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Efficacy and safety of 6% hydroxyethyl starch
130/0.4 (Voluven) for perioperative volume
replacement in children undergoing cardiac
surgery: a propensity-matched analysis
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Abstract

Introduction: Six percent hydroxyethyl starch (HES) 130/0.4 is considered an alternative to human albumin (HA)
and crystalloids for volume replacement in children undergoing cardiac surgery. In this large propensity-matched
analysis, we aimed to assess the efficacy and safety of replacing HA with HES for intraoperative volume therapy in
children undergoing cardiac surgery with cardiopulmonary bypass (CPB).

Methods: We retrospectively reviewed our database, including children who underwent cardiac surgery between
January 2002 and December 2010. Four percent HA was used until 2005; it was replaced by HES thereafter.
Demographic data, intra- and postoperative blood loss and blood component transfusions were recorded, together
with the incidence of postoperative complications and mortality. We performed a propensity-matched analysis
using 13 possible confounding factors to compare children who received either HES or HA intraoperatively. The
primary objectives included the effects of both fluids on intraoperative fluid balance (difference between fluids
in and fluids out (efficacy)) and blood loss and exposure to allogeneic blood products (safety). Secondary safety
outcomes were mortality and the incidence of postoperative renal dysfunction.

Results: Of 1,832 children reviewed, 1,495 were included in the analysis. Intraoperative use of HES was associated
with a less positive fluid balance. Perioperative blood loss, volume of red blood cells and fresh frozen plasma
administered, as well as the number of children who received transfusions, were also significantly lower in the HES
group. No difference was observed regarding the incidence of postoperative renal failure requiring renal
replacement therapy or of morbidity and mortality.

Conclusions: These results confirm that the use of HES for volume replacement in children during cardiac surgery
with CPB is as safe as HA. In addition, its use might be associated with less fluid accumulation. Further large studies
are needed to assess whether the reduction in fluid accumulation could have a significant impact on postoperative
morbidity and mortality.
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Introduction
Maintenance of normovolemia remains a major chal-
lenge during cardiac surgery with cardiopulmonary by-
pass (CPB). It is now accepted that both hypovolemia
and fluid overload are associated with increased morbid-
ity and mortality [1,2]. During cardiac surgery, a rela-
tively large amount of fluid is administered to optimize
cardiac output in the context of a drug-induced vaso-
dilation and to compensate for surgical blood loss [3]. In
addition, the use of acellular fluids to prime the CPB re-
sults in acute hemodilution and significantly contributes
to the positive fluid balance achieved at the end of the
surgery [4]. Management of hemodilution is particularly
challenging in the pediatric cardiac population, owing to
the higher ratio between the priming volume and the
children’s circulating blood volume [5].
Human albumin (HA) and crystalloids remain first

choices for CPB priming and volume replacement in the
perioperative period of pediatric cardiac surgery [6].
Compared with crystalloids, the administration of HA in
the CPB prime decreased the intraoperative positive bal-
ance [7]. Although HA allows for the maintenance of an
adequate oncotic pressure [8,9], its cost remains high,
which leads physicians to look for less expensive alterna-
tives. Third-generation hydroxyethyl starches (HES; for
example, tetrastarches) have been developed. They ap-
pear to have interesting pharmacokinetic properties and
are five times cheaper than HA. As a result of a quicker
achieved optimal in vivo molecular weight, 6% HES 130/
0.4 offers fluid volume expansion comparable to that of
older HES, whereas its effects on hemostasis appear to
be less marked [10]. Recently, the safety of 6% HES 130/
0.4 has been questioned in adult patients who are critic-
ally ill. In a prospective, randomized, double-blind study
including about 7,000 patients, administration of 6%
HES 130/0.4 was associated with an increased need for
renal replacement therapy compared with use of isotonic
saline [11]. In another randomized double-blind trial,
which included 804 patients with severe sepsis, the use
of balanced HES 130/0.4 was associated with increased
90-day mortality and an increased need for renal re-
placement therapy compared with Ringer’s acetate [12].
Although the results of these studies led to an intense,
and sometimes emotional, debate, they should be inter-
preted with caution, taking into account the clinical con-
text [13], and cannot be transposed to the pediatric
cardiac population.
Only a few studies have assessed the efficacy and safety

