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Abstract

We examined seventy million well-characterized human mutations, and their impact on G

+C-compositional dynamics, in order to understand the formation and maintenance of major

genomic nucleotide sequence patterns. Among novel mutations, those that change a strong

(S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the

opposite mutations. Such imbalance puts strong downward pressure on overall GC-content.

However, along protracted paths to fixation, S!W mutations are much less likely to propa-

gate than W!S mutations. The magnitude of relative propagation disadvantages for S!W

mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine

the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of

BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for

the S-content turnover differences between new and old mutations, and make BGC an

instrumental force for nucleotide dynamics and evolution. BGC should thus be considered

seriously in both theories and biomedical practice. In particular, BGC should be taken into

account during allele imputations, where missing SNP alleles are computationally predicted

based on the information about several neighboring alleles. Finally, we analyzed the effect

of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composi-

tion turnover. For this purpose, we examined genomic regions having extremely biased

nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/

GT-strand asymmetry). It was found that point mutations in these regions preferentially

degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of

sequence bias is highest for novel mutations, and considerably lower for older mutations

(those widespread across populations). Besides BGC, there may be additional, still unchar-

acterized molecular mechanisms that either preserve genomic regions with biased nucleo-

tide compositions from mutational degradation or fail to degrade such inhomogeneities in

specific chromosomal regions.
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Introduction

GC-composition along mammalian chromosomes is highly uneven. There are regions highly

enriched for G and C nucleotides, and other regions in which these nucleotides are strongly

under-represented. This non-randomness has an intricate genomic structure and has been

reviewed in many articles [1–3]. Regions with a particular GC-content may expand over mil-

lions of base pairs (known as isochores), or occupy only a few hundreds of base pairs and rep-

resent small islands inside regions with different GC-composition (some CpG-islands may

exemplify the latter cases)[4]. Density, exon-intron structure, and functioning of genes

strongly depend on GC-content of chromosomal region they occupy [3, 5]. Moreover, GC-

composition is critical for the frequency of DNA recombination [6] and mobility of DNA

repeats [7]. Dramatic variations of GC-content are also described in prokaryotes [8, 9] and var-

ious eukaryotic species [10, 11].

About 5% of the mammalian genome is represented by various sequences having extreme

nucleotide compositions. They include chromosomal segments with extremely AT-rich con-

tent or GC-rich content. In addition, they include DNA sequences in which one strand is

purine-rich, AC-rich, or highly periodic with alternating purine/pyrimidine sequences. We

called these profound biases in nucleotide composition Genomic Mid-Range Inhomogeneity

(or Genomic-MRI) [12, 13]. Genomic-MRI regions may form special DNA structures (e.g.,

H-DNA, Z-DNA) and they are non-randomly distributed along the genome [14]. At least

some of them have well-documented biological roles [13]. Here, we have investigated Genomic

MRI regions to quantitate the effect of mutations inside them. Mutations may decrease or

increase the nucleotide bias in these regions. For example, A!C, A!G, T!C, and T!G

mutations increase GC-composition in GC-rich sequences; G!A, G!T, C!A, and C!T

decrease the GC-composition; while A!T, T!A, G!C, and C!G are neutral to GC-rich-

ness. We examined how mutations change genomic-MRI regions.

Every human has an average of 50–100 de novo mutations, absent in the genomes of the

two parents [15]. A majority of de novo mutations occur inside non-polymorphic genomic

sites in a human population and create brand new very rare polymorphic derived alleles, so-

called singletons, which frequency is minimal. A vast majority of such novel mutations will be

washed out from the population due to genetic drift. Yet, a minor fraction of them will be

propagated from generation to generation until they completely replace ancestral counterpart

alleles. This process is stochastic, yet the average time for a neutral mutation from the arrival

to the fixation is calculated by a simple formula deduced by Kimura and Ohta [16]: G = 4Ne,

where Ne is the effective size of the population (for human European populations Ne =

10,000), and G is the average number of generations required for the fixation of novel muta-

tion [17, 18]. Assuming that G for humans is 25 years, then it takes on average about one mil-

lion years for a neutral mutation to be fixed among humans. Mutations that exist in a

population around half a million years or more we call “old”. In this paper we examine the dif-

ference in distributions between “old” mutations and “novel” mutations, which arrived a few

thousand years ago. To see dynamics of mutation aging we divided derived alleles into five

bins based on their frequencies: 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%. According

to neutral theory of evolution the propagation of neutral mutations through generations is

purely stochastic without any specific acceleration/deceleration segments on the fixation paths

[19]. Thus, at the first approximation, it requires about 200,000 years for a mutation to move

from one bin into the next one. The number of derived alleles in the first bin (0–20%) is dozens

of times more than in the next bins. There is a chance that some old mutations move backward

from top bins into the first bin. Yet, such “old” derived alleles, that stochastically appear in the

first bin again, are in minority and over-numbered dozens of times by “novel” mutations in
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the first bin. It gives us a reasonable approximation to consider rare derived alleles in the first

bin as “novel” mutations and those in the last two bins as “old” ones.

