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A B S T R A C T

The main aim of this research was to assess the use of mid-infrared (MIR) spectroscopy and geostatistical model
for the evaluation and mapping of the spatial variability of some selected soil properties across a field. It is with
the view of aiding site-specific soil management decisions. The performance of the model for the prediction of the
components (soil parameters) was reported using the coefficient of determination (R2) and root mean square error
(RMSE) values of the validation data set. Results revealed that least square regression model performed better in
predicting cation exchange capacity-CEC (R2 ¼ 0.88 and RMSE ¼ 8.98), soil organic carbon-OC (R2 ¼ 0.88, RMSE
¼ 0.55), and total nitrogen-TN (R2 ¼ 0.91 and RMSE ¼ 0.04). The first five principal components (PC) accounted
for 78.17% of the total variance (PC1 ¼ 25.75%, PC2 ¼ 18.06%, PC3 ¼ 13.85%, PC4 ¼ 11.12%, and PC5 ¼
9.39%) and represented most of the variation within the data set. The coefficient of variation ranged from 6.73%
for soil pH to 57.02% for available phosphorus (av. P). The soil pH values ranged from 4.21 to 6.57. The mean soil
OC density was 2.14 kg m�2 within 50 cm soil depth. Nearly 96–97% of the soils contained av. P and sulfur
(SO4

2�-S) below the critical levels. The overall results revealed that soil properties varied spatially. Hence, we
suggest that mapping the spatial variability of soils across a field is a cost-effective solution for soil management.
1. Introduction

One of the major driving factors to the application of the general
precision farming concept is soil heterogeneity. Soils vary spatially
because of soil-forming factors (Silva and Alexandre, 2005; Jankowski
et al., 2011) and management practices (Ozpinar and Cay, 2006; Galka
et al., 2016). Testing and understanding the spatial variability of the
physical and chemical properties of soils are required for precise deter-
mination of the best soil management practices and amendments to
improve crop quantity and quality while being environmentally sus-
tainable (Awe et al., 2015; Aranyos et al., 2016). Applying agricultural
inputs based on site-specific requirements of soils and crops entails the
quantification of the spatial variability of soil properties across the field
(Fraisse et al., 1999; Hatfield, 2000; Wang et al., 2009).

Analysis of soil physical and chemical properties for many samples to
derive soil fertility or acidity index is time-consuming, which in practice
makes it impossible to map the soil properties of a field with the required
spatial resolution (Idowu et al., 2008). The need for fast and cheap
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technological methods that would enable the analysis of a large number
of samples have been stressed in numerous studies (Janik et al., 1998;
Shepherd and Walsh, 2007; Canasveras et al., 2012), and infrared spec-
troscopy has long been recognized as one of the most promising tech-
niques (McCarty and Reeves, 2006). Although near-infrared
spectroscopy can be very useful for some soil analyses, several compar-
ative studies have shown the superiority of the mid-infrared techniques
in most cases (Canasveras et al., 2010; Soriano-Disla et al., 2014; Sebold
et al., 2019). Meanwhile, according to African Soil Information Service
(AfSIS) approach, 20% of the total samples collected for MIR spectros-
copy analysis need to be tested using wet-chemistry method to calibrate
and predict spectral values (Vagen et al., 2010).

Multivariate data analysis (partial least squares regression-PLSR
and principal component analysis-PCA) is used to process large
amounts of data for exploring and understanding the relationship
between soil parameters (Goovaerts, 1997; Sena et al., 2002). Once
the spectral values of MIR spectroscopy are measured and calibrated
using the wet chemistry test, the quality of prediction can be
r 2020
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determined using the PLSR model (Naes et al., 2002). The perfor-
mance of the prediction by the PLSR model can be evaluated through
the coefficient of determination (R2) and the root mean square error
(RMSE) (Hair and Anderson, 1995; Barker and Rayens, 2003). Be-
sides, the PCA shows the correlation between independent variables
and detects data outliers (Miller and Miller, 2005).

Geostatistical techniques aid the spatial prediction of soils. Geospatial
prediction is the analysis of spatial distribution and variability of soil
properties based on the spatial scale of the study area, the distance be-
tween sampling points, and their patterns (Shit et al., 2016). It helps to
evaluate the spatial correlation in soils and to analyze the continuous
variability of soil properties in space (Liu et al., 2014; Bhunia et al.,
2018). Studies showed that MIR spectroscopy can be directly linked to
geostatistics for a broad and quick evaluation of the spatial variability of
soils across a field (McBratney et al., 2006; Cobo et al., 2010). Therefore,
integrating MIR spectroscopy with geostatistical analysis is a
cost-effective and powerful approach for soil assessment, mapping, and
monitoring at a landscape level.

