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Abstract

Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping,
which involves micro-malting experiments. Although there is abundant historical information available for different cultivars
in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit
historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-
wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European
spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested
with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal
components scores obtained from marker information. We detected 140 marker-trait associations. Some of these
associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other
associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to
the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when
designing strategies for multiple trait improvements.
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Introduction

Barley (Hordeum vulgare L.) is a major cereal crop in Europe. It

ranks fourth in worldwide production, after wheat, rice, and

maize. It is grown for feed, food, and malting. Most of the malt

produced is used for brewing beer and, to a lesser extent, for

distilling (e.g., whiskey). In Europe, two-rowed spring cultivars are

used mainly for malting and brewing; six-rowed winter barleys are

predominantly used for food. However, six-rowed barley has been

increasingly used for malting in Europe, following the trend started

in the US. Therefore, depending on the end-use, there are two

primary aims in breeding barley: 1) superior food and feed quality

with high protein content, and 2) high malting quality with high

starch and low protein contents. Improving the malting quality is a

central goal in breeding, in addition to improving the yield of

barley. Malting quality is a complex trait, because it consists of

several components, and all are polygenic. Moreover, the

definition of high malting quality is not straightforward; it depends

on the processing and brewing methods. In general, the main

breeding goals for malting barley are high malting extract, low

protein content, good solubility properties, good kernel formation,

and low glume content.

For the past 80 years, to optimize the malting traits in barley,

breeders mainly focused on a narrow gene pool of spring barley

types [1]; the most important quality parameters to optimize were

the amounts of soluble protein, extract, raw protein, and friability.

Further improvements in malting quality must rely on new

combinations of genes and germplasms. Molecular marker-assisted

selection (MAS) schemes have been applied to developing barley

varieties with improved malting quality traits. Those studies have

identified many quantitative trait loci (QTL) in barley [2–4]. MAS

strategies have facilitated gene pyramiding techniques to acquire

advantageous alleles from different loci. With MAS, the breeding

efficiency can be improved by eliminating undesired genotypes at

early stages, which can reduce time and costs [4–7]. The genome-

wide association approach provides a good basis for selection

strategies in any breeding program.

The identification of barley genomic regions that influence yield

and malting properties will increase our understanding of the

genetics and promote the development of cultivars with improved

kernel and malting quality. The genetic and biochemical bases of

malting quality in barley have been addressed previously [2,8,9].

However, quantification of malting quality parameters requires

elaborate, expensive phenotypic analyses.
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Typically, the high cost of assessing malting quality in barley

lines is due to expensive equipment, laboratory facilities, and

experienced personnel. Moreover, assessing malting and brewing

quality requires substantial amounts of grain (100–1,000 g), which

is often not feasible in the early generations of a breeding cycle. In

addition, some malting quality parameters can only be determined

in time-consuming, wet lab analyses. These limitations may be

overcome with the use of historical phenotypic data recorded in

statistical year books, like those from the Deutsche Braugersten-

gemeinschaft or the European Brewery Association. These

resources may provide a cost-effective approach. The complex

dataset considered in the present study may serve as a valid

resource for breeding barley varieties with high malting quality.

In addition, the identification of marker-trait associations

(MTAs) may represent a cost effective strategy for selecting traits

that are typically expensive to identify in MAS schemes [2,3,10].

Molecular markers and QTLs have been described for numerous

traits in barley, and major genes have been detected in segregating

populations derived from biparental crosses [3,10–14]. The use of

genome-wide association mapping for QTL detection has

attracted interest in agricultural settings, due to the recent

availability of high-throughput genotyping technology and the

development of new statistics methodologies [15–17].

Association mapping, also known as linkage disequilibrium (LD)

mapping, represents an interesting alternative to traditional

linkage analysis. It provides the advantages of (i) wider genomic

diversity than provided by biparental segregating populations, (ii)

high mapping resolution, by exploiting historical recombinations

in the population, and (iii) rapid results, because it is not necessary

to create a segregating population [18,19]. In combination with

high-density genotyping, association mapping can resolve complex

trait variation down to the sequence level by incorporating

historical recombination events that occurred at the population

level [20,21].

Two association mapping methodologies are widely used in

plants. The first is a candidate gene approach, which relates

polymorphisms in candidate genes to phenotypic variations in

traits. The second approach is a genome-wide association study

(GWAS), which relates polymorphisms of anonymous markers to

trait variations [16,22]. Candidate gene studies are widely

conducted in crop plant species, including barley and maize.

Those studies aim to detect functional markers that directly impact

the trait of interest [23–27]. The GWAS approach has recently

benefitted from the advent of cost-effective high throughput

marker technology, like Diversity Array Technology (DArT) [28]

and Illumina Bead Chips or Bead arrays [29,30]. High marker

coverage is required for conducting a GWAS, but the potential of

this approach has been demonstrated in barley [15,22,30–35].