This influx of novel mutations degrades information that is stored in the DNA sequences

and, at the same time, provides an opportunity for creation of useful new genetic information.

Currently, over one hundred million human mutations have been characterized in public data-

bases [20–22]. The dynamics of mutations have been investigated for decades, via both experi-

ments and sophisticated mathematical models, yet our understanding of genome evolution is

still ambiguous [23]. Each nucleotide type (A, G, C, or T) has specific likelihoods of mutating

into another nucleotide type. Mutational preferences also depend on the context created by

neighboring nucleotides around the mutation site, and by DNA methylation [24, 25].

Together, these patterns of mutation frequencies create an intricate non-randomness in the

genome’s nucleotide composition.

As we showed in this paper, in humans novel mutations that replace G:C base pairs with A:

T pairs are a third more frequent than the opposite mutations. This effect appears more promi-

nent if we take into account that the total number of G:C base pairs is 1.38 times lower than

the number of A:T pairs. Such mutational bias should create progressively fewer G:C pairs in

genomes, from generation to generation, until they reach equilibrium at 34% GC-composition.

However, the GC-percentage of the human genome is 42% and, likely, is close to the point of

equilibrium [2]. For over twenty years, there has been a strong belief that Biased Gene Conver-

sion (BGC) is important for shaping GC-content in genomes of mammals and other eukary-

otes. The BGC theory is based on DNA repair processes inside heteroduplexes–double-

stranded DNA segments formed during meiosis at crossover and non-crossover recombina-

tion sites [6, 26–28]. One DNA strand of heteroduplexes has maternal origin, while the com-

plementary strand is paternal. The heterozygous sites in heteroduplexes create mismatches

some of which may be A:G, A:C, T:G, or T:C. Mismatch repair machinery may convert these

mismatches either to strong (S, G:C) or weak (W, A:T) base pairs. BGC theory claims that

there is a bias in mismatch repair toward converting these four kinds of mismatches into

strong base pairs. Original estimates of this bias in the mammalian genome were very weak:

50.6% (W!S) vs. 49.4% (S!W) [29]. However, in 2015 this bias in the humans was re-evalu-

ated, and dramatically increased to over twofold 68% vs. 32% [30]. Our lab also re-evaluated it

to the 56% vs. 44% ratio based on the 1000 Genomes public dataset [31]. However, the known

quantitative traits and parameters for BGC are unable to explain phenomenon of preservation

of GC-composition from degradation by novel mutations. In this paper we re-evaluated the

BGC characteristics and outcome to make it consistent with observed genomic GC-

composition.

Results

Characterization of novel and “old” mutations

The 1000 Genomes Project provides the information about ancestral/mutant status of alleles

for a majority of SNPs [22]. From this database we used only those SNPs for which ancestral/

mutant alleles were determined with the highest certainty. All SNPs with validated ancestral/

mutant status were divided into five bins based on the mean frequency of mutant alleles across

continents (averaged frequency within 26 populations from 1000 Genomes). Bins were the fol-

lowing: 0–20% frequency of mutant alleles; 20–40%; 40–60%; 60–80%; and 80–100%. The

numbers of SNPs inside these five bins are highly uneven since the distribution of number of

SNPs by their mutant allele frequency in populations is exponential (see Extended Data Fig 3

Auton et al. [22]). More than half of all known SNPs have rare mutant alleles, where frequen-

cies are<1%. Therefore, the first bin (0–20%) contains 40 times more SNPs than the next bin
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and about 100 times more SNPs than the fourth bin (See Table 1). Moreover, the vast majority

of SNPs in the first (0–20%) bin have rare mutant alleles. It gives us justification for consider-

ing mutant alleles from the first bin as being “novel”, to a good approximation.