In East African countries like Ethiopia, where the availability of soil
information is highly limited, spatial prediction and mapping of soil
properties at reasonable resolution are predominantly vital for soil
management. The main aim of this study was to measure some soil
properties (soil pH, OC, N, P, S, CEC, K, Mg, Ca, Na) using MIR spec-
troscopy and predict as well as map their spatial distribution by geo-
spatial techniques. The study would be used to build soil data to
strengthen the Ethiopian Soil Information System (EthioSIS) as it is
increasingly required by government and development partners to un-
dertake soil improvement measures to boost crop production. Specif-
ically, the results could aid soil management decisions such as lime and
fertilizer applications.

2. Materials and methods

2.1. Study site

The study was conducted in the agricultural lands of Sibu Sire district
in western Oromia National Regional State, Ethiopia. Geographically, it
is located between 36�35042.3700 and 36 �440 28.2900 E longitude and
8�57016.2600 and 9�220 42.5900 N latitude. The elevation of the study area
ranged from 1,240 to 3,140 m above sea level. The study area receives
precipitation ranging from 1171 to 1719 mm with an annual average of
1348.6 mm. Besides, the mean annual minimum and maximum tem-
peratures are 14.2 and 28.4 �C, respectively. The parent materials of the
study area are dominated by granite with some evidence of basaltic
rocks. According to the FAO (2006), the predominant soil types in the
study area are Dystric Nitisol and Orthic Acrisol. The dominant agricul-
ture in the district is a mixed farming system. The major crops grown in
the area are maize (Zea mays L.), sorghum (Sorghum bicolor), teff (Era-
grostis tef), and oil crops such as Noug (Guizotia abyssinica) and groundnut
(Arachis hypogaea). The study covered 76844 ha of agricultural land.

2.2. Research methods and procedures

The study was carried out following three consecutive stages: the pre-
fieldwork, fieldwork, and post fieldwork.

2.2.1. Pre-fieldwork
The pre-fieldwork stage was an office work mainly emphasized on

preparing base maps and planning of soil survey activities. The base maps
of the study site were produced using ARC GIS 10.3 software by over-
laying a 30 m resolution LANDSAT ETMþ and Google earth imagery. The
slope of the study site was classified from 30 m resolution digital
elevation model (DEM) using Global Mapper 30.2 software. The base
maps produced for agricultural land use and landform were used to
delineate the study boundary and execute soil survey. The probable
number of soil sampling points was estimated using 1.5 km� 1.5 km grid
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surveys (Figure 1). Then, the locations of the sampling points were
distributed on the base map with a resolution of 1:50,000. The points
identified as pre-defined sample locations on the base map were navi-
gated and the exact sampling points were determined by the geographic
positioning system (GPS).

2.2.2. Fieldwork
The second step was fieldwork. The actual survey activities including

site description, soil characterization in the field, and soil sampling were
performed at this stage. Surface soil samples were collected from agri-
cultural lands using the 1.5 km� 1.5 km grids. The sampling points were
laid on the grid intersection points. Nine sub-samples were collected
around each grid intersection point using an Edelman auger at a depth of
20 cm for annual crops and 50 cm for perennial crops. The sub-samples
were mixed to make a composite sample for each grid intersection
point separately for annual and perennial crops. Thus, nearly 149 com-
posite samples were collected from the study site using predetermined
GPS coordinates on the base map.

2.2.3. Post fieldwork
The post-fieldwork stage was focused on activities such as soil sample

preparation and analysis (wet chemistry test and MIR spectroscopy test),
multivariate data analysis, model validation and calibration tests, geo-
spatial analysis, and nutrient and lime recommendations.

