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In silico screening using
 bulk and single-cell
RNA-seq data identifies RIMS2 as a prognostic
marker in basal-like breast cancer
A retrospective study
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Abstract
Single-cell RNA-seq has become a powerful tool to understand tumor cell heterogenicity. This study tried to screen prognosis-related
genes in basal-like breast tumors and evaluate their correlations with cellular states at the single-cell level.
Bulk RNA-seq data of basal-like tumor cases from The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) and single-cell RNA-

seq from GSE75688 were retrospectively reviewed. Kaplan–Meier survival curves, univariate and multivariate analysis based on Cox
regression model were conducted for survival analysis. Gene set enrichment analysis (GSEA) and single-cell cellular functional state
analysis were performed.
Twenty thousand five hundred thirty genes with bulk RNA-seq data in TCGA were subjected to screening. Preliminary screening

identified 10 candidate progression-related genes, including CDH19, AQP5, SDR16C5, NCAN, TTYH1, XAGE2, RIMS2, GZMB,
LY6D, and FAM3B. By checking their profiles using single-cell RNA-seq data, only CDH19, SDR16C5, TTYH1, and RIMS2 had
expression in primary triple-negative breast cancer (TNBC) cells. Prognostic analysis only confirmed that RIMS2 expression was an
independent prognostic indicator of favorable progression free survival (PFS) (HR: 0.78, 95%: 0.64–0.95, P= .015). GSEA analysis
showed that low RIMS2 group expression had genes significantly enriched in DNA Repair, and MYC Targets V2. Among the 89
basal-like cells, RIMS2 expression was negatively correlated with DNA repair and epithelial-to-mesenchymal transition (EMT).
RIMS2 expression was negatively associated with DNA repair capability of basal-like breast tumor cells and might serve as an

independent indicator of favorable PFS.

Abbreviations: BRCA = breast cancer, DSS = disease specific survival, EMT = epithelial-to-mesenchymal, ER = estrogen
receptor, GSEA = gene set enrichment analysis, HER2 = human epidermal growth factor receptor 2, ICGC = International Cancer
Genome Consortium, OS = overall survival, PFS = progression-free survival, PR = progesterone receptor, TCGA = The Cancer
Genome Atlas, TNBC = triple-negative breast cancer.
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1. Introduction

The heterogeneous nature of breast cancer has been characterized
during the past decades. Based on the molecular profiles by a 50-
gene qPCR assay (PAM50), breast cancers include five major
subtypes, including luminal A, luminal B, human epidermal
growth factor receptor 2-enriched (HER2+), basal-like, and
normal-like.[1] Over 70% of basal-like cases are triple-negative
breast cancer (TNBC), which means the lack expression of
estrogen receptor (ER) and progesterone receptor (PR), in
combination with an absence of human epidermal growth factor
receptor 2 (HER2) gene overexpression or amplification.[2]

Therefore, most of the basal-like cases are unresponsive to
targeted hormonal therapies and other targeting therapies.[3]

Current therapeutic strategies limit to physical surgery, nonse-
lective chemotherapeutic agents and radiotherapy.[4,5] Compared
to non-basal-like cases, basal-like cases have a higher level of
genetic heterogenicity,[6–8] and significantly shorter 3-year
progression-free survival (PFS) and overall survival (OS).[5]

Therefore, it is necessary to explore reliable biomarkers that help
identify patients with a high risk of disease progression.
In the past decades, multiple large projects, such as the Cancer

Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) have made great efforts to explore the critical
cancer-causing genomic alterations and to generate a comprehen-
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sive landscape of cancer genomic profiles.[9,10] However, cancer
cells are embedded in the tumor microenvironment (TME), which
is constituted by complex cellular and non-cellular components.
RNA-seq data of these projects is based on the average expression
signals of bulk tumor cells, which comprise at least tumor cells,
stromal cells and tumor-infiltrating immune cells.[11] Therefore, it
is impossible to analyze intratumor heterogeneity and identify
tumor cell-associated genes.[12] In the past years, single-cell
sequencing has become a powerful new tool to solve these
issues.[4,12] Via preparing single-cell samples, capturing gene
transcripts and generating individual cell sequencing libraries,
single-cell RNA-seqmakes it possible to analyze the transcriptome
of a single cell.[13] Thus, this technique enables us to explore the
tumor cell-specific prognostic marker genes, which have extensive-
expression across different basal-like tumor samples.
This study aimed to screen tumor cell-associated prognostic

genes in basal-like breast tumors via combiningbulk and single-cell
RNA-seq data from large online databases. Then, their correla-
tions with tumor cell states were assessed at the single-cell level.
2. Patients and methods