G:C vs A:T mutational dynamics in the entire genome. Table 1 presents the observed

numbers of all types of point mutations, having validated ancestral/mutant status, throughout

the entire human genome. The bottom two rows of this table show the aggregate numbers of

all kinds of mutations that change strong base pairs into weak ones, and vice versa. As

explained in the Methods section, misidentification errors for the ancestral/mutant allele status

are predominantly concentrated inside 80–100% bin. For this reason, we excluded the data for

this last bin from all tables except rows 1–12 in Table 1. Instead, in our figures we projected

the observed trends from the first four bins into the fifth one to get an idea what should may

be expected inside the last (80–100%) bin. For novel mutations (first bin 0–20%), the preva-

lence of G:C!A:T over A:T!G:C is the strongest. In this bin the ratio for aggregate number

of S!W mutations over W!S is R(GC!AT)/(AT!GC) = 1.39. Novel mutations that convert

S!W are more often than W!S mutations despite number of G:C pairs is 1.38 times less

abundant than A:T pairs in the human genome. After normalization for equal numbers of G:C

and A:T pairs, the exchange S<–>W ratio for novel mutations per base pair becomes

N(GC!AT)/(AT!GC) = 1.92. The normalization means that if we consider the same numbers of S

and W base pairs, then mutations S!W will be 1.92 times more often than W!S ones in

these observed nucleotide sites. This normalization will allow us to compare the results in

chromosomal regions with different nucleotide compositions (see next paragraphs). Table 1

and Fig 1 demonstrate that the prevalence of G:C!A:T over A:T!G:C mutations monoto-

nously declines in each consecutive bin, with the increase of mutant allele frequencies, reach-

ing R(GC!AT)/(AT!GC) = 1.10 value for the fourth (60–80%) bin.

If we project this monotonous trend into the last fifth bin (80–100%), then the prevalence

of G:C!A:T mutations practically reaches the equilibrium stage R(GC!AT)/(AT!GC)ffi1.0 at

which the number of A:T!G:C become practically equal to G:C!A:T for the entire human

Table 1. Number of different types of point mutations in the whole human genome.

Ancestral Derived Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

allele allele 0–20% 20–40% 40–60% 60–80% 80–100%

A C 2,405,968 57,140 35,497 26,240 49,029

A G 9,075,719 213,833 135,079 102,057 362,250

A T 2,264,273 52,006 31,657 22,897 44,943

C A 3,128,072 66,896 39,210 27,789 47,531

C G 2,875,987 63,504 37,618 26,810 45,204

C T 12,795,576 278,973 163,028 113,000 218,117

G A 12,858,986 279,579 163,179 113,212 218,908

G C 2,847,258 63,783 37,994 27,143 47,102

G T 3,090,046 65,309 38,970 27,348 46,520

T A 2,273,976 52,234 31,856 22,918 44,971

T C 9,038,949 214,179 134,081 101,441 357,926

T G 2,395,689 56,219 34,686 25,722 47,088

W S 22,916,325 541,371 339,343 255,460 -

S W 31,872,680 690,757 404,387 281,349 -

ratio: (S->W)/(W->S) 1.391 1.276 1.192 1.101 -

SD for (S->W)/(W->S) 0.0002 0.002 0.003 0.003 -

Mutations are distributed among five bins based on the frequency of their mutant (derived) allele.

https://doi.org/10.1371/journal.pone.0232167.t001
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genome (Fig 1). This implies that the human genome GC-composition at present is frozen, at

the current equilibrium of 42% GC.

We also excluded from consideration SNPs inside the most mutable dinucleotides, CpG

sites, in order to evaluate their contribution on the observed phenomenon. CpG is the pre-

ferred site for mammalian DNA methylation, spontaneous deamination of 5-methylC leads to

T, yielding a high rate of CpG!TpG (or CpA) substitutions. We found that C5me!T muta-

tions at CpG sites do not noticeably influence on the elevated rate of S!W over W!S for

novel mutations and also the equilibrium between A:T!G:C and G:C!AT for “old” muta-

tions (results are in S1 Table).

For better understanding mutational dynamics, we also analyzed mutations inside all DNA

repetitive elements that occupy 40% of the human genome. These data are presented in the S2

Table. Inside DNA repeats the selection forces may not exist or at least be considerably smaller

than in the coding or regulatory regions. Inside DNA repeats (S2 Table) we observed very sim-

ilar trend for S<-> W dynamics as in the whole genome (Table 1).

We investigated whether significantly different proportions R(S!W)/(W!S) for novel and

“old” mutations may be explained by Biased Gene Conversion (BGC) theory. According to a

Duret and Galtier, BGC theory expects drastically different effect of conversions G:C!A:T

and A:T!G:C in chromosomal regions with different GC-compositions [32]. The following

paragraphs (and Tables 2–5) explore the G:C<–>A:T mutational changes in genomic regions

with various biased nucleotide compositions in order to examine whether BGC is responsible

for the observed phenomenon.

Mutational dynamics in GC-rich and AT-rich regions. Table 2 indicates that inside the

most GC-rich genomic fragments the frequency of novel mutations (first bin) also favor G:C!A:

T over AT!GC changes, with about the same normalized ratio per site (N(GC!AT)/(AT!GC) =

2.10) as for the whole genome. [Note that the R(GC!AT)/(AT!GC) = 6.56 is extremely high due to

three times overabundance of G+C over A+T nucleotides.]