of 6% HES 130/0.4 in the pediatric population. In 2009,
6% HES 130/0.4 was compared with 4% HA for peri-
operative volume replacement therapy in one blinded,
single-center, randomized trial that included 119 chil-
dren undergoing cardiac surgery with CPB [14]. In that
study, 6% HES 130/0.4 was associated with comparable
perioperative blood loss, but with a lower intraoperative
fluid balance, compared with 4% HA. These results were
confirmed in a two-center, double-blind, prospective
study where 6% HES 130/0.4 was compared with 5% HA
in the same population (n = 61) [15]. However, neither
study was sufficiently powered to provide any firm con-
clusion regarding the safety of 6% HES 130/0.4 in this
population.
In the present large, retrospective, propensity-matched

study, we assessed the efficacy and safety of replacing
HA with 6% HES 130/0.4 for volume replacement ther-
apy in children undergoing cardiac surgery with CPB at
our department. Our hypothesis was that HES 130/0.4 is
not inferior to HA regarding our primary and secondary
objectives. The primary objective for efficacy was to as-
sess the relationship between administration of 6% HES
130/0.4 and intraoperative fluid balance, and the primary
safety objective was to assess its relationship with blood
loss and exposure to allogeneic blood products. As sec-
ondary objectives, we assessed the effect of 6% HES 130/
0.4 on the incidence of postoperative morbidity, includ-
ing the incidence of renal failure requiring renal replace-
ment therapy and mortality.

Materials and methods
After receiving approval from the Queen Fabiola Chil-
dren’s University Hospital ethics committee (CEH10/13),
we retrospectively reviewed our departmental database
that included all children who underwent cardiac sur-
gery with CPB between January 2002 and December
2010. Children in a moribund state (American Society of
Anesthesiologists (ASA) physical status V), Jehovah’s
witnesses and those with missing data were excluded.
We also excluded children younger than 1 month of age
because these patients received primarily fresh frozen
plasma (FFP) in the CPB prime and no colloid was ad-
ministered. The local ethics board waived the require-
ment for written informed consent because of the
retrospective nature of the protocol.
During the study period, children were treated by the

same team, including two experienced surgeons, three
experienced anesthesiologists and two experienced in-
tensive care unit (ICU) pediatricians. In the operating
room, the anesthetic technique remained globally un-
changed. Monitoring included pulse oximetry, five-lead
electrocardiography, non-invasive arterial pressure, ar-
terial and central venous pressures, urinary output and
cutaneous and rectal temperature probes. Intravenous
anesthesia based on midazolam, sufentanil and rocuro-
nium was preferred in all children, with the exception of
children with univentricular physiology, who underwent
a cavopulmonary connection and in whom anesthesia was
performed with propofol or sevoflurane, remifentanil and
atracurium. All children received cefazolin 25 mg∙kg−1 and
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methylprednisolone 30 mg∙kg−1 after the induction of
anesthesia. Antifibrinolytic agents were routinely used in
our department. Aprotinin was used before 2008; it was
replaced thereafter by tranexamic acid. Before aortic can-
nulation, 4 mg∙kg−1 unfractionated heparin (UFH) was ad-
ministered to reach an activated clotting time (ACT)
longer than 480 seconds. Anticoagulation level was regu-
larly checked during CPB using repeated ACT measures
(ACT II monitor; Medtronic, Kerkrade, the Netherlands),
and additional UFH boluses were given to maintain ACT
longer than 480 seconds during the whole CPB operation.
At the end of CPB, protamine was administered (dose: half
of the total UFH dose administrated during the whole
CPB procedure) to antagonize heparin activity. Adequate
reversal was controlled using the ACT II monitor compar-
ing ACT measured in cartridges with and without hepari-
nase (Medtronic).
The CPB circuit was primed primarily with 4% HA

between 2002 and 2005 and with 6% HES 130/0.4 in
0.9% sodium chloride (Voluven; Fresenius Kabi, Bad
Homburg, Germany) after this period. In addition, 20%
mannitol (1.5 ml∙kg−1), sodium bicarbonate (20 mEq∙L−1)
and UFH (50 mg∙L−1) were added to the prime. Different
models of oxygenator chosen on the basis of the child’s
body weight were used during the study period. In
addition, new miniaturized oxygenators, which require a
smaller prime volume, were progressively introduced in
our department starting in 2008.
When preparing the CPB prime, the hematocrit level

