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Primary immunodeficiencies (PIDs) are a group of over 300 hereditary, heterogeneous, 
and mainly rare disorders that affect the immune system. Various aspects of immune 
system and PID proteins and genes have been investigated and facilitate systems 
biological studies of effects of PIDs on B cell physiology and response. We recon-
structed a B cell network model based on data for the core B cell receptor activation 
and response processes and performed semi-quantitative dynamic simulations for 
normal and B  cell PID failure modes. The results for several knockout simulations 
correspond to previously reported molecular studies and reveal novel mechanisms for 
PIDs. The simulations for CD21, CD40, LYN, MS4A1, ORAI1, PLCG2, PTPRC, and 
STIM1 indicated profound changes to major transcription factor signaling and to the 
network. Significant effects were observed also in the BCL10, BLNK, BTK, loss-of-
function CARD11, IKKB, MALT1, and NEMO, simulations whereas only minor effects 
were detected for PIDs that are caused by constitutively active proteins (PI3K, gain-of-
function CARD11, KRAS, and NFKBIA). This study revealed the underlying dynamics 
of PID diseases, confirms previous observations, and identifies novel candidates for 
PID diagnostics and therapy.

Keywords: primary immunodeficiency, systems analysis, models, biological, B-cell network model, semi-
quantitative network simulation, B-cell network simulation

inTrODUcTiOn

The human immunome covers the entirety of genes and proteins that are essential for innate and 
adaptive immunity (1). Many of these proteins are involved in extensive interaction networks.  
We have previously defined and characterized the essential immunome interactome, i.e., the 
totality of interactions in the immune system (2). These data can be used for many purposes 
including studies of the dynamics of the immune response in health and disease. The immunome 
interactome is not stable; it varies between cell types and even within them depending on the 
timing and localization of expressed and active proteins.

B cells produce antibodies. The membrane-bound antibody component of the B cell receptor 
(BCR) recognizes foreign antigens and triggers a cascade of signal transduction events that lead to 
the activation as well as nuclear transport of specific transcription factors (TFs) (3). In the nucleus, 
these TFs activate transcription of B cell proliferation and response genes. B cells can be divided into 
subpopulations based on the expression of surface markers. B cell maturation is a complex process 
that proceeds from hematopoietic stem cells via pro- and pre-cell stages to immature and mature 
B  cells and finally to plasma or memory cells. The B  cell subtypes play different and sometimes 
overlapping roles in immune response by virtue of their differing master regulator TFs (4) and 
surface receptors (5–7).
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FigUre 1 | B cell activation Boolean network model. The network consists of 222 links and 144 nodes (including the AND Boolean operator), 17 of which are input 
nodes that have no links pointing to them. The Boolean network represents the B cell activation events. The rectangles for non-primary immunodeficiencies (PIDs) 
are white and for PID proteins are gray. Ellipses denote the AND gates. Input nodes are represented by hexagonal boxes. Activating links have pointed arrows while 
inhibiting links have blunt heads. Signal 1 represents B cell receptor (BCR) complex. Since the network focuses on BCR, its coreceptor (CD19/CD21/CD81), and 
costimulatory receptor, CD40 signaling events, only major events, e.g., for survival signaling and response have been fully considered.
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Primary immunodeficiencies (PIDs) are intrinsic diseases of 
the immune system, mostly rare and typically with heterogene-
ous phenotypes. Already over 300 PIDs have been described. 
Disease-causing variants have been collected to IDbases (8) and 
some other databases. Differential diagnosis of PIDs is often 
difficult because of overlapping signs and symptoms, sometimes 
only a genetic test can provide the definitive answer. There are 
some classification schemes for PIDs, including the one from the 
International Union of Immunological Societies (IUIS) expert 
committee for PIDs (9) and the network-based classification that 
clusters the diseases based on signs, symptoms and laboratory 
parameters (10).

The reconstruction of cellular networks in systems biology 
facilitates simulations where diseases are modeled as perturba-
tions or alterations (11, 12). Since experimental studies are very 
tedious, they have been limited to small networks. Mathematical 
network simulations can offer insight into the dynamics of 
biomolecular interactions in cellular processes both in health 
and disease. Some protein–protein interaction (PPI) networks 
in B  cells and their role in various diseases have been studied 
(13–15). These interactions can be disrupted by disease-causing 
variations. Quantitative dynamics studies are computationally 
intensive when the number of parameters is extensive. Further 
problems occur because of lack of kinetic parameters and reac-
tion constants. Therefore, other approaches have been developed 
to study larger networks of up to hundreds of nodes by using 
qualitative and semi-quantitative dynamics (16–18).