Fig 1. Normalized ratio of GC-content decrease (N) in the whole genome caused by mutations with various

frequencies across populations. The N-ratio is the proportion between number of mutations that change S->W and

number of W->S mutations normalized for the equal number of S and W sites. The projected N-value for the fifth bin

(80–100%) is shown in red, which does not have experimental support. Bars show standard error of the means, which

is due to the limited sample size (see Methods section).

https://doi.org/10.1371/journal.pone.0232167.g001
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This ratio also rapidly and monotonously decreases for the “older” mutant alleles (Fig 2). In

the fourth bin with “old” mutations (60–80% of mutant allele frequencies) the normalized

ratio per site becomes N(GC!AT)/(AT!GC) = 1.04 (the R(GC!AT)/(AT!GC) = 3.26 for this bin),

which is in a good agreement with BGC theory. Fig 2 demonstrates that the projected ratio for

the nearly-fixed mutations (80–100%) becomes less than one: N(GC!AT)/(AT!GC)ffi0.7 (the

R(GC!AT)/(AT!GC)ffi2.1).

Table 2. Number of different types of point mutations in GC-rich regions (76% GC-content).

Ancestral Derived Bin 1 Bin 2 Bin 3 Bin 4

allele allele 0–20% 20–40% 40–60% 60–80%

A C 2,405,968 57,140 35,497 26,240

A G 9,075,719 213,833 135,079 102,057

A T 2,264,273 52,006 31,657 22,897

C A 3,128,072 66,896 39,210 27,789

C G 2,875,987 63,504 37,618 26,810

C T 12,795,576 278,973 163,028 113,000

G A 12,858,986 279,579 163,179 113,212

G C 2,847,258 63,783 37,994 27,143

G T 3,090,046 65,309 38,970 27,348

T A 2,273,976 52,234 31,856 22,918

T C 9,038,949 214,179 134,081 101,441

T G 2,395,689 56,219 34,686 25,722

W S 22,916,325 541,371 339,343 255,460

S W 31,872,680 690,757 404,387 281,349

ratio: (S->W)/(W->S) 1.391 1.276 1.192 1.101
SD for (S->W)/(W->S) 0.0002 0.002 0.003 0.003

https://doi.org/10.1371/journal.pone.0232167.t002

Table 3. Number of different types of point mutations in AT-rich regions (87% AT-content).

Ancestral Derived Bin 1 Bin 2 Bin 3 Bin 4

allele allele 0–20% 20–40% 40–60% 60–80%

A C 2,453 99 65 37

A G 8,928 345 214 133

A T 3,999 178 105 89

C A 985 50 20 23

C G 816 23 18 15

C T 2,920 105 63 50

G A 3,001 118 70 55

G C 668 23 17 10

G T 1,140 36 24 27

T A 3,946 178 106 76

T C 9,048 333 220 171

T G 2,483 112 61 52

W S 22,912 889 560 393

S W 8,046 309 177 155

ratio: (S->W)/(W->S) 0.35 0.35 0.32 0.39
SD for (S->W)/(W->S) 0.005 0.02 0.03 0.04

https://doi.org/10.1371/journal.pone.0232167.t003

PLOS ONE Intensive GC-content deterioration in the human genome by novel mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0232167 April 30, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0232167.t002
https://doi.org/10.1371/journal.pone.0232167.t003
https://doi.org/10.1371/journal.pone.0232167


Table 4. Number of different types of point mutations in R-rich DNA strands (86% R-content).

Ancestral Derived Bin 1 Bin 2 Bin 3 Bin 4

allele allele 0–20% 20–40% 40–60% 60–80%

A C 6,866 221 120 99

A G 27,909 1,094 710 482

A T 4,794 100 79 48

C A 2,578 91 40 46

C G 2,175 88 40 33

C T 9,627 244 165 99

G A 37,543 1,139 744 495

G C 10,000 271 180 110

G T 8,663 197 119 90

T A 1,675 63 61 27

T C 6,130 152 111 85

T G 1,856 56 41 31

W S 42,761 1,523 982 697

S W 58,411 1,671 1,068 730

R Y 30,323 789 498 347

Y R 8,284 298 182 137

ratio: (S->W)/(W->S) 1.37 1.10 1.09 1.05
ratio: (R->Y)/(Y->R) 3.66 2.65 2.74 2.53
SD for (S->W)/(W->S) 0.01 0.04 0.05 0.06
SD for (R->Y)/(Y->R) 0.04 0.2 0.2 0.3

https://doi.org/10.1371/journal.pone.0232167.t004

Table 5. Number of different types of point mutations in AC-rich regions (81% A+C-content).

