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ABSTRACT

Objective: Observational medical databases, such as electronic health records and insurance claims, track the

healthcare trajectory of millions of individuals. These databases provide real-world longitudinal information on

large cohorts of patients and their medication prescription history. We present an easy-to-customize framework

that systematically analyzes such databases to identify new indications for on-market prescription drugs.

Materials and Methods: Our framework provides an interface for defining study design parameters and extract-

ing patient cohorts, disease-related outcomes, and potential confounders in observational databases. It then

applies causal inference methodology to emulate hundreds of randomized controlled trials (RCTs) for pre-

scribed drugs, while adjusting for confounding and selection biases. After correcting for multiple testing, it out-

puts the estimated effects and their statistical significance in each database.

Results: We demonstrate the utility of the framework in a case study of Parkinson’s disease (PD) and evaluate

the effect of 259 drugs on various PD progression measures in two observational medical databases, covering

more than 150 million patients. The results of these emulated trials reveal remarkable agreement between the

two databases for the most promising candidates.

Discussion: Estimating drug effects from observational data is challenging due to data biases and noise. To

tackle this challenge, we integrate causal inference methodology with domain knowledge and compare the esti-

mated effects in two separate databases.

Conclusion: Our framework enables systematic search for drug repurposing candidates by emulating RCTs us-

ing observational data. The high level of agreement between separate databases strongly supports the identi-

fied effects.
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INTRODUCTION

Drug repurposing, or repositioning,1 is the quest to identify new

uses for existing drugs. It holds great promise for both patients and

industry, as it significantly reduces the costs and time-to-market of

new medications compared to de novo drug discovery.2 To date, the

most notable repurposed drugs have been discovered either through

serendipity, based on specific pharmacological insights, or using ex-

perimental screening platforms.2,3 To accelerate and increase the

scale of such discoveries, numerous computational methods have

been suggested to aid in drug repurposing (see reviews in refs3–8).

For example, a popular approach, which can be applied to different

data types, represents drugs and/or diseases as feature vectors (aka

“signatures” or “profiles”), and measures the similarity between

these entities or trains a prediction model for drug–disease

associations.

In the healthcare domain, the term “real-world data” refers to

information collected outside the clinical research settings; for ex-

ample, in electronic health records (EHRs) or claims and billing

data.9 Such data offer important advantages in terms of volume and

timeline span, alongside some inherent challenges such as data irreg-

ularity and incompleteness. Recently, real-world data have been in-

creasingly leveraged for various healthcare applications.10 In the

context of drug repurposing, observational data are increasingly

used to provide external validation to existing drug repurposing hy-

potheses. For example, Xu et al11 used EHR data to validate the as-

sociation of metformin with reduced cancer mortality. In contrast,

there are far fewer examples for utilizing observational data to gen-

erate new drug repurposing hypotheses. Paik et al12 derived drug

and disease similarities from EHR data and then combined these

similarities to score drug–disease pairs and suggest novel drug repur-

posing hypotheses. Kuang et al13 leveraged patient-level longitudinal

information available in EHRs and applied the Self-Controlled Case

Series study design, widely used to identify adverse drug reactions,14

to suggest new drugs that can control fasting blood glucose levels.

Wu et al15 employed a multivariable Cox regression model to assess

the effect of 146 noncancer drugs on cancer survival in EHR data.

Suchard et al16 utilized EHR and claims databases to estimate the ef-

ficacy and safety profile of multiple first-line drug classes for hyper-

tension treatment. They calculated the hazard ratios of the

compared classes with Cox models, after stratifying or matching

patients by propensity score.

Conducting a randomized controlled trial (RCT), the gold stan-

dard for validating the efficacy of a candidate drug, is costly and

lengthy. To identify promising repurposing candidates, we propose

a framework that emulates RCTs for on-market drugs using obser-

vational real-world data. We apply causal inference methodologies

to correct for confounding bias in treatment assignment, treatment

duration, and informative censoring.17 Our framework is configura-

ble, allowing for the specification of inclusion criteria, disease out-

come, and potential confounders.