DArT markers are bi-allelic, dominant markers. A single DArT

assay can genotype thousands of SNPs and insertions/deletions

across the genome simultaneously. Barley was one of the first plant

species for which DArT markers became available [36–38]. The

integrated barley consensus map now contains 3,542 markers,

including DArT markers. This map has been used to locate

meaningful associations [39]. The first examples of applying DArT

marker technology to Hordeum included a GWAS conducted to

detect yield-associated genes [40] and a QTL mapping study

conducted to identify net blotch resistance in a segregating

population [41]. Other examples included the study of linkage

disequilibrium (LD) and population structures in association

studies that aimed to identify powdery mildew and yield

components in barley [42–45]. Another study associated DArT

markers with malting quality characteristics from two row

Canadian barley lines [46]. In another GWAS, 138 wild barley

accessions were genotyped with DArT markers and SNP markers

from the Illumina Golden Gate Assay to detect genomic regions

associated with spot blotch resistance [47].

An important issue in GWAS is that the population structure

which arises from heterogeneous genetic relatedness between

entries in the association panel can cause high LDs between

unlinked loci [48]. When LDs between markers and traits occur as

a consequence of the population structure, they are called false

positives or spurious associations. Therefore, a statistical model

must account for genetic relatedness, typically by choosing an

appropriate mixed linear model that accommodates genetic

covariance between observations [44,49,50]. A wide range of

models have been proposed that account in one way or another for

relationships between genotypes [18,19,49–54]. Population struc-

ture is particularly prominent in self-pollinating barley [17,33]; it

causes clear spurious associations between spike morphologies

(two- versus six-rowed types) and between growth habits and

vernalization requirements (winter and spring genotypes) [22,55–

59]. The barley collection used in the present study exhibited a

combination of those characteristics. Therefore, proper consider-

ation of population structure was required to assure meaningful

MTAs.

This study aimed to identify chromosomal regions that

influenced kernel and malting quality parameters in barley, based

on a diverse set of cultivars and historical phenotypic data. The

approach included (i) genotyping the germplasm with DArT

markerDArT markers, (ii) investigating the degree of intrachro-

mosomal LD decay within this barley collection, and (iii)
performing a GWAS with a mixed linear model approach.

Results

Phenotypic data analysis
Based on the available historical data, we obtained best linear

unbiased estimators (BLUEs) for grain yield, eight kernel traits,

and ten malting quality traits for each cultivar (Table S1).

Inspection of residual plots showed no deviations from model

assumptions (Figure S1). Traits expressed in percentages were log-

transformed before analysis to stabilize the variance. Summary

statistics of the adjusted means are shown in Table 1. A large

range of variation was observed for most traits, including soluble

nitrogen (solN), grain yield (GY), thousand grain weight (TGW),

soluble protein (SolP), and saccharification number (VZ45). In

general, broad sense heritabilities were above 0.4, with few

exceptions, which indicated that a relatively large genetic

component was involved in the determination of the observed

trait variation (Table 1).

The correlations among all considered traits are shown in

Figure 1. In general, correlations were moderate, with absolute

values ranging between 0.30 and 0.70. Strong positive correlations

were found between malt extract and the malting quality index

(MQI) (r = 0.88), malt extract and friability (r = 0.81); and between

MQI and friability (r = 0.82). Furthermore, a high correlation

(r = 0.78) was observed between soluble nitrogen (SolN) and

soluble protein (SolP). SolN and SolP were also related to color

and to the saccharification number (VZ45), as reflected in their

relatively high correlations with VZ45 (r = 0.73, and r = 0.76,

respectively). Four highly negative correlations were observed

between friability and viscosity (r = 20.91); between a larger grain

fraction (.2.8 mm) and two smaller grain fractions (r = 20.85 and

r = 20.71); and between friability and kernel raw protein (K_RP;

r = 20.71). Strongly negative correlations were also observed

between malt extract and sieve fractions (SF) ,2.2 mm, the

K_RP, and viscosity (r = 20.67, 20.67, and r = 20.66, respec-
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tively); and between viscosity and VZ45 (r = 20.68). The GY and

TGW showed only moderate or low correlations with agronomic

and malting quality traits. Both, hectoliter weight (HLW) and

color showed low correlations with all other traits. Overall, the

correlations among malting quality traits were higher than the

correlations among agronomic quality traits. In general, the

correlations among agronomic and malting quality traits were

moderate to low, which hinted that the genetic determinants of

these two types of quality parameters were relatively independent.

Genotyping with DArT markers
The original set of 1088 DArT markers was reduced to 839,

because we discarded monomorphic markers, markers with rare

alleles (minor allele frequency ,0.05), and markers missing more

than 10% of the values. The marker map showed a high genomic

coverage, with a density of about one marker in every 5 cM for

most genomic regions, except for chromosome 4H, which showed

some inter-marker distances larger than 15 cM (Table 2; Figure

S2).

Population structure and intrachromosomal linkage
disequilibrium (LD)

The first three principal components were found to be

significant factors by the eigen analysis, and they cumulatively

explained 28% of the total variation (20.2% and 5.3% with the

first and second axes, respectively). The plot of the first two

principal components showed a clear division of the germplasm

into three subpools, which largely coincided with the row number

and seasonal habit (2-rowed spring, 2-rowed winter, and 6-rowed

winter; Figure 2). The only exceptions were five cultivars, which

clustered differently, according to what their a priori classifications

would suggest. These included the 2-row spring varieties ‘‘Fergie’’

and ‘‘Phantom’’, which were located in the 2- and 6-row winter

pools, respectively; the 2-row winter variety ‘‘Cordoba’’, which

was grouped with the 6-row winter types; the 6-row winter variety

‘‘Tilia’’, which was located in the 2-row spring pool; and the 2-row

spring variety ‘‘Stella’’, which appeared isolated between the 2-

row spring and the 6-row winter pools. These results were

consistent with results observed in other barley studies [45]. Based

on this principal component analysis (PCA), we concluded that the

first three principal components represented the major structure in

the population. Therefore, we decided to use principal component

scores as covariates in other models as an effective strategy to

correct for population stratification (i.e., when assessing LD

between markers, and when testing for associations between

markers and traits).