Ancestral Derived Bin 1 Bin 2 Bin 3 Bin 4

allele allele 0–20% 20–40% 40–60% 60–80%

A C 3,647 195 114 79

A G 6,197 200 151 85

A T 1,594 56 32 23

C A 3,583 145 119 91

C G 2,642 88 53 36

C T 10,976 271 177 132

G A 4,106 132 68 55

G C 810 27 34 21

G T 664 11 10 7

T A 698 36 28 16

T C 2,442 130 106 66

T G 524 21 8 6

W S 12,810 546 379 236

S W 19,329 559 374 285

A or C G or T 21,409 615 413 276

G or T A or C 8,056 325 236 158

ratio: (S->W)/(W->S) 1.51 1.02 0.99 1.21
ratio: (AC->GT)/(GT->AC) 2.66 1.89 1.75 1.75

SD for (S->W)/(W->S) 0.02 0.06 0.07 0.11
SD for (AC->GT)/(GT->AC) 0.03 0.1 0.1 0.2

https://doi.org/10.1371/journal.pone.0232167.t005
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However, since we are considering extremely GC-rich sequences, this ratio for near-fixa-

tion stage (N = 0.7) is not enough to prevent 75% GC-richness from mutational degradation

(observe that R is still 2.1); it only slows down the CG-degradation about three-fold.

Table 3 shows that novel mutations within AT-rich regions also strongly favor converting

G:C into A:T pairs. For the first bin, the normalized mutation rate per site in AT-rich regions

is N(GC!AT)/(AT!GC) = 2.35 (the R(GC!AT)/(AT!GC) = 0.35 due to seven-fold overabundance of

A+T nucleotides over G+C). However, this ratio stays about the same for all bins with different

mutant allele frequencies (see Fig 3). For example, for the fourth bin (60–80%) the N(GC!AT)/

(AT!GC) = 2.64 and R(GC!AT)/(AT!GC) = 0.39. Such essentially unchanged N-ratio may not

contradict BGC, if there are practically no meiotic recombinations inside AT-rich regions

including non-crossover cases. The data in Table 3 for AT-rich regions shows that mutations

constantly degrade AT-richness by increasing their GC-content. In this process there is no dif-

ference between novel and “old” mutations.

Mutational dynamics in purine-rich regions. In humans and other species there are dis-

tinct genomic regions in which one of the DNA strands is highly purine (R)-rich, while the

complementary strand is of course pyrimidine (Y)-rich. We examined mutational dynamics in

purine-rich DNA strands, half of which are on the reference DNA (plus) strand, while another

half are on the complementary (minus) strand of the human genome (Table 4). In addition to

S<->W dynamics, we analyzed frequencies of mutations that change R to Y and vice versa in

these R-rich DNA strands. Novel mutations in R-rich regions (Table 4) are in favor of convert-

ing S into W base pairs R(GC!AT)/(AT!GC) = 1.37 (since GC% in these regions is 50%, then R =
N). For “older” mutations (Bins 2–4) the R-ratio is 30% less, which is statistically significant

(see Table 4). This table illustrates that nucleotide neighboring content may influence on the

dynamics of mutation appearance and propagation. For example, A->C type of mutation is

about 40% more frequent than A->T type in Table 4.

Table 4 and Fig 4 show that novel mutations (first bin) most strongly degrade the non-

randomness of nucleotide composition of R-rich regions, driving down their purine levels

Fig 2. Normalized ratio of GC-content decrease (N) in the GC-rich regions caused by mutations with various

frequencies across populations. The N-ratio is the proportion between number of mutations that change S->W and

number of W->S mutations normalized for the equal number of S and W sites. The projected N-value for the fifth bin

(80–100%) is shown in red, which does not have experimental support. Bars show standard error of the means, which

is due to the limited sample size (see Methods section).

https://doi.org/10.1371/journal.pone.0232167.g002
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toward average expectancies (the ratio of purine degradation is R(R!Y)/(Y!R) = 3.7 in the first

bin).

The “older” mutations have noticeably less effect on degradation of R-richness (R(R!Y)/

(Y!R) = 2.5 in the fourth bin). For the mutations at the nearly-fixation stage (projected fifth

bin (80–100%)), the degradation of R-richness is about 28% smaller than for novel mutations

(Fig 4). BGC theory cannot explain why novel mutations degrade R-richness more actively

than “old” mutations inside purine-rich regions.