As a test case, we applied the described drug repurposing frame-

work to Parkinson’s disease (PD). To date, all drugs indicated for

PD are approved for treating its symptoms and none was shown to

slow the progression of the disease.18 We emulated RCTs for hun-

dreds of drugs, including PD indicated drugs, estimating their effect

on three disease progression outcomes. To assess the robustness of

our framework, we tested the agreement of the estimated effects

across different causal inference methods and databases. We focus

here on the methodological aspects of our framework and the means

to validate its results. A discussion of the identified drug candidates

for PD and their clinical validity appears in Laifenfeld et al.19 To the

best of our knowledge, our study is the first to demonstrate system-

atic emulation of RCTs in observational data for screening drug

repurposing candidates.

MATERIALS AND METHODS

Each emulated RCT estimates the efficacy of a single drug by com-

paring patient outcomes in two cohorts: drug-treated patients (the

“treatment cohort”) versus controls; and correcting for biases be-

tween these cohorts, as well as biases related to treatment duration

and incomplete follow-up. In the following sections, we describe the

study design of the target trials, which largely follows the protocol

in Hern�an and Robins,17 as well as our emulation framework. We

focus on the parameters as customized to the PD study. These

parameters, commonly defined in our framework with SQL queries,

can be easily adjusted to other case studies.

Data sources
We analyzed two individual-level, de-identified medical databases.

The IBM Explorys Therapeutic Dataset (freeze date: August 2017;

“Explorys”) included the medical data of over 60 million patients,

pooled from multiple different healthcare systems, primarily clinical

electronic heath records (EHRs). The IBM MarketScan Research

Databases (freeze date: mid 2016; “MarketScan”) contained health-

care claims information from employers, health plans, hospitals,

Medicare Supplemental insurance plans, and Medicaid programs for

�120 million patients during the years 2011–2015. We note that
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5.5 million patients (<10%) were known to be covered by both

Explorys and MarketScan. As their content originated from different

data providers, we consider them two separate resources and assume

that the overlap in the derived patient cohorts and timelines is negli-

gible.

Study design
Key dates

The beginning of the treatment, or its alternative in the trial, is

termed the index date. We follow a new-user cohort design17 and

set the index date in our emulated RCTs to the first (ever) observed

prescription date of the assigned drug. We refer to the observed time

before the index date as the baseline period and use the information

collected during that time period to determine whether a patient is

eligible for the target trial. The time following the index date is

termed the follow-up period, during which the effect of the drug is

evaluated. In the PD case study, we set the follow-up period to two

years. For each patient, we defined end-of-treatment as the end-date

of the last prescription of the drug during the follow-up period. We

considered patients as censored at the end-of-treatment. We set

missing prescription duration in Explorys to three months, the

modal value for prescription length in MarketScan data. We note

that missing prescription durations can be more accurately imputed,

for example, using each drug’s statistics or with a regression model

that additionally considers the patient’s medical history. Finally, in

the PD case study, we defined PD initiation date as the first PD diag-

nosis or the earliest levodopa (a drug typical to PD) prescription

within the year preceding the first PD diagnosis. Since PD is likely

present latently before the first diagnosis or prescription record, we

retracted PD initiation date for all patients by additional 6 months.

Technically, an earlier (presumable) PD initiation date increased the

cohort size in our emulated RCTs, since we required the PD initia-

tion date to precede the index date (see section Eligibility Criteria).

Figure 1 illustrates the key dates in our study design.

Eligibility criteria

The target trials that we emulated focused on patients suffering

from late-onset PD since early-onset patients present different clini-

cal profiles.20,21 We identified the late-onset patients in our data

based on diagnostic codes (International Classification of Diseases,

ICD, codes 9th and 10th revision) and required at least two PD diag-

noses on distinct dates. Patients diagnosed with PD before the age of

55 were excluded from our study. To allow proper characterization

of the patients in our trials, we further required an observed baseline

period of 1 year. To ensure that all “recruited” patients have PD, we

demanded that the PD initiation date precede the index date. The

framework supports a relaxation of the new-user cohort design by

setting the index-date to any prescription date having no prior pre-

scription in some preceding time window (eg, a year).