After correcting for population structure, the intrachromosomal

LD was studied in all seven barley chromosomes by inspecting the

plot of the associations between linked markers (r2 values) and

their map distances, in cM (Figure 3; Figure S3). Taking a value of

r2 = 0.20 as a strict threshold, based on the upper 0.95 quantile of

the observed r2 values between unlinked markers, we found that

the markers were, on average, in LD up to a distance of 5 cM.

When we imposed the more liberal threshold of r2 = 0.10 (upper

0.80 quantile), the markers were, on average, in LD up to a

distance of 10 cM.

In addition to assessing the marker density, the LD-decay

information was used to define a Bonferroni-like multiple testing

correction factor that we applied in the GWAS. The correction

factor was defined as the total number of genome-wide

independent tests, which was calculated as the number of

chromosome blocks which were in LD, summed over all

chromosomes. The corresponding correction factors were used

for evaluating the significance (expressed as -log10P) of MTAs. We

used significance thresholds of -log10(P) .3.65 and –log10(P) .

3.35, based on the strict (r2 = 0.20) and more liberal (r2 = 0.10)

thresholds for LD, respectively. Cumulative p-values obtained by

Figure 1. Correlation matrix of yield, kernel quality, and malting quality parameters based on BLUES for each cultivar. The Pearson
coefficients of the two sided test are given only for the significant phenotypic trait correlations. BLUES = best linear unbiased estimators, GY = grain
yield, MY = marketable yield, TGW = thousand grain weight, HLW = hectoliter weight, KF = kernel formation, GF = glume fineness, SF = sieve fraction,
K_RP = raw kernel protein content, M_RP = raw malt protein content, solN = soluble nitrogen, solP = soluble protein, Visc = viscosity, Col = color,
Fria = friability, VZ45 = saccharification number VZ45uC, Extr = malt extract, FiAt = final attenuation, MQI = malting quality index.
doi:10.1371/journal.pone.0110046.g001
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the naı̈ve model and the MLM with correction for population

structure and kinship by PCA were compared (Figure S4).

Genome-wide association study (GWAS)
The inflation factors for all traits and models are shown in

Table 3. As expected, a large inflation factor was observed for

nearly all traits when the model did not account for genetic

relatedness (naı̈ve model). However, we observed that, even with

the naı̈ve model, the inflation factor was low for final attenuation

(FiAt), TGW, raw protein in malt (M_RP), and beer color, which

indicated that few strong associations were expected between the

markers and those traits (as confirmed with the other models). The

inflation factor fell substantially in all five models that accounted

for genetic relatedness. The kinship model showed the steepest fall

in inflation factor, with values very close to 1 (values below 1

indicated that the correction was too conservative). In models that

used groups (based on population structure) and principal

component scores to correct for genetic relatedness, the inflation

factors decreased substantially, but not as much as the drop

observed with the kinship model. Little difference was observed

when the correction was considered a fixed or random term in a

given model. However, on average, across all traits, the model that

used principal component scores as fixed covariables performed

slightly better (lower inflation factor) than the other models.

Therefore, the following discussion is focused on the MTAs found

with the model that used PCA scores as fixed terms.

With a threshold of –log10(P) .3.35, we identified 140 MTAs.

With a more strict threshold of 2log10(P) .3.65, we found 101

significant MTAs. These numbers are remarkably large, consid-

ering the relatively low sample size of this study (Table 4,

Figure 4). We also observed an association between the heritability

(h2) of the traits and the number of detected MTAs. More MTAs

were found for high-heritability traits than for low-heritability

traits. For example, kernel formation (KF) and glume fineness (GF)

had nearly the highest h2 values (both 0.78; Table 1) and were

associated with high numbers of markers (10 and 13, respectively;

Table 4). In contrast, final attenuation had one of the lowest h2

values (Table 1), and it was not associated with any markers (no

MTAs; Table 4).