Here, we employed the semi-quantitative method of normal-
ized HillCube Boolean approach (19) to simulate the dynamics 

during the activation of B  cells. Variants that cause PIDs were 
used to study the effects of PID perturbations. We conducted 
synchronous update simulations and validated them in  silico. 
The simulations reproduced known trends due to variations 
in PIDs in essential signal transduction pathways during B cell 
development from pre- to mature B cell (20). Moreover, we found 
several novel proteins affected by PIDs and detected novel PID 
candidates.

The content of this article is the full paper of part of a published 
doctoral thesis (21).

resUlTs

The Primary Bcr network
To investigate B cell signal transduction, we started by building 
the central networks based on data from literature. Then we 
constructed reaction equations for the primary BCR activation 
and response and converted them into a Boolean network model 
(Table S1 in Supplementary Material). These interactions were 
manually defined as Boolean equations using the sum-of-product 
form similar to our previous study on T-cell networks (22). 
Proteins were treated as Boolean variables in the hypergraph. 
Activating (+) and inhibiting (−) interactions were represented 
as edges with pointed or blunt arrowheads, respectively. Each 
edge originates from a source and points to a target and indicates 
the direction of signal transduction (Figure  1). Multiple edges 
pointing at the same node represent summed interactions and 
were represented by the OR operator, while multiple incoming 
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FigUre 2 | Boolean model transformed into its underlying interaction graph. The network consists of nodes and links derived from the Boolean network model 
without the AND operator. The interaction graph contains 107 nodes and 188 links and represents the underlying interaction network of the model. The nodes are 
as described in Figure 1. The network shows the paths through which signals from the receptors are channeled through the network to the transcription factors, 
which turn on the response genes.
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edges that together activate or inhibit a protein were connected 
to the target using the AND gate. Totally 17 input nodes in the 
network did not have incoming links (Figure 1).

We analyzed the structure of the network and the signaling 
paths between the initial events of the BCR activation and the late 
events of major TFs required for the expression of response genes. 
The BCR complex, its coreceptor, CD19/21/81, and the CD40 
costimulatory receptor are involved in the initial events, while 
the TFs ELK1, AP1, NFAT, and NF-κB control the late events of 
B cell activation (23).

The BCR is activated when it binds to an antigen (signal 1). 
Another signal (signal 2) through the costimulatory receptor, via 
CD40, cytokines and CD19/CD21/CD81 complex is needed to 
elicit survival, and response (24, 25). The multiple paths from 
receptors to TFs guarantee a fail-safe and robust B cell activation 
(26–28). The sensitivity of gene activation is likely modulated by 
different routes (29).

We identified paths from signals 1 and 2 to the major response 
TFs including ATF2, CREB1, ELK1, ETS1, FOXO1, JUN, MEF2C, 
MTOR, NFKB1, and NFAT. For this purpose, we converted  
the Boolean network into an interaction network (Figure  2) 
to capture the dependencies, interactions, and thus, the paths 
through which signals are transduced. The entire interaction 
network is a single strongly connected component of 97 nodes 
interconnected by 168 links (Table S1 in Supplementary Material).

Signaling loops indicate the dynamic nature of a network. 
We analyzed proteins that are essential for transducing signals 
between the receptor components (BCR and CD40LG) to 
downstream TFs. Proteins whose Boolean update equations are 
along most of the loops were considered essential. In total, we 

found 6,542 such loops of which the longest spans 26 nodes and 
the shortest 2 nodes. The mean length of the loops is 15 nodes. 
All the loops included PID proteins (Table S2 in Supplementary 
Material). SYK, PLCG2, LYN, PI3, PI3K, IP3, and CA are the 
nodes that are most frequently identified along the loops. These 
results show that the known PID proteins are central for the B cell 
pathways and thus harmful variants in these proteins would be 
detrimental for the signal flow.

In Silico Validation of reconstructed 
network and identification of the Wild-
Type attractor
The engagement of the BCR, its coreceptor, CD19/CD21/CD81 
complex and the CD40 stimulatory receptor, triggers a series of 
signal transduction cascades in B cells (3), which are captured in 
our reconstructed network (Figure 1; Table S1 in Supplementary 
Material). The signaling cascades activate numerous TFs, includ-
ing ATF2 (30), CREB1 (31), ELK1 (31), ETS1 (32), FOXO1 (33), 
JUN (34, 35), MEF2C (36), NFKB1 (37), and NFAT (38). The 
reconstructed network is considered cogent when the major TFs 
and the signaling components that lead to their activation are 
turned on.