2.3. Soil analysis

2.3.1. Wet chemistry analysis
For wet chemistry tests, soil samples brought to the laboratory were

air-dried and crushed to pass through 2 mm sieve size. Soil particle size
distribution was determined by the Bouyoucous hydrometer method
(Bouyocous, 1962). Soil pH was determined in H2O using 1:2 soil to
water ratio using an ELMETRON pH-meter (Black, 1965). Exchangeable
acidity (EA) was determined by leaching the sample with KCl and
titrating with NaOH (Hesse, 1971). Soil organic carbon (OC) was
determined by Walkley–Black oxidation method (Walkley and Black,
1934). Total nitrogen (TN) was determined using Kjeldahl method
(Bremner and Mulvane, 1982). Available phosphorus (av. P),
sulfate-sulfur (SO42--S), cation exchange capacity (CEC), and exchange-
able bases (K, Na, Ca, andMg) were determined usingMehlich-III soil test
procedure at Yara analytical service, UK, England (Mehlich, 1984).
Inductively coupled plasma (ICP) spectrometer was used to determine
the concentrations of exchangeable bases (K, Na, Ca, and Mg), SO4

2�-S,
and av. P in the Mehlich-III extract.

2.3.2. Mid-infrared (MIR) diffused reflectance analysis
For MIR diffuse reflectance analysis, the soils including reference

samples were sub-sampled and ground using Retsch mortar grinder
RM 200 to powder with size fraction smaller than 0.5 mm. A
powdered sample weighing 0.035 g was loaded in four consecutive
wells of an aluminum micro-plate. This was done for all soil samples.
The absorbance of diffuse reflectance spectra was obtained by scan-
ning using the HTS-XT accessory of a Bruker-TENSOR 27 spectrom-
eter. The background was scanned using the roughened surface well
of the aluminum micro-plate. The MIR region spectra, in the wave
number range of 4000–600 cm�1 (2500–16667 ηm) were used for the
analyses to predict soil properties (Viscarra Rossel et al., 2006; Sor-
iano-Disla et al., 2014). Absorbance spectra of the entire soil samples
were measured using OPUS version 7.0 software with 32 scans and a
spectral range of 7400–600 cm�1 (wave numbers) including part of
the NIR region.

2.4. The PCA and PLS regression analysis

Multivariate analysis including principal component analysis (PCA)
and correlations was carried out using XLSTAT Version 2017 software.



Figure 1. Grid sampling distribution and sample locations.
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The partial least square regression (PLSR) modeling tool in the Un-
scrambler X10.3 was used to determine the best correlation between the
chemical test reference data and spectral data. The MIR spectra for
Mehlich-III extracted soil parameters were calibrated and validated using
776 and 5992 reference samples, respectively. The reference samples
were obtained from the EthioSIS database. The optimum number of
factors in the PLSR model was determined using cross-validation. The
prediction performance of the PLSR model was evaluated on predicted
and measured values of soil attributes using a coefficient of determina-
tion (R2) and root mean square error (RMSE) (Naes et al., 2002). The R2

measures the proportion of total variation accounted for by the model,
while the remaining variation is attributed to random error. A good
model would have high values of R2. The R2 values were rated as very
good (>0.81), good (0.61–0.8), fair (0.41–0.6), and poor (<0.4) ac-
cording to Rossel and McBratney (2008). The value of R2 was assessed as
follows:

R2 ¼
�
1� SSEP ðxi � ymÞ2

�
eq (1)

where SSE is the sum of squared error, xi is the true value, and ym is the
mean component value.

The RMSE is a statistical parameter that is more dependable than any
other parameters as it shows deviation from the real measurements. Its
value depends on the type of soil attributes. The validation and accuracy
of PLSR model was assessed using RMSE:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
ðxi � yiÞ2

r
eq (2)

where xi is the predicted value, yi is the measured (reference) value, and
N is the number of soil samples.
3

2.5. Nutrients and lime recommendation techniques

Critical values of soil parameters were used to judge the fertility
status of the soils. We used the critical values adopted by Bruce and
Rayment (1982) for soil pH, Landon (2014) for OC and CEC, Havlin et al.
(2013) for TN, Karltun et al. (2013) for av. P, SO4

2�-S, and K, and
Hazelton and Murphy (2007) for Ca and Mg. The critical values of soil
nutrients were used for nutrient management decisions. The logic of acid
saturation method recommended by Farina and Chanon (1991) was used
to estimate the lime requirement of the soils. It was determined based on
acid tolerance or permissible acid saturation (PAS) of major crops grown
in Ethiopia. A PAS of 10% adopted for Ethiopian soils and a modified
lime requirement factor of 1160 kg lime ha�1 cmolc�1 was used to
estimating the lime rate (Taye, 2008):

LR¼ 1160ðEA�ðECEC*PASÞÞ eq (3)

where LR is the recommended lime rate (kg ha�1), EA is exchangeable
acidity (cmolc kg�1), ECEC is effective cation exchange capacity (cmolc
kg�1), and PAS is permissible acid saturation of a crop in percent (%).