to be achieved on bypass was calculated based on the
volume of the prime and the estimated blood volume
(EBV) of the child. Packed red blood cells (RBCs) were
added in the prime when the predicted hematocrit after
cardioplegia (crystalloid cold balanced solution enriched
with potassium chloride 30 mmol∙L−1) was estimated to
fall below 20%. During CPB, body temperature was
decreased according to the length of aortic clamp dur-
ation and the complexity of the surgery. The body
temperature of all patients was rewarmed above 35.5°C
before weaning from CPB. After weaning, modified
ultrafiltration (MUF) was used to increase hematocrit of
the residual blood volume in the circuit.
For intraoperative volume replacement, including CPB

priming, the patients could receive up to 50 ml/kg/day of
either 6% HES 130/0.4 or HA. For intraoperative volume
replacement before or after the CPB, the amount of the
colloid not used for priming could be given, up to the max-
imum dosage for the individual patient, if needed. No spe-
cific algorithm for fluid administration was used. Infusion
rates were adjusted to individual needs at the discretion of
the anesthesiologist in charge of the patient, to maintain a
mean arterial pressure within the range of 50 to 85 mmHg.
If the maximum dose of 6% HES 130/0.4 was reached,
HA was used as a rescue colloid. The use of inotropes
and vasopressors was left to the discretion of the
anesthesiologist, and no specific algorithm was applied.
Our RBC transfusion policy was standardized in agree-

ment with the Department of Anesthesiology and the
Pediatric Intensive Care Unit (PICU). We adopted a re-
strictive transfusion strategy during the study period, and
this policy was maintained the same for the entire operative
period and PICU stay for every patient included in this
study. After each patient was separated from CPB, RBCs
were transfused to maintain a hematocrit level above 24%
in cases of abnormal bleeding or to increase oxygen deliv-
ery in cases of persistent lactic acidosis after optimization
of cardiac output with inotropes, vasoactive agents or both.
In case of abnormal bleeding, defined as a diffuse bleeding
in the surgical field that could not be controlled by packing
sponges and/or application of topic hemostatic agents after
adequate heparin antagonization with protamine, FFP was
administered at the dose of 15 ml∙kg−1. The same dose was
repeated in case of persistent bleeding. In addition, platelets
were administered in cases of significant blood loss associ-
ated with a platelet count less than 100 × 103/μl, as mea-
sured by using our standard laboratory tests.
Recorded data included age (months), preoperative

weight (kg), height (cm), preoperative oxygen saturation
(%), the presence of a cyanotic disease (defined as pre-
operative oxygen saturation less than 90% by pulse oxim-
etry) and ASA physical status and Risk Adjustment for
Congenital Heart Surgery (RACHS-1) score. The RACHS-
1 score was used to define the complexity of the surgical
procedure [16]. It uses six categories of surgical risk, with
a score of 1 representing the lower risk and 6 the highest.
The incidence of preoperative cardiac failure and previous
cardiac surgery with or without sternotomy was also re-
corded. Intraoperative characteristics, including duration
of surgery, CPB and aortic cross-clamp time and minimal
body temperature while on CPB were recorded. The de-
gree of hemodilution was measured in milliliters per kilo-
gram using the ratio between the CPB prime volume in
milliliters per kilogram and the child’s EBV in milliliters
per kilogram. The use of MUF and the amount of MUF in
milliliters per kilogram were also recorded. The total fluid
volume administered intraoperatively included the CPB
prime volume, the cardioplegia volume and all fluid ad-
ministered with drugs and flushes of invasive pressure
lines. The total output included blood loss, urine output
and the amount of ultrafiltration. No cell salvage device
was used during the study period. Weighting sponges and
measured surgical suction were used to determine intra-
operative blood loss, considering that irrigation volume
was measured and separated from the main surgical suc-
tion. In the postoperative period, measured chest tube
drainage was used to assess blood loss. In addition, we cal-
culated blood loss according to the following formula,
adapted a previously publication [17]:



� Hct POD3Þ þ RBCs transfused up to POD3 mlð Þ � 0:7ð Þ
Patient body weight

;
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Calculated blood loss ml:kg−1
� � ¼ ð EBV � Hct preopð Þ – EBVð

where EBV is estimated blood volume in milliliters, Hct
is hematocrit expressed in percent, POD3 is postopera-
tive day 3, 0.7 is mean hematocrit of the RBC units and
patient body weight is preoperative body weight in
kilograms.
The incidence of RBCs, FFP and platelet concentrates

transfused intraoperatively and during the first 3 postoper-
ative days was recorded. Hemoglobin level in grams per
liter, hematocrit in percent and creatinine level in milli-
grams per deciliter were systematically measured in the
immediate preoperative period and on postoperative days
1 and 3. Postoperative outcome data recorded included
the incidence of surgical reexploration for bleeding, dur-
ation of mechanical ventilation, incidence of infection,
neurological complications (for example, postoperative
apparition of a neurological deficit, coma, seizures),
renal replacement therapy and in-hospital mortality.
Statistical analysis
An independent statistician blinded to the type of colloid
used performed the whole statistical analysis. Descriptive
statistics were performed for each variable recorded in
our database.
We defined a priori 13 confounding variables to be

used in the propensity-matched analysis for children in-
cluded in the 2 groups: age, sex, preoperative weight,
height, ASA physical status, the presence of a cyanotic
disease, history of previous cardiac surgery, history of
cardiac failure, preoperative hemostatic disorder (defined
as platelet count less than 100 × 103/μl, fibrinogen level
less than 100 mg∙dl−1, prothrombin time and activated
partial thromboplastin time 1.5 times above upper limit
of normal), scheduled surgery, RACHS-1 score, EBV and
the administration of antifibrinolytic agents. We used
genetic matching, a generalization of propensity score
and Mahalanobis distance that maximizes the balance of
observed covariates between treated and control groups
[18]. The algorithm uses a genetic algorithm to optimize
balance as much as possible, given the data. The method
is nonparametric and does not depend on knowing or
estimating the propensity score. The genetic matching
attempts to minimize a measure of the maximum ob-
served discrepancy between the matched treated and
control covariates at every iteration of optimization. The
algorithm attempts to minimize the largest observed co-
variate discrepancy at every step, and this is accom-
plished by maximizing the smallest P-value at each step.
The algorithm stopped when the difference between the
last four solutions was small. We performed a one-to-
one genetic matching with replacement. Last, an abso-
lute standardized difference less than 10% was consid-
ered to support the assumption of balance between the
groups because it is not affected by the sample size, un-
like P-values, and it may be used to compare the relative
balance of variables measured in different units [19,20].
The importance of assessing the balance of baseline
covariates in the matched sample was done using
standardized differences and empirical quantile-quantile
statistics. Because matched samples are no longer inde-
pendent, bootstrap Kolmogorov–Smirnov tests and paired
t-tests were calculated [21,22]. The mean and standard
deviation obtained after matching are presented for con-
tinuous variables, and the percentage is presented for cat-
egorical variables.
After matching, we used logistic regression for binary

outcome variables and weighted least squares (WLS) for
continuous outcome variables, including the treatment
group effect, the variables used for the matching score as
covariates, hemofiltration and volume priming (excepted
for those we observed multicollinearity with the dependent
variable: hemofiltration, volume priming, ICU infection,
ICU length of stay) and the weight resulting from the gen-
etic matching. The estimators in the WLS were weighted
for one per fitted value of a first linear model. We applied a
Bonferroni correction to the results. Because a total of 19
linear and logistic regressions were performed, P <0.00263
(0.05/19) was considered statistically significant. Last, we
performed linear mixed models regression to compare evo-
lution of hemoglobin and creatinine between both groups
based on multiple imputations of missing values [23].
Statistical analyses were performed with Prism 6 for

Mac OS software (version 6.0d; GraphPad Software, La
Jolla, CA, USA) and R software version 3.0.1 (R Founda-
tion for Statistical Computing, Vienna, Austria) using
the packages ‘Matching’ and ‘rgenoud’ for the match-
propensity score subanalysis [18].
Results
Demographic data
Of the 1,832 children included in our departmental data-
base, 1,495 were included in the final analysis (Figure 1).
We excluded 83 children because relevant data were
missing, 82 because FFP was used primarily in the CPB
prime, 7 who were in a moribund state and 5 Jehovah’s
witnesses. In addition, 160 children were voluntarily ex-
cluded because they had already participated in 1 of the
2 prospective trials performed in our department, in
which we compared 6% HES 130/0.4 with HA [14,15].



Figure 1 Flowchart of the study. ASA, American Society of Anesthesiologists physical status; CPB, Cardiopulmonary bypass; FFP, Fresh frozen
plasma; HA, Human albumin; HES, Hydroxyethyl starch; RCT, Randomized controlled trial.