Treatment assignment

For a given trial drug, the framework provides two possible settings

for defining the control cohort. In the first setting, we use the Ana-

tomical Therapeutic Chemical (ATC) classification system and set

the alternative treatment to drugs from an ATC class of the trial

drug, excluding the drug itself. Emulated RCTs comparing the target

drug to all its encompassing hierarchical ATC controls may suggest

mechanist explanations for the estimated effect or serve as sensitivity

analysis.19 In the second setting, the alternative treatment is a drug

randomly selected for each patient from his/her list of prescribed

drugs; additional criteria can be applied to limit this random drug

set. See Discussion for the rationale behind these settings.

For both treatment and control cohorts, we demanded that the

assigned treatment had at least two prescriptions �30 days apart. Fi-

nally, the framework excludes from the control cohort any patient

with a prescription for the trial drug. The choice of control is config-

urable. In the PD case study demonstrated here, we tested both

ATC-based and random-drug controls described above. In the ATC-

based control, we used the second-level ATC class of each drug,

noted as ATC-L2, which includes drugs of the same therapeutic indi-

cation. In the random-drug control, we considered drugs that are

not indicated for PD.

Outcomes

The efficacy of a drug during the follow-up period is measured with

respect to a patient-specific disease outcome, such as the occurrence

Figure 1. An illustration of the per-patient key dates in the study design of emulated randomized controlled trials. Each row corresponds to a certain type of medi-

cal event. Rectangles indicate diagnosis (Dx) events; ovals indicate prescription (Rx) events; event type is specified in the first (ie, leftmost) event in each row and

then abbreviated (eg, “SD” in top row is the abbreviation for “Studied Drug”).
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of a disease-related event. In the PD case study, we defined a set of

clinically-relevant events linked to the progression of PD along dif-

ferent axes:

• Fall: as a proxy to advanced motor impairment and dyskinesia.
• Psychosis: measuring progression along the behavioral axis.
• Dementia onset: measuring progression along the cognitive axis

(and excluding patients with prior dementia diagnosis from the

trial).

We used ICD codes to detect these events (see Laifenfeld et al.19

for details).

The framework and its Causal Inference Library support effect

estimation for continuous outcomes, such as lab test results. Note,

however, that utilizing information from censored patients, for ex-

ample, patients with incomplete follow-up period, is more challeng-

ing for such outcomes.

Hypothesized confounders

Confounders are variables affecting both the assigned treatment and

the measured outcome, thus creating a “backdoor path”22 that may

conceal the true effect of the drug on the outcome. Causal effect esti-

mation attempts to block these backdoor paths by correcting for

confounders. Since, by definition, confounders influence the treat-

ment assignment, they are computed over the baseline period. In the

PD case study, our list of hypothesized confounders contained hun-

dreds of covariates corresponding to: demographics (age and gen-

der), past diagnoses, prescribed drugs, healthcare providers’

specialties, healthcare facilities utilization, and insurance types.

Framework for RCT emulation
Our configurable framework follows the study design protocol de-

scribed above and automatically emulates a maximal number of

RCTs using observational healthcare data. Figure 2 shows an over-

view of the framework and its RCT emulation pipeline.

Extracting tested drugs

We used the RxNorm standardized nomenclature to identify drug

ingredients for each prescribed drug. Our framework tests all drug

ingredients that satisfy the following conditions: (1) it is an active in-

gredient; (2) it is not part of over-the-counter medications, which

may have limited coverage in our data; and (3) the number of

patients in the corresponding treatment cohort is above a specified

minimal value. In the PD case study, the minimum cohort size was

100 patients. The Tested Drugs Extractor module identifies all the

drugs that meet these requirements (Figure 2).

Extracting treatment and control cohorts

For each emulated trial, our framework uses the feature extraction

tool described in Ozery-Flato et al.23 to extract the corresponding

treatment and control cohorts, and to formulate and compute the

values of the confounders and outcomes. In the random-drug con-

trol setting, the randomization process is shared by all trials, leading

Figure 2. An overview of our framework’s emulation pipeline and the underlying components. The central module is the Randomized Controlled Trial (RCT) Emu-

lator, which orchestrates the entire process. First, the Tested Drugs Extractor identifies a list of repurposing candidates, based on the user-provided Drug Criteria.