2.6. Geospatial prediction

Geospatial prediction of soil properties and lime rates were per-
formed by kriging interpolation technique using ArcGIS 10.3 software.
The basic equation for interpolation by kriging at an un-sampled location
S0 was given by:

bZðSoÞ¼
Xn

i¼1

λiZðSiÞ eq (4)

where Z(Si) is the measured value at the ith location, λi is an unknown
weight for the measured value at the ith location, S0 is the prediction
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location and n is the number of measured values. The final maps of soil
properties and variable lime rates were produced at 1:10000 finer
resolutions.
2.7. Statistical analysis

Conventional statistics (minimum, maximum, median, mean, stan-
dard deviation, coefficient of variation, and skewness) and principal
component analysis were carried out using XLSTAT software version
2017. Pearson correlation coefficient was used to evaluate the relation-
ship between soil properties at a significance level of 0.05.

3. Results

3.1. Model calibration and validation

The calibration and validation statistics for measured soil properties
were presented in Table 1. We observed high R2 and low RMSE values for
the measured CEC, OC, and TN (Table 1). Conversely, we got low R2 and
high RMSE values for exchangeable K, Ca, and Mg. The observed corre-
lation for the soil quality markers varied widely in the evaluation using
MIR spectroscopy.
Table 1. Model calibration and validation for soil properties.

Soil property Calibration

R2

pH (H2O) 0.52

CEC (cmolc kg�1) 0.88

Av. P (mg kg�1) 0.60

Ex. K (cmolc kg�1) 0.29

Ex. Ca (cmolc kg�1) 0.52

Ex. Mg (cmolc kg�1) 0.29

Ex. Na (cmolc kg�1) 0.14

Av. S (m kg�1) 0.50

OC (%) 0.87

TN (%) 0.91

R2: coefficient of determination; RMSE: root mean square error; CEC: cation exchange
exchangeable magnesium; Ex. Na: exchangeable sodium; Av P: available phosphorus

Table 2. Descriptive statistics for soil properties (n ¼ 149 samples).

Soil attribute Min. Max. Median

Clay (%) 20.00 79.19 49.54

Silt (%) 2.69 50.14 22.50

Sand (%) 2.81 66.25 27.50

pH 4.21 6.57 5.65

OC (%) 0.04 6.64 3.14

TN (%) 0.08 0.70 0.30

Av. P (%) 1.00 49.00 3

Av. S (mg kg�1) 6.00 35.00 12

EA (cmolc kg�1) 0.00 6.18 0.21

Ex. K (cmolc kg�1) 0.14 3.26 0.79

Ex. Ca (cmolc kg�1) 0.66 23.17 4.17

Ex. Mg (cmolc kg�1) 0.31 7.19 1.31

Ex. Na (cmolc kg�1) 0.05 0.35 0.08

CEC (cmolc kg�1) 7.16 66.00 28

EA: exchangeable acidity; Min: minimum; Max: maximum; SD: standard deviation; C
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3.2. Spatial variability of soil properties

Data presented in Table 2 was computed from two datasets. The
values of soil OC, TN, and CEC were derived from prediction using
MIR spectroscopy. The values of the remaining soil properties
(texture, pH, Av. P, Av. S, exchangeable acidity and exchangeable
bases) were obtained from wet chemistry analysis or reference data,
because PLSR-MIR model showed poor prediction performance for
these properties.

Data presented in Table 2 gives descriptive statistics of soil properties
while the spatial maps (e.g. Figure 2, Figure 3, etc) depict the variability
of soil properties across the landscape. Clay content varied from 20 to
79.20% (Table 2). The pH of surface soils ranged from 4.21 to 6.57
(Table 2). The soil pH map of the study area showed that major portions
of the soils had pH values between 5.5 and 6.5 (Figure 2). The mean
exchangeable acidity of the soils was 0.82 cmolc kg�1 (Table 2). We
found a soil pH value as low as 4.56 at places where the exchangeable
acidity was as high as 6.18 cmolc kg�1; and it was zero at locations where
the pH value was 5.52 and above. The soil OC varied between 0.04 and
6.64% with a mean value of 3.06% (Table 2). About 98.5% of the study
site showed soil OC content of 2–4% (Figure 3a). The total N content of
surface soils ranged from 0.08 to 0.70% (Table 2). The average total N in
the soils was 0.29%. Nearly 94% of the area comprised greater than or
Validation

RMSE R2

0.73 0.52

8.98 0.90

43.58 0.50

234.36 0.21

3514.65 0.49

523.88 0.39

64.41 0.13

159.46 0.00

0.55 0.89

0.04 0.88

capacity; Ex. K: exchangeable potassium; Ex. Ca: exchangeable calcium; Ex. Mg:
; Av S: available sulfur; OC: organic carbon; TN: total nitrogen.