Table 1 Demographic characteristics of children included before and after matchinga

Before matching After matching

Variable Group HES HA group D P-value ASD HES group HA group D P-value ASD

(n = 1007) (n = 488) (nos = 1007) (nos = 322)

(nm = 1007) (nm = 1007)

Age (mo) 34.6 (44.1) 28.1 (36.6) 0.036 0.049 14.642 34.6 (44.1) 34.3 (44.4) 0.01 0.501 0.64733

Height (cm) 82.5 (28.1) 78.1 (25.1) 0.075 0.034 15.702 82.5 (28.1) 82.9 (28.3) 0.03 0.663 1.6333

Weight (kg) 11.5 (10.2) 9.7 (8.9) 0.094 0.009 17.825 11.5 (10.1) 11.4 (9.9) 0.036 0.490 0.96439

ASA physical status 3.0 (0.4) 3.2 (0.5) 0.195 <0.001 58.814 3.0 (0.4) 3.0 (0.4) 0.001 0.999 0.2368

Male sex (%) 543 (54) 288 (59) 0.057 0.036 11.447 543 (54) 182 (57) 0.026 0.092 5.1772

Cyanotic disease (%) 433 (43) 254 (52) 0.091 <0.001 18.477 433 (43) 138 (43) 0.005 0.297 1.0027

Redo surgery (%) 164 (16.3) 47 (9.6) 0.066 <0.001 18.014 164 (16.3) 52 (16.1) 0.002 0.655 0.53762

Hemostatic disorder (%) 29 (2.9) 11.2 (2.3) 0.006 0.464 3.7397 29 (2.9) 9 (2.7) 0.002 0.157 1.187

Preoperative cardiac failure (%) 192 (19.1) 96 (19.7) 0.006 0.782 1.5409 192 (19.1) 57 (17.9) 0.011 0.210 2.7794

Elective surgery (%) 996 (99) 473 (97) 0.016 0.038 15.785 996 (99) 319 (99) 0.002 0.317 1.759

RACHS-1 score 2.5 (0.8) 2.6 (0.8) 0.100 0.174 8.8267 2.5 (0.8) 2.5 (0.7) 0.065 0.366 1.9669

Antifibrinolytics (%) 967 (96) 473 (97) 0.003 0.5101 3.4356 967 (96) 309 (96) 0.001 0.083 1.4894

Estimated blood volume (ml) 865 (681) 737 (599) 0.051 0.001 18.755 865 (681) 857 (669) 0.011 0.438 1.2004
aData are expressed as mean and standard deviation or as number and percentage. ASA, American Society of Anesthesiologists; ASD, Absolute standardized
difference; D, D-statistic is the maximum difference in the empirical quantile-quantile plot, and it is sensitive to imbalance across the empirical distribution;
nm, Number of matched observations; nos, Number of observations in the original sample; RACHS, Risk Adjustment for Congenital Heart Surgery.

Van der Linden et al. Critical Care  (2015) 19:87 Page 5 of 11



Van der Linden et al. Critical Care  (2015) 19:87 Page 6 of 11
Demographic characteristics of the studied population
are reported in Table 1. Before matching, children included
in the HA group were significantly younger (P = 0.049),
had a lower preoperative body weight (P = 0.009), more fre-
quently had a cyanotic disease (P <0.001) and more often
had undergone previous surgery (P <0.001). After match-
ing, the absolute standardized differences were clearly
under 10, suggesting that we may consider the groups as
being equal on the selected covariates.
The main comparisons between the two study

groups are reported in Table 2. After adjustment for
the confounding variables, the weight of matching and
the Bonferroni correction (P-value significant if below
0.00263), CPB (P = 0.001) and surgery duration
(P = 0.001) were both significantly decreased in the
HES group. The priming volume (P <0.001) and the
degree of hemodilution (P <0.001) were also lower
in the HES group, whereas the minimal body temperature
reached on bypass was significantly lower in the HA
group.