For each such candidate, using the input Study Design parameters, the Treatment & Control Cohorts Extractor assigns patients to the respective cohorts. The

Confounders & Outcomes Extractor computes a baseline and follow-up attributes for patients in both cohorts. The Drug Repurposing Engine then instantiates an

RCT Emulator for each candidate, which estimates its effect on disease outcomes in the treatment versus control cohorts, adjusting for the extracted confounders

and using methods implemented in the Causal Inference Library.
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to a large overlap between the control cohorts, and allowing a joint

extraction of the confounders and outcomes in these cohorts.

Emulating an RCT

Below we provide a mathematical formulation of the estimated

effects and elaborate on the steps our framework takes to evaluate

them.

Let Ptrial drug outcomeð Þ denote the expected prevalence of

patients experiencing an outcome event in an extreme scenario

where all patients in the trial (ie, treatment and control cohorts)

were assigned and fully adhered to the trial drug during a complete

follow-up period. Similarly, let Palternative treatment outcomeð Þ denote

the expected prevalence of the outcome for the analogous extreme

scenario corresponding to the alternative treatment. Note that the

evaluation of Ptrial drug outcomeð Þ and Palternative treatment outcomeð Þ
may greatly deviate from P outcomejtreatment cohortð Þ and

P outcomejcontrol cohortð Þ, namely, the observed (uncorrected) out-

come prevalence in the treatment and control cohorts, due to biases

in treatment assignment, treatment duration, and loss-to-follow-up.

The effect of the trial drug on the outcome is then measured by the

difference.

Ptrial drug outcomeð Þ � Palternative treatmentðoutcomeÞ

Alternative ways to measure the effect are the ratio and odds ra-

tio of Ptrial drug outcomeð Þ and Palternative treatment outcomeð Þ. The

choice of effect measure is configurable and depends on the goal of

the inference (but odds ratio is less preferred due to its non-collaps-

ibility22). Procedure 1 estimates the effect of the trial drug on an out-

come, as well as its statistical significance. The steps in this

procedure are implemented in the Causal Inference Library module.

Details are provided in the following section.

Causal inference library

This module contains various methods to estimate the expected out-

comes and causal effects from observational data. For event-based

outcomes, as in the PD case study, it offers causal survival analysis

methods that adjust for both confounding and selection bias due to

incomplete treatment period. Below we provide a summary of the

methods used in the PD case study.

Identifying major confounders. This step identifies major confound-

ers within the set of extracted potential confounders by testing their

association with the outcome24 (Step 1; see also Discussion). First, it

excludes features that are nearly constant (mode frequency > 0.99)

in both the treatment and control cohorts. It then dichotomizes non-

binary feature values into high/low using their median, and meas-

ures the association between the feature and the outcome using the

following difference

Pðoutcomej high feature valuesÞ�Pðoutcome j low feature valuesÞ

For event-based outcomes, we computed this difference with

Kaplan–Meier estimators and used bootstrapping to assess its statis-

tical significance.25 In the PD case study, we used a P-value �0.005

in all emulated trials to identify major confounders.

Generating balancing weights. To generate balancing weights (Step

3), we applied the popular method of inverse probability weighting

(IPW) with stabilization,26 and modeled treatment probability (pro-

pensity score) with logistic regression. To avoid large variance in the

resulting estimands, we used weight trimming for percentile range

1–99%.27,28

Testing for imbalance. We tested the imbalance between two, possi-

bly weighted, cohorts (Step 4) by computing the absolute standard-

ized difference26 for each identified major confounder:

d ¼ j�xtreatment � �xcontroljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

treatment þ s2
controlÞ=2

q

where �xtreatment; �xcontrol are the feature means in the two treatment

groups, and s2
treatment; s2

control are the corresponding sample varian-

ces. We referred to the cohorts as balanced if for all major con-

founders d � 0:2:29

Increasing positivity likelihood. Emulating RCTs requires satisfying

the positivity condition: each patient in the trial has a positive proba-

bility of receiving either the trial drug or the alternative treatment. A

failure to find balancing weights (Step 5) may indicate a violation of

this condition. To increase the likelihood that the positivity condition

is satisfied (Step 6), we excluded patients whose propensity scores lay

outside the overlap of the treatment and control cohorts.30

Effect estimation. The Causal Inference Library provides two differ-

ent methods for estimating treatment effects (Step 11), based on: (1)

balancing weights, and (2) outcome prediction. The former method

estimates the expected outcome for each treatment,

a 2 ftrial drug; alternative treatmentg, using data reweighting. For

event-based outcomes, we use a Kaplan–Meier estimator that

reweights patients at each time unit to adjust for both confounding

bias and informative censoring (the latter may be leading to a selec-

tion bias):