Mean SD (�) CV (%) Skewness

49.50 12.23 24.71 0.01

22.44 7.29 32.48 0.34

28.08 12.24 43.60 0.58

5.65 0.38 6.73 -0.40

3.06 0.74 24.22 -0.04

0.29 0.08 27.56 0.39

4.13 2.35 57.02 1.21

13.30 5.58 42.01 1.08

0.82 0.43 51.88 0.93

0.96 0.44 46.30 1.02

5.22 2.57 49.16 0.97

1.69 0.52 30.34 0.87

0.11 0.02 19.73 1.14

29.15 11.42 39.18 0.89

V: coefficient of variation.



Figure 2. Spatial variability map of soil pH (the data were reference values).

Figure 3. Spatial variability map of (a) soil organic carbon (OC) and (b) total nitrogen (TN) (the data were values predicted by MIR spectroscopy).
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Table 3. Pearson correlation among soil properties.

Variables pH EA Av. P Av. S Ex. K Ex. Ca Ex. Mg Ex. Na OC TN CEC Clay Silt Sand

pH

EA -0.65

Av. P 0.16 -0.54

Av. S -0.14 0.05 -0.17

Ex. K 0.10 -0.10 0.24 -0.12

Ex. Ca 0.15 -0.14 0.26 -0.50 0.30

Ex. Mg 0.12 -0.11 0.15 -0.49 0.28 0.96

Ex. Na 0.10 -0.13 0.08 -0.31 0.10 0.86 0.84

OC -0.30 0.09 -0.03 0.15 -0.08 -0.11 -0.11 -0.06

TN -0.36 0.17 -0.06 0.17 -0.11 -0.15 -0.14 -0.10 0.94

CEC -0.05 0.02 -0.16 0.14 -0.07 0.14 0.11 0.05 0.55 0.50

Clay 0.06 -0.08 -0.34 0.06 -0.11 0.29 0.35 0.33 0.01 0.01 0.37

Silt -0.13 0.07 0.02 0.17 0.31 -0.12 -0.12 -0.14 -0.06 -0.11 -0.17 -0.30

Sand 0.02 0.04 0.33 -0.16 -0.08 -0.22 -0.27 -0.24 0.02 0.06 -0.27 -0.82 -0.30

Values in bold are significantly correlated at alpha ¼ 0.05.
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equal to 0.15% total N (Figure 3b). As presented in Table 3, a positive and
significant correlation (r ¼ 0.94**, p < 0.01) was observed between OC
and total N.

The av. P content of the soils varied spatially (Figure 4a). The mean
value of av. P in the soils was 4.13%. Available P was negatively but
significantly correlated with exchangeable acidity (r ¼ -0.54*, p < 0.05)
and clay content (r ¼ -0.34*, p < 0.05) (Table 3). The mean value of
available SO4

2�-S was 13.30 mg kg�1. Available SO4
2�-S content of

nearly 97% of the soils were below 20 mg kg�1 (Figure 4b).
Figure 4. Spatial variability map of (a) available phosphorus (P) and

6

Exchangeable K varied spatially (Figure 5) with a mean value of 0.96
cmolc kg�1 (Table 2). Exchangeable Ca and Mg were accounting for over
89% of exchangeable bases. The mean values of exchangeable Ca and Mg
were 5.22 and 1.69 cmolc kg�1, respectively. The exchangeable Ca and
Mg showed significant spatial variation (Figure 6a and 6b) with co-
efficients of variation (CV) of 49.16 and 30.34%, respectively. The level
of exchangeable Na was low. The CEC of the soils ranged from 10.81 to
46 cmolc kg�1 (Table 2), and major portions of the soils (70%) exhibited
CEC between 15-25 cmolc kg�1 (Figure 7). They were higher in the
highland areas than the lowlands. The CEC of the soils were not
(b) available sulfate-sulfur (S) (the data were reference values).