Fig 3. Normalized ratio of GC-content decrease (N) in the AT-rich regions caused by mutations with various

frequencies across populations. The N-ratio is the proportion between number of mutations that change S->W and

number of W->S mutations normalized for the equal number of S and W sites. The projected N-value for the fifth bin

(80–100%) is shown in red, which does not have experimental support. Bars show standard error of the means, which

is due to the limited sample size (see Methods section).

https://doi.org/10.1371/journal.pone.0232167.g003

Fig 4. Ratio of purine-content decrease (R) in the purine-rich regions caused by mutations with various

frequencies across populations. The R-ratio is the proportion between total number of mutations that change R->Y

vs. Y->R mutations. The projected R-value for the fifth bin (80–100%) is shown in red, which does not have

experimental support. Bars show standard error of the means, which is due to the limited sample size (see Methods

section).

https://doi.org/10.1371/journal.pone.0232167.g004
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Mutational dynamics in AC-rich regions

The mutation dynamics of novel and “old” alleles was studied for the least explored AC-rich

regions–those chromosomal segments one DNA strand of which is predominantly composed

by C and A nucleotides (the complementary strand is of cause TG-rich). These genomic

regions have also distinctive DNA properties and their biological functions are only vaguely

understood [13]. Table 5 shows that the frequency of various types of transitions and transver-

sions inside AC-rich DNA strands may differ up to 2-3-fold from the average frequencies of

these mutations over the entire genome (Table 1). For example, A!C is 2.3 times more fre-

quent than A!T type of transversions in Table 5. This means that nucleotide context and

DNA structure inside these regions critically influence mutation dynamics. Similar to R-rich

regions, we observed that mutations on their path to fixation efforts to prevent the AC-rich

DNA strands from degradation of their biased nucleotide compositions (about 30% difference

between novel and nearly-fixed mutations). The ratio of AC-degradation is R(AC!GT)/(GT!AC)

= 2.6 in the first bin and 1.6 in the fourth bin, see Fig 5.

Discussion

Extensive loss of G:C pairs in human genome via novel mutations

The normalized mutation ratio N(S!W)/(W!S) = 1.92 per site for the whole genome allows us

to calculate the number of G:C pairs lost by brand new de novo mutations per individual. Let’s

assume for simplicity that, on average, a human being has 100 de novo mutations [15]. About

16% of these mutations should be transversions (G!C; C!G; A!T; and T!A) that do not

switch W and S base pairs, while the remaining eight types of substitutions, comprising 84

mutations, do switch between S and W base pairs (Table 1) [33]. Taking into consideration

that N = 1.92 and global GC-content is 42% then, among these 84 de novo mutations, 49

change strong base pair into weak one (G:C!A:T), while 35 have the reverse effect: A:T!G:

Fig 5. Ratio of CA-content decrease (R) in the AC-rich regions caused by mutations with various frequencies

across populations. The R-ratio is the proportion between total number of mutations that change (A+C)->(T+G) vs.

(T+G)->(A+C) mutations. The projected R-value for the fifth bin (80–100%) is shown in red, which does not have

experimental support. Bars show standard error of the means, which is due to the limited sample size (see Methods

section).

https://doi.org/10.1371/journal.pone.0232167.g005
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C. Hence, on average, the net effect of de novo mutations is that in each person 14 G:C pairs

are converted into A:T pairs. Even if we take into consideration the lowest estimation for the

amount of de novo mutations per individual (~50 mutations), then they still cause the notice-

able overall conversion of seven G:C pairs into A:T pairs per individual. In both scenarios, the

ratio N = 1.92 drives the genomic GC-percentage to 34.2% equilibrium (calculated using the

proportions). However, Table 1 and Fig 1 testify that G:C!A:T mutations have disadvantages

and/or A:T!G:C have advantages on their paths to fixation since the ratio (S->W)/(W->S)

monotonously declines with increasing derived allele frequency. This effect completely stops

the loss of G:C pairs at the stage of their fixation in the human genome. Therefore, at the cur-

rent stage of evolution, there is a stable equilibrium of GC-content at 42%. Below we consider

whether BGC theory is responsible for preservation of GC-content in humans.

Effect of BGC on preservation of GC-content in humans

Let’s consider the average bias in BGC mismatch reparation (S!W)/(W!S) = 56:44, as evalu-

ated by Dutta et al. This bias causes only one A:T base pair to be converted into G:C pair per

gamete, according to the authors’ calculations [31]. This single W!S replacement is not

enough to withstand the loss of 7–14 G:C pairs by novel mutations per individual. Even the

highest estimated bias in BGC mismatch reparation of 68:32, calculated by Williams and oth-

ers, would increase content by only 3 G:C base pairs per gamete, which is insufficient for pres-

ervation of genomic GC-content [30].