Procedure 1: RCT Emulation

Input: Patient data: assigned treatment, outcome, censor-

ing time, observations of hypothesized confounders

Output: Estimated effect (and P-value) of treatment on

the outcome

1: Identify major confounders from the list of hypothe-

sized confounders by their association with the out-

come

2: repeat

3: Compute balancing weights for the treatment and

control cohorts

4: Set the state is_balanced to true if no major imbal-

ance exists between the reweighted treatment and

control cohorts; Otherwise set it to false

5: if not is_balanced then

6: Increase positivity likelihood by patient exclusion

7: until is_balanced or number of patients in the treat-

ment or control cohorts is too small

8: if not is_balanced

9: return “Cannot evaluate treatment effect”

10: else

11: Estimate the treatment effect (using causal infer-

ence method)

12: Estimate the P-value of the computed effect (using

bootstrapping)

13: return the estimated effect and P-value
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Pa outcomeð Þ¼
Yfollow�up length

t¼1
1�

P
fi: Ai¼agwt; xi

1½Toutcome
i ¼ t�P

fi: Ai¼agwt; xi
1½Ti� t�

 !

where i denotes a patient, Ai denotes the assigned treatment,

Toutcome
i denotes the time of first outcome event, Ti denotes the mini-

mum of censoring (ie, end-of-treatment) and outcome event times,

and wt; xi
is the computed balancing weight in time t. In the PD case

study, the time unit was one month (30 days).

The second method predicts the expected outcome for a treat-

ment for each patient in the trial and then estimates the overall

expected outcome for the treatment by taking the average:

Pa outcomeð Þ ¼ 1

n

X
i

P outcomeX ¼ xi; Ai ¼ a�½

We provide complete details of these methods in the Supplemen-

tary Material. In the PD case study, we applied both methods for

computing effects and analyzed their agreement.

P-values estimation. We evaluated the P-value of an effect (Step 12)

using a bootstrap estimate of its standard error and assuming the

distribution of a sample effect is close to normal.25 To account for

multiple testing, we controlled for the false discovery rate (FDR) us-

ing the method of Benjamini and Hochberg.31 Adjusted P-values �
0.05 were considered statistically significant.

RESULTS

We identified �106 000 patients in MarketScan and �89 000

patients in Explorys as eligible for our emulated PD trials. To get a

notion of the differences in the patient population participating in

the emulated trials in each database, we compared the random-drug

control cohorts in these databases. This comparison revealed many

similarities, such as the average age (�75.5 years), percentage of

women (43–45%), and the fraction of patients with public insurance

(82–85%). In both databases, dementia was the most prevalent out-

come during the 2-year follow-up (37–45%), followed by fall and

psychosis (17–26% and 10–15%, respectively). There are also nota-

ble dissimilarities between the two databases; the most prominent is

the average total patient time in database, which was more than

twice as long in Explorys compared to MarketScan.

Table 1 provides statistics on the trials and results in the

Explorys and MarketScan databases. Overall, we tested the effect of

259 drugs on psychosis, dementia, and fall in 1453 emulated trials,

using different controls and databases. There are fewer trials with

an ATC-L2 setting due to smaller control cohorts or missing ATC.

For most (82–94%) of the drugs, the RCT emulator successfully

generated balancing weights in both databases (since confounders

are selected based on their association with the outcome, balancing

rates vary between outcomes). Despite the greater statistical power

of random-drug control cohorts, we obtained more significant

results using ATC-L2 control cohorts. Only 4 (0.3%) of the 1,453

trials ended with significant beneficial effects at FDR 5% by the two

causal estimation methods and in both databases. These 4 trials in-

volved 4 distinct drugs: rasagiline, zolpidem, azithromycin, and val-

sartan.19 Rasagiline, which was shown to be significantly associated

with a lower rate of dementia onset, is currently narrowly indicated

for treating PD motor symptoms. Deeper analysis of rasagiline and

zolpidem’s effects and discussion of their potential mechanisms of

action appear in ref.19.