Primary efficacy objective
A significant difference was observed for fluid adminis-
tration, with higher intake (110.6 ± 44.0 ml∙kg−1 for HA
Table 2 Comparison between groups for operative characteri
variablesa

Variables HES group

(nos = 1007)

(nm = 1007)

Surgery duration (min) 217.4 (67.8)

CPB duration (min) 110.8 (45.4)

Aortic clamping (%) 904 (89.8)

Minimum temperature during CPB (°C) 30.4 (2.9)

Priming volume (ml∙kg−1) 65.7 (34.7)

Degree of hemodilution (%)c 80.1 (36.9)

MUF (%) 921 (91.6)

MUF (ml∙kg−1) 29.9 (16.5)

Exposure to blood products (%) 639 (63.5)

Reexploration for bleeding (%) 7 (0.7)

ICU infection (%) 438 (43.6)

Neurological disorder (%) 27 (2.7)

Postoperative cardiac assistance (%) 13 (1.3)

Renal replacement therapy (%) 11 (1.1)

ICU length of stay (days) 7.5 (10.0)

Length of hospital stay (days) 19.7 (16.6)

In-hospital mortality (%) 21 (2.1)
aCPB, Cardiopulmonary bypass; HA, Human albumin; HES, Hydroxyethyl starch; ICU:
observations; nos, Number of observations in the original sample. bVariable significa
cDegree of hemodilution is presented as the mean percentage hemodilution with s
group vs. 87.0 ± 44.0 ml∙kg−1 for HES group) and output
(56.1 ± 33.6 ml∙kg−1 for HA group vs. 46.6 ± 25.6 ml∙kg−1

for HES group) in children included in the HA group
(both P <0.001) (Figure 2). However, the fluid balance
remained more positive in the HA group (54.1 ±
39.2 ml∙kg−1 vs. 41.3 ± 30.2 ml∙kg−1; P <0.001). MUF
was similarly used in both groups, such as the volume
of ultrafiltration, which was not significantly higher in
the HA group after Bonferroni correction (29.9 ±
16.5 ml∙kg−1 vs. 31.3 ± 17.6 ml∙kg−1; P <0.01).
Primary safety objective
Regarding perioperative bleeding (Figure 3), intraoperative
(48.6 ± 28.6 ml∙kg−1 for HA group vs. 35.8 ± 28.6 ml∙kg−1

for HES group), total (87.1 ± 77.2 ml∙kg−1 for HA
group vs. 70.3 ± 55.2 ml∙kg−1 for HES group) and cal-
culated blood losses (37.9 ± 26.9 ml∙kg−1 for HA group
vs. 24.7 ± 19.3 ml∙kg−1 for HES group) were signifi-
cantly lower in the HES group (P <0.001). Exposure to
any blood product intraoperatively and during the
first 3 postoperative days was significantly lower in the
HES group (Table 2), and this was essentially related
to a lower exposure to RBCs (66% vs. 83%; P <0.001).
stics and outcomes after adjustment for confounding

HA group Adjusted
P-value(nos = 322)

(nm = 1007)

227.5 (98.5) 0.082

117.6 (53.8) 0.013

303 (94.4) 0.100

28.4 (3.8) <0.001b

111.5 (54.7) <0.001b

136.4 (58.2) <0.001b

919 (91.4) 0.41

31.3 (17.6) 0.86

801 (79.5) <0.001b

6 (0.6) 0.79

445 (44.3) 0.57

37 (3.7) 0.53

20 (2.0) 0.90

14 (1.4) 0.17

7.0 (6.7) 0.41

20.1 (16.2) 0.10

7 (2.3) 0.24

intensive care unit; MUF, Modified ultrafiltration; nm, Number of matched
ntly different between the two groups after applying the Bonferroni correction.
tandard deviation in parentheses.



Figure 2 Difference in fluid balance between groups. Red bars represent the human albumin group, and blue bars represent the
hydroxyethyl starch group. Data are mean ± standard deviation. #P <0.001. IN, Total fluid volume administered intraoperatively, including
cardiopulmonary bypass prime volume, cardioplegia volume and all fluid administered with drugs and flushes of invasive pressure lines; OUT,
Total fluid output, including blood loss, urine output and amount of ultrafiltration.
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The amounts of RBCs and FFP transfused were also
significantly lower in the HES group (Figure 4). Inter-
estingly, hemoglobin levels in the preoperative and
immediate postoperative periods were not different be-
tween the two groups (Table 3).
Figure 3 Comparison of perioperative blood loss between groups. To
the blood collected in the chest tubes. Calculated blood loss was determin
(see Materials and methods section). Red bars represent the human album
Data are mean ± standard deviation. #P <0.001.
Secondary objectives
No difference was observed regarding the incidence of
postoperative complications, and the use of HES was
not associated with an increased incidence of renal
failure or requirement for renal replacement therapy
tal blood loss includes the amount of blood lost intraoperatively and
ed according to a formula adapted from a previous publication [17]
in group, and blue bars represent the hydroxyethyl starch group.