To ensure that our model reproduces B  cell activation, we 
performed a large number of simulations by iteratively modifying 
the parameters and initial states of the input nodes, and ensuring 
that the network represented the main signaling events. We used 
normalized HillCube dynamic simulations (19) with signals 1 
and 2 turned on and validated the simulations in silico. In addi-
tion, we performed simulations by turning signal 1 on and signal 
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TaBle 1 | Tuned parameters of nodes in the Odefy-simulated B cell network 
model.

influenced node influencing node(s) τ n k

LYN PTPRC 10 20 0.9
BCR PTPN6 1 32 0.9
BCR PTPN11 1 32 0.9
BCR FCGR2B 1 1 0.9
PIP2_2 INPP5D 16 32 0.9

LYN, LYN proto-oncogene, Src-family tyrosine kinase; PTPRC, protein tyrosine 
phosphatase, receptor type C; PTPN6, protein tyrosine phosphatase, non-receptor 
type 6; PTPN11, protein tyrosine phosphatase, non-receptor type 11; PIP2_2, PIP_2, 
phosphatidylinositol (3,4)-bisphosphate; FCGR2B, Fc fragment of IgG receptor IIb; 
INPP5D, inositol polyphosphate-5-phosphatase D; BCR, B cell receptor.
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2 off and vice versa. When signal 1 was turned off, ATF2 and JUN 
were turned on, while all other TFs were turned off, indicating 
the importance of the signal flow via this route. This effect is cor-
roborated by previous experiments showing that when the CD40 
receptor is stimulated by interaction with CD40LG the MAPK 
signal transduction pathways are activated. ATF2 and JUN are 
both activated by the MAPK signaling pathways (39). Although 
all other TFs were turned on when signal 2 was off, NFKB1, a very 
important survival signal for B cells, was turned off. This result 
is supported by experiments showing that the NF-κB pathway is 
activated by signal 1 (40). These simulations were accompanied 
by the tuning of the parameters such that the simulation results 
should comply with previously published experimental. We used 
the default values of the parameters for all equations except for 
those in Table 1.

We ran the normalized HillCube simulations until the 
networks reached their attractor states. The signaling events trig-
gered by BCR activation were run until the network settled in 
an attractor after about 80 updates. The resulting attractors were 
in accordance with published experimental results (3, 41). For 
example, upon BCR stimulation, a cascade of phosphorylation 
leads to the activation of Src kinases (LYN, BLK, or FYN), SYK, 
BLINK BTK, PLCG2, and other proteins that form the early 
activation complex, which in turn leads to the calcium signaling 
(42). The activation of these proteins is captured in the basin of 
attraction of Figure 3. The simulations indicate also the activa-
tion and regulation of the major downstream TFs (ATF2, CREB1, 
ELK1, ETS1, FOXO1, JUN, MEF2C, NFKB1, and NFAT) when 
the signals 1 and 2 are turned on. In conclusion, the simulated 
network transmits signals to the TFs when both signals 1 and 2 
are on, just as expected. Perturbations of key factors impair this 
flow of information and indicate disease-related processes due  
to defective signaling.

PiD Failure analysis
We studied the effects of disease-causing variations on the 
long-term dynamics of B  cells by perturbing PID proteins in 
the network model. Twenty-three PIDs are known to affect the 
proteins in the network including BCL10, BLNK, BTK, gain-of-
function (GOF), and loss-of-function CARD11, CD19, CD21, 
CD40, CD81, IKKB, KRAS, LYN, MALT1, MS4A1, NEMO, 
NFKB1, NFKBIA, ORAI1, PI3K, PLCG2, PTPRC, STIM1, and 
WIPF1 deficiencies. Although no case of LYN deficiency has been 

reported, LYN was studied to represent PIDs connected to the 
Src-family kinases (SFKs). Thus, BLK was represented by LYN in 
the network model. To the best of our knowledge, BLK is the only 
SFK involved in B cell PIDs (43). The known PID proteins were 
identified from the ImmunoDeficiency Resource (44), IDbases 
(8), the classification by the IUIS expert committee for PIDs (9), 
and a recent review (45). These proteins are expressed at different 
stages during the B cell development. Here, we focused on PIDs 
that occur during pre- and mature B cell developmental stages. 
The effects of complete knockouts or knockins of these proteins 
were investigated by turning them off or on during simulations, 
respectively. The resulting perturbed attractors were compared 
with that of the wild type.