2.1. Ethics declarations

Ethical approval was not required since this retrospective study
was based on online open databases.
2.2. Bioinformatic data mining in the Cancer Genome
Atlas-Breast Cancer (TCGA-BRCA)

The normalized level-3 data of the breast cancer cohort in TCGA
database was downloaded using the UCSC Xena (http://xena.
ucsc.edu/).[14] PAM50 subtypes were determined by TCGA
Analysis-working groups according to RNA-seq data. RNA-seq
data were presented as log2(norm_count+1), in which norm_-
count refers to RNA-Seq expression estimation by Expectation-
Maximization (RSEM) normalized count. The following criteria
were applied for screening samples included for analysis:
1.
 primary basal-like breast tumor;

2.
 with PFS data; and

3.
 in the censored group, follow-up time was longer than 365

days.

The data of basal-like cases were extracted for further analysis,
including clinicopathological parameters, genomic and survival
data. Briefly, the sample type, age at initial pathologic diagnosis,
pathological stages, nodal status, margin status, radiation
therapy, targeted molecular therapy, PFS and disease-specific
survival (DSS) were collected. In this dataset, PFS refers to the
period from the date of diagnosis until the date of the first
occurrence of a new tumor event (NTE), which includes a
progression of the disease, locoregional recurrence, distant
metastasis, new primary tumor, or death with the tumor.
Patients who were alive without these event types, or died
without tumor were censored. DSS event is defined as death from
the disease.[15]
2.3. Single-cell transcriptional data in basal-like breast
tumor cells

To investigate the expression profile of progression-related genes
in basal-like breast tumor cells and their correlation with cellular
2

states at the single-cell level, single-cell RNA-sequencing data
were retrieved from CancerSEA, which is an online platform for
analyzing available RNA-seq datasets in GEO dataset.[16]

Fourteen functional state models were constructed via estimating
the expression of state signature genes from databases and
published literature.[16]

The basal-like (TNBC) data from a previous single-cell RNA-
seq dataset (GSE75688) were extracted for reanalysis. In this
dataset, 317 tumor cells were prepared from 11 breast tumor
samples covering four subtypes of breast cancer.[17] Six out of the
11 samples were basal-like (TNBC) from 5 patients (BC07,
BC07LN, BC08, BC09, BC10, BC11). The current study
typically focused on primary tumor cases. BC07LN is a
metastatic lymph node tissue and thus was excluded. In terms
of BC09, two runs of single-cell RNA sequencing were
performed. This case was also excluded, to ensure the consistency
of data preparation and analysis. The t-Distributed Stochastic
Neighbor Embedding (t-SNE) based on protein-coding gene
(PCG) expression was used to generate a two-dimensional map
for showing the cells’ distances and cluster identities.
2.4. Meta-analysis-based prognostic analysis using the
Kaplan–Meier plotter

The prognostic significance of the candidate progression-related
genes in patients with basal-like tumors was examined by
performing Kaplan–Meier survival analysis using the Kaplan–
Meier plotter (http://kmplot.com/analysis/), which is an online
tool for survival analysis based on over 1800 patients collected
from different GEO datasets.[18] Both PFS and OS were analyzed
by using the autoselect best cutoff of gene expression.
2.5. Gene set enrichment analysis

Gene set enrichment analysis (GSEA)[19] was conducted to
examine the difference within theHallmark gene sets (H) between
the basal-like cases with low and high RIMS2 expression. GSEA
software v4.0.1 on a JAVA 8.0 platformwas used. The number of
permutations was set to 1000. The gene set with NOM P-
value< .05 and adjusted q-values (FDR) <.25 were considered
significant.
2.6. Statistical analysis

Data were reported as the mean± standard deviation (SD).
Welch’s t-test (unequal variance t-test) was applied to check the
statistical difference. PFS, OS, and DSS curves were generated by
the Kaplan–Meier method, with the Log-rank test to check the
statistical difference. Patients were separated by the best cutoff of
gene expression. The independent prognostic significance of
RIMS2 expression was calculated by the univariate and
multivariate Cox regression models. P< .05 was considered
statistically significant.
3. Results