The complete list of MTAs is shown as supporting information

in Table S2. Most of the 140 MTAs were observed on barley

chromosomes 1H and 5H (Table 4 and Figure 4). Chromosome

5H clearly stood out, with about one third of the detected MTAs

(41 out of 140). This was followed by chromosomes 1H and 2H

with 30 and 28 MTAs, respectively. Only one MTA was detected

on chromosome 4H (Table 4). The locations of markers and their

associated traits are displayed in Figure 4 and summarized in

Table 4 and Table 5. Some markers were associated with multiple

traits. Most of the MTAs that were associated with multiple traits

were located on chromosomes 1H, 2H, and 5H, and to some

extent on chromosomes 3H and 7H. Some MTAs for different

traits were co-localized within a small region of a chromosome

(cluster). Most MTA clusters were located on 1H, 2H, 3H, and 5H

(Figure 4). The region around 94.5 cM on chromosome 1H was

tagged with many MTAs that were associated with multiple traits

(SolN, SolP, and VZ45) consistent with the high correlations

observed among these traits (Figure 1). The region between 110

and 165 cM on 2H was tagged with MTAs for several different

traits, which indicated another hot spot relevant to malting and

brewing quality. Furthermore, MTAs for GY, TGW, friability,

and K_RP were located on chromosome 5H in the region

between 13.8 and 18.0 cM. On the same chromosome, another

dense concentration of MTAs was found in the region between

159 and 180 cM (Figure 4, Figure 5, and Figure S5). A summary

of the common MTAs is provided as supporting information

(Table S2). In addition, Table S2 shows the marker-allele

substitution effects for all 140 MTAs.

Table 2. Summary statistics of the 839 DArT markers used in this study.

Chromosome Length [cM] No. of markers Median inter-marker distance 95th percentile of the inter-marker distance

1H 148.1 98 0.2 5.4

2H 163.2 172 0.2 4.9

3H 177.6 138 ,0.1 6.1

4H 147.4 57 0.3 16.9

5H 185.3 112 0.5 5.5

6H 141.4 119 ,0.1 6.9

7H 160.2 143 ,0.1 5.2

Genome 1123.1 839 0.1 5.8

doi:10.1371/journal.pone.0110046.t002

Figure 2. Scatter plot of the first two principal components
show the distribution among the cultivars. Cultivars are classified
by type: 2-row spring (blue), 2-row winter (red), and 6-row winter
(green). The variance explained by each principal component is given in
the axis heading.
doi:10.1371/journal.pone.0110046.g002
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Discussion

This study employed an association mapping approach to reveal

the genetic basis of several kernel and malting quality parameters

in barley. The MTAs identified in this study suggested that some

genetic regions are highly important for breeding barleys with

enhanced kernel and malting qualities. Some of the identified

MTAs confirmed previously known QTLs [[12,46,60–80], but

others were identified for the first time in this study (Table 5).

Here, we discovered MTAs on all seven barley chromosomes. We

found high MTA concentrations on chromosomes 1H, 2H, and

5H (Figure 4), which mostly represented former identified QTL-

hotspots [62].

We discovered some novel genomic regions associated with

malting quality on chromosomes 2H, 5H, 6H, and 7H. For

example, we found associations for M_RP, SF (2.2–2.5 mm), and

color on chromosomal regions of 6H that had not been identified

before as QTLs. Furthermore, new MTAs were detected for

K_RP, extract, KF, and GF, on chromosome 2H; for TGW,

friability, and MQI on chromosome 5H; and for viscosity and

MQI on chromosome 7H. Overall, the DArT markers located in

previously described QTLs and the MTAs that we found were

generally associated with the same or similar characteristics

(Table 5). For example, the MTA found at 58.7–59.4 cM on

chromosome 1H was associated with malt extract, viscosity, and

friability, consistent with QTLs reported elsewhere [60–65].

Moreover, two strong QTLs for grain yield on chromosomes 1H

and 7H coincided with those described previously [12,60,61] and

[62,71,80], respectively. MTAs for GY and TGW on 5H and 6H

were comparable to those detected in other studies [12,78,79].

Furthermore, the MTA found on 5H at 184.4 cM for SolP

matched a QTL in this genomic region [66] and two other QTLs

for yield on 7H [12]. Some of the MTAs that were associated with

phenotypic characteristics also mapped to genomic regions close to

QTLs associated with related traits. For example, the QTL

QYld.StMo-3H.1 for GY [3,63,72–74] was located at 48.3 cM on

chromosome 3H, where we found seven DArT markers that were

strongly associated with kernel formation and glume fineness. On

chromosome 2H, we detected some markers that were associated

with these two traits in genomic regions that were previously

reported to have an impact on yield parameters [62,66–68]. We

also discovered two DArT markers, bPb-0994 and bPb-6822

(located on chromosome 2H at 113.2 and 114.4 cM, respectively)

associated with grain protein content, which were also found in

another study [69]. We also found that the marker bPb-0994,

located on chromosome 2H, was highly significant for kernel raw

protein content. This marker was previously shown to be

significant for grain protein content [69], in addition to three

markers on 2H and 3H. Two other DArT markers on

chromosome 3H, which were associated with grain protein

content [69], were related to other traits in our study, including

sieve fraction .2.2 mm (bPb-5298 at 145.5 cM) and friability

(bPb-9599 at 149.8 cM), because we used a different germplasm.

It was not always straightforward to make comparisons with

other known QTLs reported in the literature, because different

Figure 3. Intrachromosomal Linkage disequilibrium (LD)-decay between all pairs of DArT markers for chromosome 1H. LD between
markers (r2) is a function of marker distances (cM).
doi:10.1371/journal.pone.0110046.g003
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studies used different reference maps, marker types, germplasms,

experimental sites, and trait measuring protocols [46,62,81–86].