Figure 4 Difference in amount of blood products transfused between groups intraoperatively and during the first 3 postoperative
days. FFP, Fresh frozen plasma; PLT, Platelet concentrates; RBCs, Packed red blood cells. Red bars represent the human albumin group, and blue
bars represent the hydroxyethyl starch group. Data are mean ± standard deviation. #P <0.001.
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(Table 2). Preoperative creatinine level was lower in the
HES group and remained lower in the immediate post-
operative period (Table 3). No difference between groups
was found regarding the length of ICU stay, length of
hospital stay or mortality.

Discussion
In this large propensity-matched study, 6% HES 130/0.4
represented an effective and safe alternative to HA in
children undergoing cardiac surgery with CPB. These re-
sults confirm those obtained in two other prospective
trials [14,15] in which administration of HES 130/0.4
allowed for a significant reduction in fluid balance with-
out any increase in blood loss, blood product transfusion
requirement and side effects. The present study included
the largest cardiac pediatric population ever studied with
regard to HES treatment.
Regarding our primary efficacy objective, the results of

our study indicate that the use of 6% HES 130/0.4 was
associated with a significantly lower intraoperative fluid
balance. High intraoperative fluid balance has been
Table 3 Fixed-effects comparison between groups for hemog
variablesa

Groups Preoperative Postop

Hemoglobin (g∙L−1) HES 135 ± 29 109 ± 1

HA 133 ± 30 110 ± 2

Creatinine (mg∙dl−1) HES 0.35 ± 0.17 0.37 ± 0

HA 0.43 ± 0.26 0.45 ± 0
aHA, Human albumin; HES, Hydroxyethyl starch.
shown to increase ICU length of stay in adult patients
undergoing coronary artery bypass graft surgery [24]. In-
traoperative positive fluid balance could also contribute
to postoperative fluid overload, which has been shown
to significantly affect patient outcome. Hazle et al.
observed that early postoperative fluid overload after
cardiac surgery was associated with bad outcomes in in-
fants under the age of 6 months [5]. They concluded
that fluid overload or daily weight gain was well corre-
lated with the incidence of acute kidney injury, which
increases postoperative morbidity and mortality. In a re-
cent large study, Hassinger et al. confirmed that early
postoperative fluid overload preceded acute kidney in-
jury and was associated with higher morbidity in
pediatric cardiac surgery patients between 2 weeks and
18 years of age [2]. Seguin et al. reported recently that
fluid overload occurs early after cardiac surgery in chil-
dren and is associated with prolonged PICU length of
stay and ventilation [25]. In our study, the use of 6%
HES 130/0.4 might have been associated with less fluid
accumulation in the early postoperative period, as it may
lobin and creatinine after adjustment for confounding

erative day 1 Postoperative day 3 Adjusted P-value

9 105 ± 18 0.503

2 107 ± 20

.18 0.28 ± 0.17 <0.001

.30 0.41 ± 0.39
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have provided a better oncotic pressure than 4% HA, which
is slightly hypo-oncotic [26]. However, the results we report
cannot be attributed solely to the replacement of HA by
HES, as, during the studied period, CPB management was
modified to decrease the priming volume and therefore the
degree of hemodilution achieved in our pediatric popula-
tion during CPB. However, our findings are in accord with
those of two other prospective randomized studies per-
formed at our institution, in which the use of HES was as-
sociated with a reduction in the intraoperative fluid balance
while CPB management was maintained unaltered [14,15].
Regarding the primary safety objective, our results in-

dicate that the use of 6% HES 130/0.4 was associated
with a reduced exposure to RBC and FFP transfusion in
the studied population. These results do not necessarily
support a superiority of the tetrastarches to HA, because
many other factors, such as the reduction of the degree
hemodilution associated with the miniaturization of the
CPB circuitry, may have play a role in the reduction of
blood component transfusion. However, it should be
noted that both measured and calculated perioperative
blood losses were significantly lower in the HES group
than in the HA group during a period when our restrict-
ive transfusion policy was not modified. These results
are again in agreement with those of our previous pro-
spective randomized studies, in which we reported a re-
duction [14], or a trend [15] toward a reduction, in the
exposure to allogeneic blood products. They are also in
agreement with those of a recent meta-analysis [27].
Regarding our safety secondary objective, in our large