3.1. Systematic screening of progression-related PCGs in
basal-like breast cancer

To screen progression-related PCGs in basal-like breast cancer,
PFS and RNA-seq data were extracted from TCGA-BRCA. Eight
hundred forty-two primary tumor cases had PFS data, including
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420 luminal A, 192 luminal B, 140 basal-like, 67 HER2+, and 23
normal-like cases (Fig. 1A). Among the 140 basal-like cases, there
were 23 progression and 117 censored cases. Twenty out of the
117 censored cases had follow-up time shorter than 365days and
thus were excluded. Therefore, a total of 120 cases were subjected
to the comparison of gene expression (20,530 genes with RNA-
seq data) between the groups with or without progression after
primary therapy (Fig. 1B).
The PFS related genes were identified by using the following

two criteria:
1.
Fig
hea
the
SD
com
on
cel
jlog2 fold change (FC)j≥1.5;

2.
 Welch’s P value< .05.

After the screening process, 10 candidate genes were identified,
includingCDH19, AQP5, SDR16C5, NCAN, TTYH1, XAGE2,
RIMS2, GZMB, LY6D, and FAM3B (Fig. 1C, Supplementary
Table 1, http://links.lww.com/MD2/A55). Among these candi-
dates, the first 8 were downregulated, while the last 2 were
upregulated in the progression group compared to the non-
progression group (Fig. 1D). Then, the expression of the 10
progression-related genes in basal-like tumor cells was checked at
the single-level level (Fig. 1E and F). In GSE75688, 317 tumor
cells from 11 breast cancer patients, including four basal-like
ure 1. Systematic screening of progression related PCGs in basal-like cases. (
tmap showing the expression profile of 20,530 genes in 140 basal-like cases in
heatmap. (C) A heatmap showing the expression profile of 10 candidate gen
R16C5, NCAN, TTYH1, XAGE2, RIMS2, GZMB, LY6D, and FAM3B. (D) A tab
pared to the non-progression group. (E) Visualization of cells in GSE75688. Ce

the expression of PCGs. Clusters are colored by the patient of the cell source. (F
ls from 4 patients.

3

cases (BC07, BC08, BC10, and BC11) were subjected to single-
cell RNA seq (Fig. 1E and F). Only the primary tumor cells were
included in the study, while lymph node cases, tumor-associated
immune cells, and non-carcinoma stromal cells were excluded.
Therefore, a total of 89 cells were included for analysis. The cells’
distance in the reduced 2D space was visualized by the t-SNE
plots of PCGs (Fig. 1E). By setting TPM value >1 in at least 10
cells as the cutoff, 6 genes (AQP5, NCAN, XAGE2, GZMB,
LY6D, and FAM3B) had limited expression (Fig. 1F). Therefore,
these genes were excluded for analysis.
3.2. Meta-analysis-based exploration of potential
prognostic genes

To explore the prognostic significance of the candidate genes
(CDH19, SDR16C5, TTYH1, and RIMS2), K-M survival
analysis was conducted using the Kaplan–Meier plotter. Patients
with basal-like tumors were separated into two groups according
to the best cutoff of gene expression. Log-rank test showed that
only CDH19 and RIMS2 had potential prognostic value. High
CDH19 expression was associatedwith favorable PFS (HR: 0.68,
95%: 0.49–0.94, P= .02) (Fig. 2A), while highRIMS2 expression
was associated with both favorable PFS (HR: 0.70, 95%: 0.49–
A) A bar chart showing the composition of PAM50 cases in TCGA-BRCA. (B) A
TCGA. The criteria applied for screening were briefly introduced at the bottom of
es between the cases with or without progression, including CDH19, AQP5,
le showing the log2 fold change of the candidate genes in progression group
ll distances were showed in the reduced 2D space by the t-SNEmethod, based
) A heatmap showing the expression profile of 10 candidate genes in 89 TNBC
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Figure 2. Meta-analysis-based exploration of the prognostic value of progression related genes. (A–H) Kaplan–Meier survival analysis to assess the difference in
PFS (A–D) and OS (E–H) in patients with basal-like tumors. Patients were separated into two groups according to the best cutoff of individual gene expression,
including CDH19 (A and E), SDR16C5 (B and F), TTYH1 (C and G), and RIMS2 (D and H).
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1.00, P= .02) (Fig. 2D) and OS (HR: 0.48, 95%: 0.25–0.91,
P= .02) (Fig. 2H). However, no significant association was
observed in other gene groups (Fig. 2B and C and E and G).