We next applied a meta-analysis of estimated effects and assessed

the level of agreement between the two different causal inference

methods, namely balancing weights and outcome models. We ob-

served (Figure 3) strong and significant correlations between the

effects estimated by the two causal inference methods (focusing on

drugs where at least one of the estimated effects is significant at

FDR of 5%). These correlations appear to be stronger in Explorys

than in MarketScan. Importantly, significant effects by the two

methods always agreed on effect sign (ie, beneficial vs. harmful).

Finally, to test the agreement between Explorys and MarketScan,

we restricted the comparison to drugs that were shown to have a sig-

nificant effect by the two causal estimation methods in both data-

bases (Figure 4). The agreement between the estimated effects is

remarkable, with a perfect match for effect sign, and near equiva-

lence in the magnitude of the effects. A comparison of the corre-

sponding uncorrected effects shows similar, though somewhat

weaker, agreement between the two databases (see Supplementary

Figure S1).

DISCUSSION

A correct inference of causal effects must involve a subject-matter

expert, who is also aware of the data-generation process.32,33 Our

framework allows easy injection of domain knowledge into the im-

plementation of the emulated trials, including: the formulation of

cohorts, outcomes and hypothesized confounders.23 There are cav-

eats for the use of healthcare data in comparative effectiveness re-

search, including inaccurate and incomplete information, which

require in-depth understanding and careful interpretation of the

data.34 Specifically, there are potentially many sources of bias in

Table 1. Summary of trials in Explorys and MarketScan for the PD case study. Emulated trials correspond to drugs with balanced treatment

and control cohorts in both Explorys and MarketScan (percentage out of the tested drugs is shown in parentheses). An identified drug’s es-

timated effect reduces the prevalence of the corresponding PD outcome at FDR <0.05 in both Explorys and MarketScan.

Outcome Control cohort

Explorys and MarketScan trials and results

Tested drugs Emulated trials (%) Identified drugs

Dementia random-drug 223 183 (82%) 0

Dementia ATC-L2 218 205 (94%) 2

Fall random-drug 259 219 (85%) 0

Fall ATC-L2 247 228 (92%) 1

Psychosis random-drug 259 218 (84%) 0

Psychosis ATC-L2 247 214 (87%) 1

Any outcome random-drug 259 259 (100%) 0

Any outcome ATC-L2 247 247 (100%) 4
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healthcare data,35 leading to a large set of hypothesized confound-

ers, some not directly recorded in the data but can often be approxi-

mated using observed variables. Adjusting for a large number of

confounders may result in non-positivity, high-variance estimates of

the effect, and over-adjustment bias.24,36 Our framework takes a

combined approach by extracting a very large number of features

suspected as confounders and then applying a confounder selection

step (Procedure 1, line 1). The incorporation of a feature engineering

tool,23 makes our framework unique in the ease and flexibility of de-

fining numerous potential confounders. We applied a strategy that

identifies major confounders based on their statistical association

with the outcome.24 In the PD case study, we focused on monotone

associations for non-binary variables, testing high vs. low variable

values, but advanced examinations may consider non-monotone

associations as well. Furthermore, other methods for confounder se-

lection, for example, Vansteelandt et al. and Ertefaie et al.37,38 may

be considered as well. To the best of our knowledge, our drug repur-

posing framework is the first to correct for selection bias caused by

associations of outcome-related variables with follow-up or treat-

ment duration.

Another novel aspect of our framework is the optional use of a

random-drug control, where patients in the treatment cohort are

compared to other patients with the studied disease who start any

different treatment. The variety of drugs in the random-drug cohort

represents the “background” medications prescribed to patients

with the disease. Therefore, the estimated expected outcome in this

cohort approximates the “average” outcome in the entire study pop-

ulation. Random-drug control cohorts are relatively large, thus po-

tentially increasing the statistical power of the emulated trials.