For example, we did not find MTAs identical to those found by

Beattie et al. 2010 [46], because different germplasms were

studied (North American vs. European material). A similar

explanation can account for differences in GWAS that mapped

GY in landraces cultivated in the high- and low-yield environ-

ments of Spain and Syria, respectively [40]. Only one of their

associated DArT markers was also detected in our European elite

germplasm (bPb-9163 on 5H). Again, this discrepancy was

probably caused by the lack of correspondence between the

different genetic backgrounds used by Pswarayi et al. (2008) [40]

and our study. An association study with kernel quality parameters

in a restricted subset of 101 almost identical winter barley varieties

(48 2-row and 61 6-row types) was performed based on Illumina-

SNP-markers [83]. Only the MTAs that we primarily associated

with grain yield and hectoliter weight on chromosomes 1H and

5H matched the findings in that study [83]. Other barley

association panel results that were based on different marker

systems and germplasm pools (e.g., the Barley CAP germplasm)

[87–88] also showed little congruence with our results.

Genetic correlations among traits typically result from either

pleiotropic or tightly-linked QTLs. In the present study, we found

many MTAs for different traits that co-localized to a single

chromosomal region. This co-localization may drive genetic

correlations among barley quality traits. In particular, we found

clusters of MTAs for malting quality traits on chromosomes 1H,

2H, and 5H, which pointed to hot spots for barley quality. This

was consistent with findings from Szücs et al. 2009 [62] and with

another study that reported evidence of multilocus clusters that

may regulate or control barley malting characteristics [71].

In general, our findings were consistent with the literature and

corresponded well with the observed correlations among traits

[75,77,87–94]. Most co-localized MTAs represented traits with

high phenotypic correlations. For example, MTAs that correlated

with the malting quality parameters, SolP, SolN, and VZ45, were

detected in the same region on 1H (and 5H). This information

may provide valuable guidance for understanding a multivariate

response to a protocol designed to select for these traits.

Some traits, like MQI, friability, and extract are genetically

correlated with each other. This correlation was reflected in our

results by the finding that these traits were significantly associated

with the same markers. Traits such as viscosity and friability or

final attenuation, VZ45, and extract interact to define malting

properties, which contribute to important phenotypic effects. It is

crucial to be aware of these interactions to understand the trade-

offs implied in the optimization of cultivars.

For example, breeders should be aware that high grain protein

concentration is associated with low levels of malt extract. High

grain protein increases the likelihood of a chill haze in beer, and

barleys with low grain protein concentrations are more econom-

ically efficient in the malting process [90]. High protein reduces

efficiency, because the grain takes up water slowly and unevenly

during the germination process. In addition to producing low

levels of malt extract, the resulting beer has a longer filtration time,

develops cloudiness, and possesses a shorter shelf life. On the other

hand, insufficient levels of grain protein may limit the growth of

yeast during the fermentation process; it also reduces the stability

of the beer head because the beer foam cannot cling effectively to

the side of the glass. Consequently, maltsters prefer a GPC close to

10.5% [90]. It behooves the breeder to know which parameters

are correlated, because these parameters require balancing to

achieve the optimal outcome.

Table 3. Genome-wide inflation factors of the naı̈ve (uncorrected) model and five other models that account for genetic
relatedness.

Trait Naı̈ve Groups random Groups fixed PCA scores random PCA scores fixed Kinship

GY 8.27 1.17 1.21 1.33 1.38 1.12

TGW 2.29 1.46 1.46 1.54 1.55 1.10

HLW 3.01 1.55 1.53 1.46 1.50 1.02

KF 4.03 1.44 1.43 1.38 1.51 1.13

GF 6.91 1.85 1.82 1.57 1.73 1.20

SF ,2.2 mm 7.05 1.45 1.46 1.42 1.44 1.02

SF_2.2–2.5 mm 5.09 1.31 1.28 1.34 1.33 0.10

SF_.2.8 mm 4.29 1.49 1.45 1.47 1.46 1.00

K_RP 11.98 1.94 1.87 1.93 1.80 1.31

M_RP 2.06 1.72 1.69 1.57 1.65 1.13

SolN 3.25 1.47 1.59 1.46 1.55 1.06

SolP 4.84 1.73 1.79 1.61 1.68 1.03

Visc 6.50 1.31 1.32 1.19 1.23 1.15

Col 2.09 1.44 1.42 1.46 1.42 1.06

Fria 8.89 1.84 1.86 1.69 1.75 1.07

VZ45 5.06 1.59 1.59 1.46 1.46 1.06

Extr 8.03 1.66 1.64 1.50 1.51 1.10

FiAt 1.38 1.38 1.73 1.38 1.36 1.01

MQI 6.29 1.85 1.87 1.65 1.71 1.11

doi:10.1371/journal.pone.0110046.t003
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Conclusions

The current work contributed to the understanding of the

genetic basis of kernel and malting qualities in barley. The use of a

broad phenotypic data collection that spanned a long time range

and several locations provided a means to de-emphasize environ-

mental effects on barley trait expression. We found that combining

this historical phenotypic dataset with high-density, low-cost

markers such as DArTs facilitated the discovery of new MTAs

for barley. As shown previously, we found that association

mapping was a powerful, promising approach for dissecting the

complexities of malting and brewing qualities in barley. In

addition to confirming various known QTLs, we identified some

new MTAs; e.g., markers for MQI and viscosity. The MTAs

identified in this study will be useful for selecting favorable

genotypes in this germplasm that can be used to develop improved

barley varieties. The findings of this study should be validated in

future field experiments. Our research demonstrated the advan-

tage of combining more than 20 years of expensive phenotyping

information with high-density, low-cost marker technology.