None of the major TF signaling pathways were disrupted in 
the CARD11, KRAS, and PI3K overexpression PID attractors, 
and CD19, CD81, and WIPF1 knockout attractors (Figure 4). 
Several TF pathways were dysregulated in the attractors of 
PIDs involved in the early events of the BCR-dependent B cell 
activation including BLNK, BTK, CD21, CD40, LYN, MS4A1, 
and PTPRC (Figure 4). The perturbations of most of the PIDs 
indicate profound effects in the pathways essential for B  cell 
survival and response. In the wild-type attractor, the ETS1 TF 
is turned on during the simulation. This is in accordance with 
its inhibitory role in BCR response (46). Furthermore, ETS1-
deficient mice show enhanced expression of activating markers 
and increased secretion of autoantibodies (47). However, ETS1 is 
turned off in the CD21, CD40, MS4A1, ORAI1, PLCG2, PTPRC, 
and STIM1 PID attractors. CREB1 is associated with antigen-
BCR-dependent survival signals. The activating TFs CREB1, 
MEF2C, and NFAT pathways were dysregulated in the CD21, 
CD40, LYN, MS4A1, ORAI1, PLCG2, PTPRC, and STIM1 
deficiency attractors. Except for CD19, CD18, and WIPF1 PID 
attractors, NF-κB signaling pathway was disrupted in all PID 
attractors. FOXO1, a critical downstream effector of the PI3K/
AKT signal transduction axis involved in controlling growth 
arrest and apoptosis, was turned on in the wild-type simula-
tion, as verified by experiments (48). In the PID simulations, 
the characteristics of FOXO1 are similar to that of the wild type 
except for CD21, CD40, LYN, MS4A1, and PTPRC PID attrac-
tors. ELK1, ATF2, and JUN pathways are partially dysregulated 
in the CD40 deficiency attractors, and normal in all other PID 
attractors. These TFs are phosphorylated and activated by the 
MAPK signaling relay and are associated with BCR-dependent 
survival signals (3).

The simulation results agree with experimental evidence. We 
have chosen examples from the different parts of the network. 
CD40, variants which can lead to hyper-IgM syndrome (HIGM3) 
(49, 50) due to impaired somatic hypermutation generating 
antibody variation, provides one of the central inputs for B cell 
activation. In our simulations, CD40 defect has a profound effect 
on the entire network in line with its central role for BCR signal-
ing. BTK is in the middle of the network. Variants in this protein 
lead to X-linked agammaglobulinemia due to defective BTK 
tyrosine kinase activity. Btk is critical for B-cell development, 
differentiation, and signaling. Harmful BTK variants block B-cell 
differentiation to pro- and pre-B-cell stages. BTK is involved in 
calcium mobilization and fluxes, cytoskeletal rearrangements, 
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FigUre 3 | Attractor basin of the B cell network model’s normalized HillCube simulation. The basin of attractors of the B cell network model was simulated using 
the normalized HillCube algorithm. The horizontal axis denotes updates in time steps in arbitrary units. The simulation was run until the network reached a point 
attractor (the activating attractor) after about 80 time steps. At time points 110–210 the modulators of the B cell receptor signaling events (INPP5D, FCGR2B, 
PTPN6, PTPN11, PTPN12, PTEN, and HDAC4) were transiently activated. The network reached another attractor (the modulating attractor) at around time point 
230. The simulations then continued until the activating attractor was reached again around time point 290.
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FigUre 4 | Wild-type and primary immunodeficiency (PID) attractors of the B cell network simulation. The node states for the wild-type and the PID-perturbed 
attractors (knockout perturbation of BCL10, CARD11 loss-of-function, CD19, CD21, CD40, CD81, IKKB, LYN, MALT1, MS4A1, NEMO, NFKB1, NFKBIA, ORAI1, 
PI3K, PLCG2, STIM1, and WIPF1 and knockin perturbation of CARD11 gain-of-function, KRAS, NFKBIA, and PI3K) attractors. The attractors are represented by  
the rows while the states of the nodes in the attractors are represented on the columns. The state of a node for an attractor is represented by the color of the cell  
on the row of the attractor; black means inactive whereas white means active. The lighter the color of the cell, the more active the protein.
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and transcriptional regulation involving NF-κB (51, 52). The 
simulation results indicate effects on NF-κB and IKK similar to 
experimental evidence.

