Kang SK et al. Pan-genomic approaches in *Lactobacillus reuteri* as a porcine probiotic: investigation of host adaptation and antipathogenic activity. *Microb Ecol* 2017;74:709–721.
- Hou C, Zeng X, Yang F, Liu H, Qiao S. Study and use of the probiotic Lactobacillus reuteri in pigs: a review. J Anim Sci Biotechnol 2015;6:14.
- MacKenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ et al. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of *Lactobacillus reuteri*. *Microbiology* 2010;156:3368–3378.
- Axelsson L, Lindgren S. Characterization and DNA homology of Lactobacillus strains isolated from pig intestine. J Appl Bacteriol 1987;62:433–440.
- Zhao X, Gänzle MG. Genetic and phenotypic analysis of carbohydrate metabolism and transport in *Lactobacillus reuteri*. Int J Food Microbiol 2018;272:12–21.
- 52. Gänzle MG, Vogel RF. Contribution of reutericyclin production to the stable persistence of *Lactobacillus reuteri* in an industrial sourdough fermentation. *Int J Food Microbiol* 2003;80:31–45.
- Wesney E, Tannock GW. Association of rat, pig, and fowl biotypes of *Lactobacilli* with the stomach of gnotobiotic mice. *Microb Ecol* 1979;5:35–42.
- Letunic I, Bork P. Interactive Tree of Life (iTOL) V4: recent updates and new developments. *Nucleic Acids Res* 2019;47:W256–W259.

Five reasons to publish your next article with a Microbiology Society journal

- 1. The Microbiology Society is a not-for-profit organization.
- 2. We offer fast and rigorous peer review average time to first decision is 4–6 weeks.
- 3. Our journals have a global readership with subscriptions held in research institutions around the world.
- 4. 80% of our authors rate our submission process as 'excellent' or 'very good'.
- 5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.