Materials and Methods

Germplasm and phenotypic data
A set of 174 European barley cultivars that included 85 two-

rowed spring and 89 winter types (57 two-rowed and 32 six-rowed)

were included in this study. Historical phenotypic data were

available for all 174 cultivars in the annual statistical reports

from the German Brewery Association (http://www.

braugerstengemeinschaft.de). The historical data were collected

from 1985 to 2007 and stored in a database called ‘‘MetaBrew’’

[95]. The following nine agronomic traits were considered: grain

yield (GY), thousand grain weight (TGW), hectoliter weight

(HLW), kernel formation (KF), glume fineness (GF), three sieve

fractions (SF), and raw kernel protein content (K_RP). Ten

malting quality traits were also considered: raw malt protein

content (M_RP), soluble nitrogen (solN), soluble protein (solP),

viscosity (Visc), color (Col), friability (Fria), saccharification

number VZ45uC (VZ45), malt extract (Extr), final attenuation

(FiAt), and malting quality index (MQI). Malting quality

parameters were assessed with standard procedures recommended

by the European Brewery Convention (EBC) and the ‘Mitteleur-

opäische Brautechnische Analysenkommission (MEBAK)’.

Genotyping with DArT markers
Seeds for all cultivars were obtained from the breeders. Seeds

were grown into young plantlets. Leaf material was harvested from

five to six seedlings that were 10 days old. The material was

bulked, and genomic DNA was extracted according to the

requirements of Triticarte Pty. Ltd. (Canberra, Australia), as

described previously [25,26]. A dense, whole genome scan was

performed with Diversity Array Technology (DArT), which

generated 1,088 mapped and 774 unmapped biallelic markers

for this population, according to the published DArT consensus

map [37]. The locus designations used by Triticarte Pty. Ltd. were

adopted in this study, and DArT markers were named with the

prefix ‘‘bPb,’’ followed by a unique numerical identifier. We

removed markers with minor allele frequencies less than 0.05.

Table 4. Number of significant (# sign) MTAs, based on high and low thresholds of significance, identified by applying the GWAS
model with eigenvalues as fixed effects (fixed PCA score model).

Trait # sign. MTAs # sign. MTAs # sign. MTAs Chromosomes

–log10(P) .3.65 3.35 , 2log10(P) ,3.65 2log10(P) .3.35 with MTAs

GY 6 2 8 1H, 5H(2), 7H

TGW 3 5 8 1H, 5H(2)

HLW 2 0 2 1H, 5H

KF 9 1 10 2H(2) , 3H

GF 13 0 13 1H, 2H(2), 3H, 7H

SF_,2.2 mm 3 1 4 3H

SF_2.2–2.5 mm 1 0 1 6H

SF_.2.8 mm 1 5 6 2H

K_RP 11 4 15 2H(3), 5H(3), 6H, 7H

M_RP 8 0 8 5H, 6H

SolN 8 2 10 1H,7H

SolP 7 3 10 1H, 5H(2)

Visc 4 0 4 7H(4)

Col 2 0 2 1H, 6H

Fria 6 7 13 3H, 4H, 5H(2)

VZ45 5 4 9 1H, 3H

Extr 5 1 6 1H, 2H, 5H

FiAt 0 0 0 –

MQI 7 4 11 2H(3), 5H(2), 7H(2)

Total 101 39 140

Markers located within 5 cM of each other were considered to be the same MTA. The superscript number shown in parentheses next to a chromosome number
indicates the number of MTAs on that chromosome.
doi:10.1371/journal.pone.0110046.t004
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Then, a set of 839 mapped DArT markers was selected for the

GWAS to provide coverage that was evenly distributed over the

seven barley linkage groups (Figure S2).

Analysis of phenotypic data
Our objective was to concentrate on major, stable MTAs.

Therefore, we calculated cultivar-adjusted means over locations

and years for each of the traits. Prior to the analysis, traits that

were expressed in percentages were log-transformed, such as sieve

fraction (SF) and raw protein in kernel or malt (K_RP, M_RP).

The following mixed model was used to estimate adjusted cultivar

means (random terms underlined):

y
ijk

~mzGizYjzGYi jz"i jk

y
ijk

is the observation of the ith cultivar, in the jth year, and the kth

replicate (location) nested within year j; m is an intercept; Gi is the

fixed cultivar effect; Y j is the random year effect, where;