3.3. RIMS2 might be an independent prognostic
biomarker for PFS in patients with basal-like tumors

To validate the prognostic value of these two genes, survival
analysis was also performed using the basal-like tumor data in
TCGA-BRCA. Using the same cutoff in Figure 2, it was noticed
that the high RIMS2 expression group had significantly better
PFS and DSS (P< .01 and P= .04, respectively, Fig. 3A and B). In
comparison, the high CDH19 expression group also had
significantly longer PFS (Fig. 3C), compared to the respective
low expression groups.
In the following univariate analysis, advanced pathological

stages, without radiotherapy, lower CDH19 expression and
lower RIMS2 expression were potential risk factors of shorter
PFS (Table 1). In multivariate analysis, higherRIMS2 expression,
but not CDH19 expression, was independently associated with
longer PFS (HR: 0.778, 95%: 0.642–0.942, P= .02), after
adjustment for pathological stages, radiotherapy, and CDH19
expression (Table 1). Currently, chemotherapy and radiotherapy
are still among the most effective therapeutic strategies for basal-
like breast cancer. In this study, it was found the group without
radiotherapy is associated with significantly shorter PFS
(Fig. 3D). Multivariate analysis indicated that without radio-
therapy was also an independent indicator of shorter PFS (HR:
3.414, 95%: 1.286–9.065, P= .01) (Table 1). However, the
univariate analysis failed to confirm the independent prognostic
value of RIMS2 expression in DSS (Table 1).
4

3.4. GSEA and single-cell cellular functional state analysis

To explore the potential mechanisms underlying the association
betweenRIMS2 expression and favorable PFS in basal-like cases,
GSEA was performed using bulk RNA-seq data from TCGA and
assessed single cell cellular state using data from GSE75688.
GSEA was conducted between the basal-like cases with low (N=
30) and high (n=90) RIMS2 expression (Fig. 4A). Results
showed that the low RIMS2 expression group had higher
expression of genes significantly enriched in DNA Repair, and
MYC Targets V2 (Fig. 4A–C).
Then, the potential contribution of RIMS2 expression to

cellular states was characterized, by calculating the correlation
between its expression and 14 functional states of 89 basal-like
cells, using data provided by CancerSEA platform. The brief
workflow of the platform was as presented in Figure 4D.
Fourteen cellular states were estimated according to the gene-
expression profile at the single-cell level, using the signatures from
Gene Ontology, MSigDB, Cyclebase, HCMDB, and StemMap-
per. The state activity scores were calculated using the Gene Set
Variation Analysis (GSVA)[16] (Fig. 4D). By setting jPearson’s r ≥
0.30j as the cutoff, RIMS2 expression was negatively correlated
with DNA repair and EMT (Fig. 4E).

4. Discussion

The current study preliminarily identified ten potential progres-
sion-related genes between the progression and no progression
groups of basal-like breast tumors. However, single-cell RNA-seq
data from 89 TNBC cells only confirmed the expression of four
cancer cell-specific genes (CDH19, SDR16C5, TTYH1, and
RIMS2). The inconsistency suggests that the bulk RNA-seq data



Figure 3. Kaplan–Meier survival analysis using data from TCGA-BRCA. (A–D) Kaplan–Meier survival analysis to assess the difference in PFS (A, C, and D) and DSS
(D) in patients with basal-like tumors in TCGA-BRCA. Patients were separated into two groups according to the cutoff of RIMS2 (A and B) and CDH19 (C)
expression in Figure 2, or by radiotherapy status (D).
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is heterogeneous and shows the value of single-cell sequencing in
dealing with heterogenicity. Following analysis only assessed the
prognostic value of the four tumor-cell associated genes. Using
pooled data from Kaplan–Meier plotter and TCGA-BRCA, it
was validated that RIMS2, but not CDH19 expression was an
independent prognostic indicator of favorable PFS (HR: 0.78,
Table 1

Univariate and multivariate analysis of PFS in basal-like cases in TC

Univariate analysis

Parameters P HR 95%CI (lower/

RFS
Age (continuous) .76 1.005 0.973
Pathological stages
III/IV (N=17) 1.000
I/II (N=1100) <.01 0.236 0.100