Figure 5. Spatial variability map of exchangeable potassium (K) (the data were reference values).

Figure 6. Spatial variability map of (a) exchangeable calcium (Ca) and (b) exchangeable magnesium (Mg) (the data were reference values).
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Figure 7. Spatial variability map of cation exchange capacity (CEC) (the data were values predicted by MIR spectroscopy).
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significantly correlated with exchangeable Ca (r ¼ 0.14) and Mg (r ¼
0.11) at p < 0.05 (Table 3).

Our results revealed that spatial variation was relatively highest for
av. P (CV ¼ 57.0%) and lowest for soil pH (CV ¼ 6.73%) (Table 2). The
skewness coefficient ranged from (-) 0.40 for the soil pH to (þ) 1.21 for
the av. P.

3.3. Variance and relationship between soil properties

In the present study, the first five principal components (PC)
accounted for 78.17% variance in the data (PC1 ¼ 25.75%, PC2 ¼
18.06%, PC3 ¼ 13.85%, PC4 ¼ 11.12%, and PC5 ¼ 9.39%) (Table 4).
The first five components showed eigenvalues greater than 1 (Table 4).
We used the total variance of the principal components that showed ei-
genvalues greater than 1.

The relationship between soil properties was described using factor
plot that shows the results of the first two components (Figure 8). Here,
the soil properties were displayed on the two-dimensional space by using
the first two components. There were strong correlations between TN and
OC; OC and CEC; Ex. Ca and Ex. Mg; and av. S and elevation as observed
from the magnitude and direction of correlation lines (Figure 8). But Ex.
Ca and Ex. Mg; av. P and clay; av. P and OC; K and OC showed diverging
relationships.
Table 4. Eigenvalues.

PC1 PC2 PC3 PC4 PC5 PC6 P

Eigenvalue 3.86 2.71 2.08 1.67 1.41 0.73 0

Variability (%) 25.75 18.06 13.85 11.12 9.39 4.85 4

Cumulative % 25.75 43.82 57.66 68.78 78.17 83.02 8

PC: principal component.

8

4. Discussion

4.1. The PLSR and PCA

The PLSRmodel and PCAwere used to measure the predictability and
reliability of the methods for predicting soil chemical properties. Good
predictions are those having R2 ¼ 0.75, satisfactory predictions for R2

from 0.65 to 0.75, and predictions below those values are poor (Chang
et al., 2001; Shepherd and Walsh, 2002). Considering this information,
the MIR spectroscopic based PLSR model best predicted OC, TN, and
CEC. These parameters dominated the MIR spectra of the soils, and the
correlations were expectedly high enough for accurate estimation of soil
contents for those components. Though the RMSE values were high for
exchangeable K, Ca, and Mg, the PLSR model cannot predict these ions as
the calibration and validation values of R2 were low. Because these
simple ions might form a bond with soil water and absorb spectral ra-
diation. In this way, it would not be expected that MIR would give
high-quality information and predict the exchangeable ions. Ben-Dor
(2002) reported that the presence of salt ions in soils may result in subtle
spectral responses when combined with –OH, which is common in soils.
Similarly, the spectroscopic technique did not provide a good prediction
for the rest of the soil properties. Boruvka et al. (2005) reported that a
few components account for about 60–90% of the total variance in an
analysis, which is the only component used for data representation. In
C7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

.68 0.60 0.46 0.36 0.25 0.12 0.05 0.03

.55 3.98 3.05 2.43 1.68 0.77 0.34 0.18

7.57 91.55 94.60 97.03 98.71 99.48 99.82 100
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Figure 8. Factor plot of the first two principal components. The factor loading
shows the relationship between soil properties.
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PCA, the loss of information should be as small as possible, accepting a
loss of less than 40% (Johnson andWichern, 2002). The components that
show eigenvalues greater than 1 explain most of the variation within the
data set (Gniazdowski, 2017). In this study, we chose the first five
principal components that showed eigenvalues greater than 1 as they
best explained the variance.