The impact of BGC on the increase of G:C content is proportional not only to the mis-

match repair bias (W!S over S!W), but also to the total length of heteroduplexes formed

during meiosis. In our calculations [31] we used the literature data for non-crossover hetero-

duplex average length of 75 nucleotides, which is considerably less than 1200 nucleotides for

crossover heteroduplexes [34, 35]. Yet the non-crossover heteroduplexes twenty times out-

number the crossover ones, so their impacts are about the same [36, 37]. The problem here is

that there are only a few experimental estimations of non-crossover heteroduplex lengths.

These estimations are technically intricate, indirect, and imprecise. It is plausible to assume

that non-crossover heteroduplex length in humans might be several times longer than 75

nucleotides. This conjecture would make BGC sufficient to convert 7–14 weak base-pairs into

strong ones, which is the rate required to prevent loss of strong base-pairs by de novo muta-

tions. Since weak to strong base pair replacements is only a fraction of all allele replacements

caused by BGC, we conclude that, in total, BGC causes about 20–40 allele replacements per

individual.

All in all, initially being skeptical to BGC capabilities, we acknowledge that reasonable re-

evaluation of the biological parameters of this theory may make it strong enough to withstand

bias in novel mutations and preserve the current equilibrium of GC-content in the entire

human genome. It would also suggest length ranges for non-crossover heteroduplexes in

humans.

In addition to recognized BGC evolutionary forces, there may be additional, still uncharac-

terized, molecular mechanisms that preserve genomic regions with biased nucleotide composi-

tions (e.g. purine-rich or AC-rich) from evolutionarily mutational degradation.

Natural selection

Natural selection is a well-established biological phenomoenon, that may be involved in pres-

ervation of particular nucleotides in the genome during evolution. Mathematical theories of

population genetics, that try to describe natural selection, have been elaborated since the

beginning of twentieth century. However, these theories include massive simplifications that
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consider discrete mutations one at a time, and do not address the dynamics of millions of

mutations that co-exist simultaneously in each individual genome. For example, in a recent

review McCandlish and Stoltzfus wrote: “Even short-term models of population genetics often
depend on radical simplifying assumptions such as neutrality, complete linkage (or full recombi-
nation), the absence of epistasis (fitness interactions), and so on” [23]. Therefore, population

genetics currently is unable to give us an accurate answer to how effective selection forces may

be in withstanding deterioration of GC-composition by novel mutations in humans, when

every individual has at least four million mutant alleles. Taking into account that each human

individual has, on average, deleterious mutations in more than 20 genes [“a typical genome
contained 149–182 sites with protein truncating variants” [22]], natural selection should be act-

ing primarily on deleterious mutations that change proteins and, thus, reduce fitness [38, 39].

Computational modeling of genome evolution is another scientific tool that may help

understanding the dynamics of numerous mutations. Currently, powerful supercomputers are

capable to mimic the evolution of the entire genome dealing with millions of mutations. Our

experiments with whole-genome computational modeling [40] showed evidence that an

intense influx of de novo mutations causes the population fitness to decline. In other words, it

is impossible to remove 10–20 unfavorable novel mutations per individual, even having opti-

mal selection conditions. All in all, BGS with re-evaluated parameters looks to us to be the

major plausible process responsible for the observed dramatic turnover of GC-composition.

Maintenance of regions with extreme biased nucleotide compositions

during evolution

Here we presented evidence suggesting that dynamics of SNP turnover may not prevent dete-

rioration of extremely-biased nucleotide regions (GC-, AT-, R-, and AC-rich). Therefore, how

have these regions been formed and maintained in mammalian genomes and those of other

classes? The answer is very likely that all these genomic sequences with extremely-biased

nucleotide compositions are composed up to 50% of simple repeats ([41] Table 3, p. 22). There

are special evolutionary processes that occur within repetitive DNA sequences besides point

mutations. Specifically, these are concerted evolution of tandem repeats and active insertion/

deletion processes that elongate and shorten number of units of tandem DNA repeats. We

assumed that the dynamics of simple repeats is responsible for maintenance of these genomic

regions with biased nucleotide compositions [41].

Materials and methods

The reference genome sequence GRch37 was downloaded from the UCSC genome browser

from its ftp site (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/) in fa.gz for-

mat and the allele frequency data from the 1000 Genomes Project phase 3 using the link ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 in Variant Call Format (VCF) [22].