Y j*N(0,s2
Y ); GY ij is the interaction between the cultivar and

the year, where; GY ij*N(0,s2
GY ); and "ijk is a residual term,

where; "ijk*N(0,s2
"). Note that, because locations are considered

replications within a year, location effects (and corresponding

interactions with cultivars) do not appear explicitly in the statistical

model, but are pooled within the residual term, "ijk. Evaluating

locations as replicates was justified in this type of trial network,

Figure 4. Barley consensus map with DArT markers significantly associated with kernel and malting quality traits. Only markers with
the highest effect on a given chromosomal position are depicted. All MTAs that reflect kernel and malting quality parameters are defined either with
a strict significance threshold = -log10(P).3.65 (dark red) or a liberal significance threshold = -log10(P) ,3.35 (light red). DArT = Diversity Array
Technology, MTA = marker-trait association, GY = grain yield, TGW = thousand grain weight, HLW = hectoliter weight, KF = kernel formation,
GF = glume fineness, SF = sieve fraction, K_RP = raw kernel protein content, M_RP = raw malt protein content, solN = soluble nitrogen, solP = soluble
protein, Visc = viscosity, Col = color, Fria = friability, VZ45 = saccharification number VZ45uC, Extr = malt extract, FiAt = final attenuation, MQI = malting
quality index.
doi:10.1371/journal.pone.0110046.g004

Figure 5. Manhattan plot for GWAS of grain yield (GY),
considering eigenvalues (PCA scores) as fixed effects. The
significance threshold is -log10(P) .3.65.
doi:10.1371/journal.pone.0110046.g005
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because all testing sites were mainly selected to represent the same

target production environment. The best linear unbiased estimates

(BLUEs) obtained from this model were used in the subsequent

GWAS (Table S1).

Analysis of linkage disequilibrium (LD) between markers
According to previous studies [96,97], the LD between every

pair of markers (m, n) in the same linkage group was assessed with

the following statistical model:

mi~b0z
X

p

sipwpznib1z"i

where; m
i

and ni are the scores of markers, m and n, of genotype i

(with values –1 or 1 for either of the two homozygous genotypes);

sip denotes the scores of the first p principal components from an

eigenanalysis (singular value decomposition of the molecular

marker matrix), as described in [53]. This term represents the

effect of population structure. The magnitude of the LD between

the markers was assessed by the partial r2 associated with the nib1

term. An empirical threshold for LD was determined by randomly

sampling 1000 pairs of independent markers (i.e., markers known

to map to different linkage groups). Two thresholds were used: one

was strict, based on the upper 95% quantile of the distribution of

r2 values and the other was more liberal, based on the upper 80%

quantile of the observed r2 values. To assess how far the LD

extended on a particular chromosome, we used the intersection of

the threshold r2 with a 95% quantile non-linear regression line

fitted to the observed r2 values on the particular chromosome. The

non-linear quantile regression fitting was based on the method of

Koenker & D’Orey [98], which has been implemented in GenStat

16 software [99]. The strict threshold was used to define a lower

limit of the LD extension and the liberal threshold used to define

an upper limit of the LD extension.

In turn, the LD-decay information for each chromosome was

used to define a multiple testing correction threshold for the

GWAS, as described previously [96]. This approach was based on

a Bonferroni correction, but instead of using all markers as the

denominator, it used the number of effective (independent) tests

performed genome-wide. We defined the number of independent

tests as ne~
X

c

lc

dc

, where; lc is the length in cM of chromosome c,

and dc is the extension of LD for chromosome c, and calculated

the P-value significance threshold, as follows (on a log scale) where;

P� is the genome-wide threshold level (set as 0.05 in our study):

{ log (P)~{ log
P�

ne

� �

Genome-wide marker-trait association analysis (GWAS)
GWAS was performed with models that accounted for the

genetic relatedness between varieties. Genetic relatedness was

expressed in several alternate ways, including the realized kinship

(model K), a group factor, based on population structure (fixed or

random group models), or a set of individual principal components

scores that served as fixed or random covariables in the model

(fixed or random PCA score models, respectively). We also used a

model that did not include a correction for genetic relatedness

(naı̈ve model).

y
i
~mzxiazg

i
z"i g

i
*N(0,As2),

A~2K , "i*N(0,s2) modelKð Þ

yi~mzSkzxiaz"i, "i*N(0,ls2) fixed group modelð Þ

yi~mzSkzxiaz"i Sk*N(0,s2
S),

"i*N(0,Is2) random group modelð Þ

yi~mz
X

p

sipwpzxiaz"i, "i*N(0,Is2)

fixed PCA score modelð Þ

yi~mz
X

p

sipw
p
zxiaz"iwp*N(0,Is2

w), "i*N(0,Is2)

random PCA score modelð Þ

yi~mzxiaz"i, "i*N(0,Is2) na€1ve modelÞð

In the models above, m is a constant (intercept); xi is a marker

covariate with values 21 or 1 to denote one of the two

homozygous marker genotypes; a is the marker effect; gi is a

random polygenic effect; is the fixed group effect (random when

underlined); sip denotes the scores of the first p principal

components, and wp is the associated fixed effect (random when

underlined).

The significance of each MTA was assessed with the Wald test,

and results are expressed with the associated P-values on a –log10

scale. The performances of the different models were compared by

their inflation factors. We focused the discussion of significant

MTAs on results from the model that performed best (fixed PCA

score model).

All models were fitted with GenStat version 16 [99] with the

available features for LD mapping. The mixed linear model

(MLM) was fitted with the residual maximum likelihood (REML)

method. Graphical mapping of the most significant MTAs was

performed with QGene version 4.3.7 [100].