dataset, we did not find an impact on morbidity or mor-
tality with the use of HES instead of HA. Again, these
results are in accord with those of our two prospective
studies, although those trials were not sufficiently pow-
ered to assess the safety of 6% HES 130/0.4. Our results
are also in agreement with those of Sümpelmann et al.,
who performed a before-after study with the aim of
assessing the incidence of adverse reactions associated
with the use of 6% HES 130/0.42 [28]. In their study,
which included 1,130 children undergoing surgery and
exposed to 6% HES 130/0.42, they did not report any
adverse reactions and observed only non–clinically relevant
changes in metabolic parameters (plasma chloride ion con-
centration, excess base). Recent systematic reviews and
meta-analyses have confirmed that the use of 6% HES 130/
0.4 is not associated with a deleterious effect on postopera-
tive morbidity and mortality [13,27,29,30], in contrast to
what has been observed in critically ill patients [31-33].
Our results are also in line with those of another recent
study in which researchers reported a comparable effi-
cacy and safety profile between HA and HES in adult
patients undergoing cardiac surgery [34]. Although
the requirement for renal replacement therapy is usu-
ally infrequent in children undergoing cardiac surgery,
the maximal postoperative creatinine level was not in-
creased in children who received HES, and it was sig-
nificantly lower than in patients who received HA.
Although these results should be interpreted in the
context of the limitations described below, we do not
report any signal of potential harmful effect associated
with HES administration in children undergoing car-
diac surgery in the present study.
The results of our study should be interpreted with

consideration of its limitations. This study was not a ran-
domized controlled trial, and, although powerful adjust-
ment methods were used, the probability of unrecognized
confusion bias persists. We performed propensity-matched
analysis using 13 variables defined a priori as possible fac-
tors that could influence the difference between the two
study groups. Although the choice of these 13 factors could
be extensively discussed, we used the most relevant demo-
graphic and clinical parameters that could have influenced
the repartition between both study groups.
Aprotinin was withdrawn from the market after the

publication of the BART study [35]. We therefore
switched from aprotinin to tranexamic acid in 2008, and
this might have influenced our results regarding peri-
operative blood loss. However, according to a recent
meta-analysis, there is no prospective study that has dir-
ectly compared aprotinin to tranexamic acid in pediatric
cardiac surgery [36]. In a recent retrospective analysis
including more than 22,000 patients, Pasquali et al. re-
ported that, compared with aprotinin, tranexamic acid
was associated with significantly reduced mortality and
bleeding requiring surgical intervention [37]. However,
the statistical analysis used for our different outcome pa-
rameters was adjusted for the type of antifibrinolytic
agent used. We therefore believe that the switch from
aprotinin to tranexamic acid in 2008 did not significantly
influence our results.
In this study, we voluntarily avoided adjusted analysis

with the year of the surgery, because this parameter
would covary with the change from HA to 6% HES 130/
0.4, which would have biased the results of our regres-
sion analyses. Although we performed the propensity-
matched analysis on the basis of 13 relevant parameters,
we agree that the results we observed cannot be attrib-
uted solely to the different colloids administered. The
changes in our priming strategy should be considered as
part of a multimodal approach aimed at improving
blood management strategy in pediatric patients, which
includes the adoption of a restrictive transfusion policy.

Conclusions
The results of this large propensity-matched analysis
confirm those obtained in two previous prospective
randomized trials. They show that the use of 6% HES
130/0.4 for volume replacement in children undergoing
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cardiac surgery with CPB was an effective and safe alter-
native to HA. Use of 6% HES 130/0.4 was associated
with a less positive intraoperative fluid balance, which
might have an impact on early postoperative fluid over-
load. Further large studies are needed to assess whether
reduction in intraoperative fluid accumulation could
have a significant impact on postoperative morbidity and
mortality. Owing to the higher cost of HA, 6% HES 130/
0.4 can be considered as a safe and cost-effective alter-
native in pediatric cardiac surgery.

Key messages

� The use of HES for volume replacement in children
undergoing cardiac surgery with CPB appears to be
as safe as HA.

� The use of HES might be associated with less fluid
accumulation, which might have a significant impact
on postoperative morbidity and mortality.
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