Nodal status
N1/N2/N3 (N=46) 1.000
N0 (N=74) .054 0.445 0.195

Margin status
Negative (N=105) 1.000
Close/Positive (N=10) .08 2.634 0.891

Radiation therapy
Yes (N=66) 1.000
No (N=45) .02 3.034 1.232

Targeted molecular therapy
Yes (N=87) 1.000
No (N=10) .62 1.458 0.335

CDH19 expression .01 0.834 0.722
RIMS2 expression .01 0.778 0.642
OS
RIMS2 expression .88 0.986 0.817

5

95%: 0.64–0.95, P= .015). RIMS2 encodes Rab-3-Interacting
Molecule 2 in human genome. It is a presynaptic protein that can
interact with multiple proteins such as RAB3A, RAB3B, RAB3C,
RAB3D, RAB26, ERC1, TSPOAP1, RIMBP2, PPFIA3, PPFIA4,
and UNC13B.[20–22] Since it acts as an important modulator of
synaptic membrane exocytosis, previous studies typically focused
GA.

Multivariate analysis

upper) P HR 95%CI (lower/upper)

1.038

0.557 <.01 0.201 0.074 0.545

1.014

7.790

7.473 .01 3.414 1.286 9.065

6.348
0.963 .08 0.868 0.742 1.015
0.943 .02 0.781 0.640 0.953

1.188
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Figure 4. Gene set enrichment analysis (GSEA) and single-cell cellular functional state analysis. (A–C) Group stratification for single gene GSEA in basal-like tumor
cases from TCGA-BRCA (A) and summary and individual gene set enrichment plots (B and C) of gene set enrichment in low RIMS2 expression group. (D) A
workflow to show brief GSE75688 data processing, conversion and cellular state assessment. (E) Heatmap and Pearson’s correlation analysis showing the
correlation between RIMS2 expression and the 14 cellular functional states in 89 basal-like tumor cells. Green: low expression; red: high expression. Blue: low
activity; red: high activity.
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on its functional role in brain-associated diseases.[23–25] A few
studies reported its potential involvement in tumor biology.[26,27]

However, some of its interacting proteins have well-characterized
regulatory effects on breast cancer. Via interacting with partner
proteins, RIMS2 might participate in quite complex signaling
pathways in breast cancer. For example, RAB3A is involved in
vesicle trafficking and protein secretion in mammary epithelial
cells[28] and is upregulated in breast cancer cells.[29] ERC1 is an
important modulator of DNA damage-responsive kinase ATM-
dependent NF-kappaB activation in MDA-MB-231 cells (a
typically TNBC cell line).[30] ERC1 can also regulate breast
6

cancer cell migration via influencing lamellipodia stability and
integrin-mediated focal adhesion.[31]

Both GSEA analysis based on bulk RNA-seq data and cellular
state analysis based on single-cell RNA-seq data indicated that
RIMS2 expression was negatively correlated with DNA repair in
basal-like tumors. DNA repair is a vital cellular function to
maintain genomic integrity and tumor cell survival under
stressful conditions.[32,33] BRCA1/2, together with some other
genes in the Fanconi Anemia/BRCA repair pathway, play
essential roles in DNA repair. They participate in re-establishing
DNA replication following double-strand DNA breaks (DSBs)
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via the coordination of nucleotide excision repair (NER),
translesional synthesis, and homologous recombination
(HR).[34] Around 60% to 69% TNBC cases have hereditary
mutations in BRCA1/2.[33,35] Therefore, this subtype of tumor is
supposed to be sensitive to the DNA-damaging agents and
therapies. Targeting DNA repair has been considered as a
potential strategy to improve the therapeutic effect of radiother-
apy in TNBC.[33] In this study, it was found that radiotherapy
could significantly improve PFS in patients with basal-like
tumors, suggesting that radiotherapy is an effective therapy. The
negative correlation between RIMS2 expression and DNA repair
activity of the cells might explain the favorable survival outcomes
of the high expression group.
This study also has some limitations. Although this study

identified the involvement of RIMS2 in DNA repair, the exact
mechanisms were not explored. GSEA data suggest that the low
RIMS2 expression group had higher expression of MYC target
genes. A series of MYC target genes are involved in breast cancer
pathological development and therapeutic responses, such as
BRCA1,[36] CDK18,[37] PARP1, and PARP2.[38] Therefore, it
would be interesting to explore their potential associations in
future studies.

5. Conclusions

RIMS2 expression was negatively associated with DNA repair
capability of basal-like breast tumor cells and might serve as an
independent indicator of favorable PFS.
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