The PCA and Pearson correlation results showed that all exchange-
able bases did not significantly correlate with CEC. This implies that the
source of CEC might be a high concentration of exchangeable acids (Al
and H) but not exchangeable bases. The magnitude and direction of the
correlation between av. S and elevation in Figure 8 showed that av. S was
higher in soils of elevated lands. In contrast, the findings of Li et al.
(2017) showed that av. S changed non-linearly with elevation, which
might be due to variation in other factors such as climate and vegetation
cover. Exchangeable Ca and Mg showed diverging relations with eleva-
tion (Figure 8) indicating Ca and Mg status were higher in the lower
altitudes than the highlands. Clay content was negatively correlated with
av. P. This might be caused by a high tendency of exchangeable Al to fix
av. P in extremely leached clay soils. Similar to the report of Birhanu and
Chalsisa (2018), the weak correlation observed between av. P and OC as
well as K and OC indicated that the main source of av. P and K might be
mineral rocks but not organic matter. The study revealed that sand
content was negatively correlated with elevation (Figure 8). This was
similar to the findings of Oku et al. (2010) who observed higher mean
sand content at the upper slope or crest (583 g kg�1) than at the valley
floor (744.70 g kg�1). Similar to the findings of Vasu et al. (2016), there
was a strong correlation between TN and OC; CEC and OC; clay and CEC;
pH and av. P; and Mg and Ca.
4.2. Critical levels of soil nutrients and their management

Knowing critical levels of soil nutrients would help variable rate
fertilizer applications to improve farm productivity. Based on critical
values suggested by Havlin et al. (2013), nearly 94% of the soils
contain TN above or equal to the optimum range (�0.15%). Similar
to the report of Fageria and Baligar (2005), total N was higher at the
highlands of the study area compared to the lowlands; because low-
lands are warmer, leading to OC decomposition and associated loss of
N. When CV of soil nutrients increases, the response of crops to a
specific rate of fertilization would become non-uniform (Cao et al.,
2012; Ichami et al., 2020). Here, the spatial map of soil nutrients
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could aid variable rate fertilization programs according to the
site-specific needs of soils and crops.

The critical levels adopted for Ethiopian soils (Karltun et al., 2013)
showed that nearly 96% of the soils had very low av. P content (0–15%)
and the rest exhibit low to optimum av. P. This showed that av. P was one
of the most limiting nutrients in the soils of the study site. The availability
of P had decreased, perhaps owing to the problem of fixation. Besides to
the fixation by Fe in acid soils, the decline in av. P content of Ethiopian
soils might be attributed to low OM content, abundant crop harvest,
erosion, and dominance of the HPO4

- anion than H2PO4
2� (Dawit et al.,

2002; Achalu, 2014). Based on the critical value of 20 mg kg�1 adopted
for SO4

2�-S content in the soils (Karltun et al., 2013), nearly 97% of the
soils showed below this point. This shows that SO4

2�-S was highly
deficient and probably one of the most limiting nutrients in soils of the
study site. Jamal et al. (2010) reported that excessive amounts of N on
low organic matter soils (low C:N ratio) is the cause for S deficiency due
to imbalance between TN and SO42--S. Besides, as SO42- form of S is
easily leachable (Kovar and Grant, 2011; Gallejones et al., 2012), S
nutrient deficiency is the major problem in the highly weathered
kaolinitic soils of western Ethiopia. As a result, optimum P and S fertil-
izers application across the farm helps to improve crop production.

Based on the ratings suggested by Karltun et al. (2013), nearly 2 and
93% of the soils exhibited low and optimum values of exchangeable K,
respectively. Only the remaining 5% found to have high exchangeable K.
Even though the mean value of exchangeable K was in the optimum
range, there could be an increasing loss of K through continuous removal
by crops and vertical movement by leaching. Because of limited knowl-
edge on the K dynamics in Ethiopian soils and the absence of a remark-
able response to K application, there has been sweeping generalization
on K status in Ethiopian soils and as a result, there has not been adequate
focus given to potassium in the national fertilizer scheme (Mesfin, 2007).
Recently, however, a highly negative K balance and deficiency as well as
responses to application of K fertilizer is reported in different parts of
Ethiopia, contrary to the general perception that K fertilizer was unnec-
essary for the soils (EthioSIS, 2016; Mulugeta et al., 2019). So,
site-specific applications of K-fertilizers would help to gain more re-
sponses from crops. More than 64% of the soils exhibited low
exchangeable Ca based on the rating recommended by Hazelton and
Murphy (2007). Whereas, 75% of the site comprised moderate Mg,
indicating only 15% holds lowMg nutrient. Owing to high leaching in the
highland areas, more Ca is required as a production input and the
response to Ca application in the form of fertilizer or lime more likely
increases productivity.