NEMO is an inhibitor of κB kinase gamma and regulates 
NF-κB by phosphorylating IκB leading to degradation of it 
and subsequent activation of NF-κB (53). Thus, the results 
indicating effects on NFKB1 and IKK agree with experimental 
studies. Defective NEMO signaling causes X-linked hypohidrotic 
ectodermal dysplasia with immunodeficiency and other diseases 
including osteopetrosis and lymphedema.

correlation With PiD severity
Primary immunodeficiencies differ greatly in severity from very 
mild to life-threatening conditions. Severe combined immu-
nodeficiency (SCID) is associated with high vulnerability to 
infectious diseases and can be lethal (54). According to the IUIS 
classification (9), some of the PIDs in this study are associated 
with SCIDs with reduced numbers or absent T and B cells sub-
types or isotypes. These include BCL10, CARD11, CD40, IKKB, 
MALT1, and PTPRC deficiencies. The attractors of these PIDs 
show less dysregulation except for CD40 (Figure 4). However, 
most of the PIDs disrupt the NF-κB pathways.

Combined immunodeficiencies (CIDs) are less severe com-
pared with SCIDs and have variable clinical phenotypes. NEMO, 
GOF NFKBIA, ORAI1, STIM1, and WIPF1 constitute CIDs. 
Most of these proteins are components of calcium signaling, 
and impair, as expected, the NF-κB and NFAT pathways, both of 
which are activated by calcium signaling.

Gain-of-function variants in the PIK3CB gene that codes 
for the catalytic subunit of the PI3K heterodimeric complex are 
associated with a mild PID (55–57). In addition, variants in the 
gene that code for NFKBIA are associated with various forms 
of ectodermal dysplasia with immunodeficiency (58–61). The 

attractors for both PI3K and NFKBIA are similar to the wild-type 
indicative of a mild effect.

Many B  cell PIDs are antibody deficiencies and have less 
severe but recurrent infections. These include BTK, BLNK, 
CARD11, CD19, CD21, CD81, PI3K, and STIM1 deficiencies. 
These PIDs show minor alterations to the investigated network, 
except for CD21 and STIM1. Nonetheless, the NF-κB pathway is 
disrupted in most of these PID simulations, as is the case with 
the experimental studies. Altogether, the PID severity analysis 
verifies that proteins involved in severe diseases are central for 
the network.

novel PiD candidate Proteins
New PIDs are still being discovered, but due to their large num-
ber, rarity and overlapping symptoms, their diagnosis may be 
late, challenging and costly. Several classifications of PIDs have 
been introduced (9, 10), and candidate genes and proteins have 
been suggested (22, 62–65). Proteins that affect several pathways 
and are captured by the signaling loops are likely involved in 
PIDs. Proteins that appear in at least 10% of the loops include 
the majority of the investigated PIDs (15 of 22) and several pro-
teins essential for B cell activation and functions. Interestingly, 
some of these proteins also indicate abrogated signaling in the 
attractors for most of the PIDs. To evaluate in silico the effects 
of perturbing proteins that have not, thus far, been experimen-
tally connected to PIDs in Table  2, we performed knockout 
simulations for each of them. All the perturbed nodes impaired 
BCR-dependent survival and response signaling. Moreover, we 
analyzed from the Human Gene Connectome (HGC) (66) web 
server biologically and functionally close genes for known PIDs 
and found connections between proteins present in numer-
ous loops and significant associations to known PID proteins 
(Table  2). Among these are SYK, PRKCB, IP3R, and GAB1 
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TaBle 2 | Novel primary immunodeficiency (PID) candidates.

Protein % FFlsa human gene 
connectome 

BrP

itan and 
casanova 
(p-value)

Keerthikumar 
et al. (p-value)

SYK 22.63 0.001310 0.00007 4.24
PRKCB 14.06 0.000780 0.00042 3.70
IP3R 41.25 0.000006 0.00113 NA
GAB1 21.11 0.001140 0.00149 3.86
LAT2 56.25 0.015470 0.00205 0.88
GRB2 31.84 0.002210 0.00014 2.13
SHC1 36.38 0.002210 0.00007 NA
MAP3K1 18.85 0.000720 0.00057 NA
MAPK14 10.79 0.001430 0.00064 0.94
MAPK3 36.38 0.002330 0.00057 4.5
PIK3AP1 10.79 0.000180 NA 3.1
MAP2K1 15.00 0.000720 0.00354 3.34
RAF1 75.42 0.002030 0.00007 4.45
MAP3K7 36.25 0.002810 0.00021 2.52
RAC1 11.34 0.010990 0.00007 4.30
CRACR2A 16.42 0.002750 NA NA
MAP2K4 71.00 0.004060 0.00318 1.34

Columns 4 and 5 consist of p-values of novel candidate PIDs scores for the proteins 
from Itan and Casanova (62) and Keerthikumar et al. (63), respectively.
aThe fraction of FFLs that the protein is part of. There were 6,542 such loops.
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that are important for BCR activation and survival response.  
In addition, many of our candidate genes have been suggested  
in other studies (62, 63).