Additionally, under this control setting it may be easier to compare

the estimated effects of different drugs, as all drugs are tested against

a similar set of alternative drugs. A potential caveat of the random-

drug control setting is that the populations of the treatment and con-

trol cohort may be very different, thus increasing the risk for uncor-

rected confounding biases. Alternatively, the ATC-based control

option allows the user to restrict the control cohort to patients initi-

ating a more homogeneous treatment that is related to the trial drug.

The higher the ATC level, the more closely related the pharmacolog-

ical and chemical properties of the trial drugs and their alternatives

in the control, potentially ensuring a greater resemblance, or match,

between the patients in the treatment and control cohorts.39 How-

ever, as the estimated effect is a comparative measure, it may be ob-

scured when the trial and alternative drugs similarly affect the

measured outcome.

The described framework is easily customizable for various dis-

eases. Specifically, to study acute conditions, we can set the follow-

Figure 3. A comparison of estimated effects: balancing weights vs. outcome prediction. Each chart shows a different setting of the trial with respect to the out-

come (dementia, fall, and psychosis; rows), control cohort (random and ATC-L2; left and right columns), and database (Explorys and MarketScan; alternate col-

umns). Each point corresponds to a drug whose estimated effect was significant at FDR 5% by at least one of the two compared methods. The red line is the fitted

least squares regression line; blue line indicates y¼x.
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up period to few months or days. Our framework is also extendible,

as its components can be configured to use alternative implementa-

tions to the ones described above. A central modifiable component

is the causal effect estimation method. In the PD case study, we

tested two distinct approaches for causal effect estimation: balanc-

ing weights and outcome prediction. A straightforward extension is

to use doubly robust methods,40 which combine the two previous

approaches. We also used balancing weights for assessing whether

treatment and control biases can be successfully eliminated (Steps 2–

9 in Procedure 1). Approximately 6–18% of the tested drugs failed

this assessment (see Table 1). Regression-based methods, such as

Cox model, which were commonly used in previous drug-

repurposing studies, do not allow one to determine whether identi-

fied biases have been eliminated.26 We obtained balancing weights

using the classical IPW method, which may suffer from large estima-

tion variance and is sensitive to model misspecification. There are

many alternative methods for IPW,41–47 and each of these methods

can be plugged into our framework. Using different inference meth-

ods allows the reader to evaluate the sensitivity of identified effects

to modeling decisions, as suggested by Brookhart et al.35 Alternative

implementations to other algorithmic steps, for example, con-

founder selection, may provide an even more comprehensive evalua-

tion of the obtained results and their robustness.

In the current study, we tested only individual active ingredients,

corresponding to specific molecules. Laifenfeld et al19 further

inspected and analyzed two of the ingredients identified by our

framework as beneficial for PD patients, namely rasagiline and zol-

pidem, and proposed plausible mechanistic explanations for the ob-

served effects. Focusing on individual drugs may overlook

significant effects shared by multiple similar molecules whose inde-

pendent analysis lacks statistical power. To overcome this issue, we

can define the set of tested drugs to be families of related molecules

(eg, using the ATC drug classification system). Similarly, we may

consider drug combinations to obtain insights on synergetic effects

of molecules, though such analysis requires extending the definitions

of treatments and their duration and is expected to result in smaller

treatment cohorts.

We note several additional directions for extending our frame-

work. Currently, we estimate the average effect for the entire popu-

lation, although effects may be heterogeneous with large differences

across population strata. Identifying the sub-populations that bene-

fit the most from each given drug (see Ozery-Flato et al.48 for poten-

tial approaches) could focus drug development efforts. Other future

directions include supporting time-varying confounders and treat-

ments to better capture temporal causal trends, incorporating drug

dosage in the analysis, and inspecting the effect of inactive drug

ingredients.

CONCLUSION

We presented a flexible computational framework for high-throughput

identification of drug repurposing candidates that efficiently emulates

hundreds of RCTs from observational medical data to estimate the ef-

fect of on-market drugs on various disease outcomes. Naturally, the

generated hypotheses require clinical analysis and experimental valida-

tion, but the significant agreement across databases and methodological

approaches is encouraging. Notably, our framework may augment

other in silico approaches4 that leverage drug- or disease-related charac-

teristics to identify promising drug repurposing candidates.
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