The K:Mg ratio of the soils varied from 0.19:1 to 4.32:1. Nearly
36% of soils in the study site exhibited a problem of Mg induced K
deficiency according to the guideline of Loide (2004). Potassium
fertilizer application to bring the K to Mg ratio closer to 0.7:1 could
correct the problem. Similarly, Mg induced K deficiency in soils was
observed in the Vertisols of the central highlands of Ethiopia (Hillette
et al., 2015). In contrast, very high rates of Mg fertilizers would
indeed depress K absorption by plants, but this antagonism was not
nearly as strong as the inverse relation of K on Mg (Fageria, 2001).
So, a high soil Kþ level or high application rates of this element in
soils with low Mg levels could induce Mg2þ deficiency; therefore its
application should be based on spatial variability of the nutrient
across the field.
4.3. Lime recommendation rate

The pH of nearly 27% of the surface soils was strongly acidic (pH �
5.5) according to Bruce and Rayment (1982) soil pH classification sys-
tem. These soils are rarely suitable for crop production unless manage-
ment measures are executed. Exchangeable acidity was almost absent in
soils with pH values < 5.5. Considering the optimum pH for many plant
species to be 5.5 to 6.8 (Amacher et al., 2007) and the absence of free



Figure 9. Variable rate lime recommendation map for soils of the study site.
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exchangeable Al in this range, nearly 73% of the soils in the study area
could be considered as suitable for most crop production.

The overall analysis of lime requirement showed that 22, 21, and 5%
of agricultural soils in the district require<0.5, 0.5–1, and 1–1.8 t ha�1 of
lime, respectively (Figure 9). So, different lime rates are typically needed
to neutralize acid soils sufficiently for crop production; and lime re-
quirements varied across the farmland depending on the soil types and
the level of acidity (Anderson et al., 2013; Birhanu and Chalsissa, 2019).
However, the use of organic methods such as charcoal, manure, compost,
and selection of acid-tolerant crop varieties could reduce the lime
requirement and ensure environmental sustainability.
4.4. Soil carbon density and its management

Most soils in the study site showed low soil OC (<4%) based on
Landon (2014) classification. The relatively low soil OC content could be
owing to complete removal of the aboveground biomass and extensive
nutrient depleting crop rotation practices. The mean OC density of the
soils was 2.14 kg m�2 within 50 cm soil depth. In the highlands of the
study site, comparatively, we found a maximum OC density of 4.65 kg
m�2 to a depth of 50 cm. Our results revealed that lowland parts of the
study site had lower soil OC content than the highland parts. That means
OC content was minimum in locations having lower elevations. Low to
medium amount of soil OC in lowlandsmight be attributed to the warmer
climate, which enhances the rapid rate of mineralization.

Soil OC density estimates for arable soils during the present study was
smaller than that of Ireland (17.1 kg m�2 to a depth of 50 cm) (Xu et al.,
2011), and Belgian cropland soils (7.9 kg m-2 for the top 30 cm)
(Meersmans et al., 2009). This difference might be caused by variation in
the soil OC concentration, climate, management practices, and the depth
of sampling. Moreover, the use of crop residues for energy, animal feed,
construction, and also slash and burn that are the most common practices
in Ethiopia have contributed to the depletion of soil OC (Birhanu and
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Chalsisa, 2018). The carbon sequestration potential of the soils could be
improved by using animal manures, cover crops, green manures, and
avoiding slash and burn practices. Controlled grazing and subsequent
incorporation of crop residues into the soils would also help to increase
the carbon content of the soils. These management practices also have
implications on climate change mitigation through the reduction of
carbon emissions to the atmosphere.

5. Conclusions

Integrating MIR spectroscopy and geostatistical techniques is useful
for broad and quick quantification and prediction of soil properties. The
PLSR model proved that the model performed better in predicting CEC,
OC, and TN. Except for soil pH, most soil properties showed considerable
variation across the farmland. The exhaustive burning of crop residues
coupled with intensive and continuous tillage practices had led to
depletion of soil OC. The soils showed a broad spectrum of nutrient de-
ficiencies. Soil acidity and associated deficiencies of av. P and SO4

2�-S
were among the major limiting factors of crop production in the study
area. Linking MIR spectroscopy with geospatial methods increases the
efficiency of site-specific applications of soil nutrients. This technique
also supports site-specific lime applications. Finally, further research is
required to improve the prediction efficiency of infrared spectroscopy
and its combination with geospatial tools to aid precision soil
management.
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