Ancestral allele information for the whole genome was obtained from the column 8 of the

1000 Genomes VCF file. These are represented as “AA =“ field in this column. Only high con-

fidence ancestral alleles were considered which are represented by uppercase letters. Derived

alleles were inferred based on the ancestral allele information. Only bi-allele SNPs with “PASS”

flag were considered for further analysis. If the derived allele happens to be the alternative

allele, then the frequency obtained from the “AF =“ field was considered as a derive allele fre-

quency; else it was obtained by subtracting alternative allele frequency from 1. The number of

derived alleles was calculated corresponding to the bins of range of frequencies using our new

Perl program wg_analysis. The ratios of GC-content decrease (R- and N-ratios) were calcu-

lated by the same program.
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The human genome sequence was then computationally processed in order to characterize

genomic-MRI regions (chromosomal sequences with uneven nucleotide compositions, which

our lab studied for 15 years). We have generated a number of programs for studying these

sequences and have good expertise on MRI sequences distribution and evolution [12, 14, 42].

For these reasons we specifically chose genomic-MRI regions for examination of nucleotide

context effect on mutational dynamics. At first, the nucleotide composition was calculated for

the 100-nucleotide sliding window, which is our default parameter for all types of genomic

MRI fragments [42]. The thresholds for genomic-MRI regions were chosen based on our pre-

vious projects for consistency and were the following: 76% of G+C nucleotides in the window

for CG-rich regions, 87% for A+T rich, 81% for CA rich; and 86% for the purine rich regions

[12, 14]. These thresholds differ from each other because AT-composition is 1.38 times greater

than GC-composition in the human genome and because various genomic-MRI regions have

significantly different abundancies. These thresholds are consistent with our previous publica-

tions. The CA-rich and AG-rich regions were computed for single stranded DNA on the refer-

ence strand first and then on the complementary strand. When the segment of DNA inside the

current window was characterized as genomic-MRI region, the window was extended in a

cycle by 10 nucleotides until the overall composition began to fall below the assigned thresh-

old. All the regions, their lengths, and nucleotide contents were calculated using our new Perl

program regions.pl.
The derived allele frequencies in genomic-MRI regions were calculated using a method

similar to what was used for the whole genome. Then, the ratio of decrease of the nucleotide

inhomogeneity (R-ratio) or ratio of GC-content decrease of these regions was calculated. This

was performed using mri_analysis.pl program.

All computations were performed using Perl programs in a Linux workstation. The codes

are available from our web page http://bpg.utoledo.edu/~afedorov/lab/prog.html.

The projected R- and N- values for the fifth bin (80–100% for mutant allele frequencies)

were obtained using the trendline option in MS excel. The values were projected using linear

(GC-rich, AT-rich) and logarithmic (AC-rich and purine rich) regression models. The best

was chosen based on optimal R-square value.

The standard errors for the ‘AT! GC’ and ‘GC! AT’ events due to the limited numbers

of observed cases (N value, see below) were calculated with the formula using the Rule of Sam-

ple Proportions:

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

N

r

where N is total number of gene conversion events (AT!GC and GC! AT), p is the propor-

tion of AT! GC events and (1 –p) is the proportion of GC! AT events. These standard

errors were used for calculation of uncertainty of R-Ratio values according to the formulas

from [43] as described previously [12, 41]. Specifically, the propagation of uncertainty for a

ratio f = A/B was calculated using the formula (σf/f)2 = (σA/A)2 + (σB/B)2–2(σA�σB)/(A�B)�

ρAB, where ρAB is the correlation coefficient for A and B variables which we assumed was

negligible.

Problems with ancestral/mutant alleles misidentification

The classification of SNP alleles as being ancestral or mutant is about 99% accurate. However,

even 1% of errors in identification of ancestral/mutant status leads to a dramatic anomaly. Spe-

cifically, all SNPs with rare mutant alleles, for which ancestral/mutant status has been misiden-

tified, are automatically interpreted as being “old” nearly-fixed SNPs and, thus, are allocated to
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the last bin (80–100% mutant allele frequency). This effect creates a strong distortion of data

inside the last bin, due to the highest proportion of misidentified mutant/ancestral alleles

being inside it. Because of this misidentification problem the dynamics of SNPs in the last bin

contradicts several laws of population genetics. For example, the number of SNPs in this last

bin should be lower than in any other bin. Instead, it is twice as large as the SNP number in the

neighboring 60–80% bin (see Table 1). Due to these misidentification errors, predominantly

concentrated inside 80–100% bin, we excluded the data for this last bin from all tables except

rows 1–12 in Table 1. Instead, in our figures we projected the observed trends from the first

four bins into the fifth one to get an idea what may be expected inside the last (80–100%) bin

for mutations that are very close to fixation stage. Since extrapolated data for bin 5 do not have

any experimental support, they must be treated with caution and, for this reason, they are

marked by red color in the Figs 1–5.
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