DiscUssiOn

In this study, we reconstructed the B cell network model based 
on the literature, refined and in silico validated it, and then used it 
to study the semi-quantitative dynamic effects of PID knockouts 
and knockins. The model captures the main BCR activation sign-
aling components in B cells. The normalized HillCube approach 
in the Odefy toolbox was used to simulate both the normal and 
the PID perturbations in the model for the B cell network. The 
perturbations qualitatively replicated experimental data for 
several PIDs at the pre- and mature B cell developmental stages.

The validity of the network and our approach were tested 
at several levels. First, the signal transduction from the BCR 
to TFs was shown to be intact and affected by perturbations of 
the proteins. Second, in many PIDs proteins were shown to be 
highly connected and involved in numerous signaling loops. 
Third, the resulting attractors from PID simulations were in line 
with experimental results for diseases in these proteins. Fourth, 
severity of several PIDs correlates with effects to information 
flow in the network. In summary, the network and simulations 
capture important characteristics of PIDs and can thus be used 
to extrapolate to other proteins in the network.

We compared the wild-type to the PID attractors and found 
severe signal transduction defects when CD21, CD40, LYN, 
MS4A1, ORAI1, PLCG2, PTPRC, and STIM1 were perturbed. 
The trends that indicate major changes in signaling patterns 
were captured in the knockout simulations. Minor differences 
were observed between the wild-type and CARD11, KRAS, and 
PI3K overexpression attractors, and CD19, CD81, and WIPF1 
knockout attractors. The pathway for NF-κB was disrupted in all 

the PID knockouts except in the CD19, CD81, and WIPF1. These 
proteins connect receptor-dependent signals to the distal NF-κB 
pathway (67). knockout of any of these proteins may impair the 
IKK complex, the major NF-κB regulator, by leaving NFKBIA 
bound to NFKB1, thereby preventing its nuclear transportation 
and function as a transactivator (67).

After BCR-antigen activation, B cells undergo somatic hyper-
mutation and antibody class switching. ELK1, ATF2, and JUN 
are effectors downstream to the RAS/MAPK pathways in the 
BCR signaling network. They control survival, differentiation 
and proliferation responses in B cells after activation (31). These 
TFs were not affected except (slightly) in the CD40 PID attractor. 
The ETS1 TF controls survival and differentiation, and thus its 
activity is increased through calcium ion signaling during BCR 
signaling (32, 46, 47, 68). In our simulations, the PID attractors 
for proteins involved in calcium signaling disrupted the ETS1 
pathway. All other TFs that regulate survival and proliferation 
signals through the BCR signaling were abrogated in at least five 
PID attractors (Figure 4). These results verify that our simulation 
approach is effective when the affected proteins are at the core 
of the interconnected network or along non-redundant paths.  
No major changes were revealed in overexpression perturba-
tions, as in PI3K, GOF CARD11, KRAS, and NFKBIA disorders. 
All the PID proteins, excluding those at input nodes, emerge in 
the signaling loops. LYN, STIM1, ORAI1, and PLCG2 pertur-
bations, which cause major effects, are present in over two-thirds 
of the loops.

Our results show PID trends in the cellular dynamics of the 
B cells when the affected proteins are involved in non-redundant 
paths along the major TF signaling pathways. Perturbations 
of early events show more profound network disruption than 
those affecting late events. This is demonstrated in the profound 
outcomes when perturbing PID proteins taking part in the early 
events (CD21, CD40, CD81, LYN, MS4A1, and PTPRC), and 
less profound, but noticeable effects, in the intermediate and late 
events (IKKB, ORAI1, PLCG2, and STIM1).

The proteins in Table  2 that are not linked to known PIDs 
are essential for B cell activation and function and are affected 
in several B cell simulated attractors. Many of them have been 
previously identified as PID candidates. GAB1, GRB2, LAT2, 
MAP2K1, MAP3K7, MAPK14, MAPK3, MAPK8, PIK3AP1, 
PRKCB, RAF1, and SYK have been designated as candidate PID 
genes (63). Fourteen out of these 17 proteins were predicted as 
PID candidates in another study (62) including IKKA, GAB1, 
GRB2, LAT2, MAP2K1, MAP3K7, MAPK14, MAPK3, MAPK8, 
PIK3AP1, PRKCB, RAF1, and SYK. Several of the candidate genes 
are connected to PID proteins in the HGC (Table 2), providing 
independent proof for their significance.

According to the Panther databases (69), eight of the proteins 
in Table  2 are non-receptor protein kinases (GRB2, IKKA, 
MAP3K7, MAPK3, MAPK8, MAPK14, RAF1, and SYK), three 
are mitogen-activated and phosphotyrosine binding kinases 
(MAPK3, MAPK14, and RAF1), four have calcium ion binding 
activity (ITPR1, LAT2, MAP3K7, and PRKCB), and one has 
SH3/SH2 adaptor activity (GAB1). According to the Genecards 
and Malacards suites (70, 71), eight of the proteins are associ-
ated with various cancer types (GRB2, MAPK3, MAPK8, 
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MAPK14, PRKCB, RASA1, SHC1, and SYK), four to different 
forms of cardiovascular diseases (MAP2K1, RAF1, RASA1, and 
SHC1), three to various Noonan syndromes (GAB1, MAP2K1, 
and RAF1), two to liver diseases (MAPK8 and SHC1), two to 
neuroendocrine neoplasm (MAPK3 and MAPK8), and one each 
to inflammatory bowel disease (SHC1), ectodermal dysplasia 
(IKKA), and Wiskott-Aldrich syndrome (GRB2). These proteins 
or their encoding genes could also have effects on PIDs. The listed 
proteins are strong PID candidates; however, their involvement  
in PIDs is yet to be experimentally verified.

Primary immunodeficiency candidate genes have been pro-
posed in several studies (62–64). With reconstructed PPI network 
of immune system-specific proteins, proteins with high network 
statistics and PID-associated Gene Ontology term enrichment 
scores were considered as candidates (64). Itan and Casanova 
identified the top 1% of genes biologically close to known PIDs 
and selected those with similar Gene Ontology terms as the 
known PIDs (62). Support vector machine, a supervised machine 
learning technique, has been used to identify candidate PIDs 
(63). Several of the detected candidate genes above have been 
later confirmed to be PID-associated. Our approach focuses on 
B cell-specific network model, B cell intrinsic PIDs, the proteins 
that are connected to the PIDs and their effects on the BCR 
signaling in silico.

Differential diagnosis and treatment of PIDs is still challeng-
ing. Our approach provides novel insight to the mechanisms of 
PIDs in immune response signaling and presents new candidates 
for therapy and diagnosis. Experiments to validate the proposed 
PID candidates are still to be conducted. Furthermore, detailed 
quantitative models of the knockin perturbations would shed 
more light on their effects and require more detailed experimen-
tal data.

MaTerials anD MeThODs

network reconstruction and analysis
The B  cell network model was reconstructed through exten-
sive literature mining. We focused on the major components 
required for BCR/CD40-dependent B cell activation signaling 
events. Furthermore, we included only signaling events for undif-
ferentiated B  cells. Boolean equations were constructed based 
on literature evidence. The network is available in SBML format 
(Table S3 in Supplementary Material) and at the NDEx network 
provenance repository (72) with the UUID: 2554db2d-7533-
11e8-a4bf-0ac135e8bacf. The reconstructed Boolean network 
model was used for wild-type and PID-perturbed simulations 
using Odefy, a Matlab toolbox (19), with the normalized 
HillCube method (73). NetDS, a Cytoscape plugin (74), was 
used for identifying signaling loops in the underlying interac-
tion graph of the model. Data analysis was done with the R 
software, version 3.2.3 (75), and igraph, a library for network 
and graph analyses in R (76). Cytoscape, version 3.5.1 (77) was 
used for network visualization.

The analyses and simulation protocol were essentially similar 
to what we used to investigate T-cell PIDs (22). Briefly, in the 
Boolean model the nodes represent N signaling molecule or 

protein variables, X1, X1, …, XN. The value of a variable is either 0 
or 1 (78). Proteins, xi, are influenced by their neighbors, Ri = {X1, 
X1, …, XN}. The value of a protein at time t is updated at time 
t + 1 from the values of its neighbors, Ri, with update function  
B: {0, 1N}. The discrete and synchronous update (78, 79) was 
performed according to the following equation:

 }{1 21 , , , 0, 1 ,  1, 2, , .ii i i i iNx t B x t x t x t i N( + ) = ( ( ) ( ) … ( )) ε = …  

The ordinary differential equation (ODE) equivalent of the 
Boolean update functions, where xi takes values [0, 1] was com-
puted using

 1 2
1  ( , , ,  )ii i i i iN i

i
x B x x x x( )= … − ,

τ


 

where Bi is a continuous homolog of the discrete function Bi, 
parameter τi is the life-time of the protein, and xi describes its 
decay.

Odefy (19) transforms the discrete Boolean to the continuous 
system of ODEs and computes the solution of the system using 
the BooleCubes (73) as follows:

 1 1

1 2

1 1 1

1 2
0 0 0 1
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 , , ,  1 1 .
N

I
N
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N i i i i
x x x i

B x x x
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( … )
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BI, the BooleCube, is obtained from interpolating Bi, the 
Boolean discrete update function. Since molecular interactions 
are not switch-like in behavior, the Hill function,

 
 

n

n n
f x x

x k
( ) −

( − ), 

was applied to the BooleCube to obtain a sinusoidal function, the 
HillCube (73) as follows, B x x B f x f xH

N
I

N N( ) ( ( ) ( ))1 1 1, , , ,… = … .
The parameter n (the Hill coefficient) represents the coop-

erativity between the protein interactions, while parameter k 
represents the value at which the activation is half-maximal.

To obtain perfect homologs of the Boolean update func-
tions Bi, the HillCube functions were normalized to the unit 
interval to give the normalized HillCube (73) as follows, 

B x x B f x
f

f x
f

Hn
N

I N N

N
( )

( )
( ) ( )

( )
1

1 1

1 1 1
, , , ,… = …










.

Basin of attraction and attractor 
identification
The Odefy toolbox was used to simulate the qualitative dynamics 
of the network model (19). We used the normalized HillCube 
functions with synchronous updates. The default parameters 
for the normalized HillCube were n = 3, k = 0.5, and τ = 1. 
Except for the nodes in Table 1, the default parameter values 
were used. The variable n represents the Hill exponent of the 
Hill function and is used for converting the discrete Boolean 
update functions that take value 0 or 1 into their continuous 
BooleCube equivalents that have values [0, 1]. It captures the 
influence that the nodes of the same Boolean equation have on 
each other. k is a variable to control the continuous relaxation 
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of the Boolean step function. It represents the value at half-
maximal activation of a protein. τ is a decay parameter; for each 
signaling molecule, the higher its value, the slower the decay of 
the molecule.

The parameters in Table 1 were adjusted so that the wild-type 
attractor represents experimental data from the literature. The 
simulations were run until the network dynamics settled in the 
attractor that captures BCR activation.

Perturbation
Analysis of PID effects was performed for each protein encoded 
by a PID gene using the normalized HillCube simulations. For 
each perturbation, the node was converted to an input before 
assigning a state, either off or on, depending on the PID. This state 
was maintained until the simulation transitioned into the attrac-
tor. The parameter values used in the wild-type simulations were 
maintained for all the PID-perturbed simulations. The result of 
the simulation is the perturbed PID attractor.

Primary immunodeficiencies
Primary immunodeficiency proteins expressed in B cells were 
retrieved from the IDbases (8, 44), the updated IUIS expert 
committee classification of PIDs (9), and a recent survey (45), 
and used for the PID failure mode simulations. The studied 
PIDs included BCL10, BLNK, BTK, CARD11, CD19, CD21, 
CD40, CD81, IKKB, KRAS, LYN, MALT1, MS4A1, NEMO, 
NFKB1, NFKBIA, ORAI1, PI3K, PLCG2, STIM1, and WIPF1 
deficiencies.
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TaBle s1 | B cell activation Boolean network model update equations. The 
table lists Boolean equations of protein activation used in the network model and 
simulations.

TaBle s2 | Signaling loops from the B cell interaction network of the Boolean 
network. The table consists of the number signaling loops that each node was a 
part of. All the loops included primary immunodeficiency proteins. All input nodes 
were excluded from the table. Signal1 (antigen) and CD40LG (Signal 2) were the 
source of all loops, and the rest of the input signals did not occur in any loop.

TaBle s3 | SBML qual. The B cell network model in SBML qual format.
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