Comparison with known QTLs
For comparisons between significantly-associated DArT mark-

ers and known QTLs, the marker and chromosome position

information from GrainGenes (http://www.graingenes.org) and

from Barley World (http://www.barleyworld.org/) were com-
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pared to the reference DArT map created previously [37]. Some

marker-associated traits assessed in this study were similar to those

identified with known QTLs reported for barley in the

GrainGenes database or literature. When the trait designation

was missing, but similar, or limited information was available,

results were compared between traits with similar features. For

example, in some cases, HLW was compared to test weight; KF

was compared to kernel length and plumpness; kernel weight was

compared to TGW; plan test weight was compared to yield;

friability was compared to milling energy and malt tenderness; and

SolP was compared to the ratio of soluble/total protein

( = Kolbach index).

Supporting Information

Figure S1 Histograms of the phenotypic trait distribu-
tion among cultivars. GY = grain yield, MY = marketable

yield, TGW = thousand grain weight, HLW = hectoliter weight,

KF = kernel formation, GF = glume fineness, SF = sieve fraction,

K_RP = raw kernel protein content, M_RP = raw malt protein

content, solN = soluble nitrogen, solP = soluble protein, Visc = -

viscosity, Col = color, Fria = friability, VZ45 = saccharification

number VZ45uC, Extr = malt extract, FiAt = final attenuation,

MQI = malting quality index.

(ZIP)

Figure S2 Chromosomal distribution of the 839 DArT
markerDArT markers used for the genome-wide asso-
ciation analysis. Distances are given in cM.

(TIF)

Figure S3 Intrachromosomal LD-decay between all
pairs of DArT markers shown for each barley chromo-
some, 1H to 7H, after correcting for population
structure.
(TIF)

Figure S4 Comparison of P-values obtained by applying
the naı̈ve model (blue line) and the mixed linear model
(MLM). The MLM incorporates corrections for population

structure and kinship, based on PCA scores (red line). The

comparison permits a check of the quality of the association results

depicted for four traits (a) Grain yield (GY), (b) hectoliter weight

(HLW), (c) kernel formation (KF), and (d) thousand grain weight

(TGW).

(ZIP)

Figure S5 Manhattan plots show GWAS results from the
PCA-corrected model for all kernel and malting param-
eters. GY = grain yield, MY = marketable yield, TGW = thou-

sand grain weight, HLW = hectoliter weight, KF = kernel forma-

tion, GF = glume fineness, SF = sieve fraction, K_RP = raw kernel

protein content, M_RP = raw malt protein content, solN = soluble

nitrogen, solP = soluble protein, Visc = viscosity, Col = color,

Fria = friability, VZ45 = saccharification number VZ45uC, Ex-

tr = malt extract, FiAt = final attenuation, MQI = malting quality

index.

(ZIP)

Table S1 Summary of phenotypic parameters for all
174 cultivars. BLUES and means are shown for the breeder,

origin, seasonal habit (SH), including spring (S) or winter (W), row

number (RN), and phenotypic traits. Abbreviations are: BLUE-

S = best linear unbiased estimators, GY = grain yield, MY = mar-

ketable yield, TGW = thousand grain weight, HLW = hectoliter

weight, KF = kernel formation, GF = glume fineness, SF = sieve

fraction, K_RP = raw kernel protein content, M_RP = raw malt

protein content, solN = soluble nitrogen, solP = soluble protein,

Visc = viscosity, Col = color, Fria = friability, VZ45 = saccharifica-

tion number VZ45uC, Extr = malt extract, FiAt = final attenua-

tion, MQI = malting quality index; Sheet 1: The average BLUES

(best linear unbiased estimators) for the nine kernel traits and ten

malting quality traits considered in this genome-wide association

study. Each cultivar represents the average of several accessions of

the same variety. Sheet 2: Individual accessions for each cultivar

variety; the location of each accession is given with the BLUES

(best linear unbiased estimators) for each trait. Sheet 3: Phenotypic

means for each cultivar across all accessions. Group assignments

indicate the population structures.

(XLSX)

Table S2 Allele frequencies for DArT markers and
marker effects on 19 phenotypic parameters based on
MTAs identified in the GWAS in barley. Results are shown

for MTAs identified with strict (-log10(P) .3.65) or liberal (-log10(P)

.3.35) significance thresholds.

(XLSX)
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27. Matthies IE, Sharma S, Weise S, Röder MS (2012) Sequence variation in the
barley genes encoding sucrose synthase I and sucrose phosphate synthase II, and

its association with variation in grain traits and malting quality. Euphytica 184:

73–83.

28. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state

technology for sequence information independent genotyping. Nucleic Acids Res

29: e25.

29. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArrayTechnol-

ogy: Enabling an accurate,cost-effective approach to high-throughput genotyp-

ing. BioTechniques 32: S56–S61.

30. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, et al. (2009) Development and

implementation of high-throughput SNP genotyping in barley. BMC Genomics
10: 582.

31. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, et al. (2005) Genome-wide

SNP discovery and linkage analysis in barley based on genes responsive to
abiotic stress. Mol Genet Genom 274: 515–527.

32. Lapitan NLV, Hess A, Cooper B, Botha AM, Badillo D, et al. (2009)

Differentially expressed genes during malting and correlation with malting
quality phenotypes in barley (Hordeum vulgare L.). Theor Appl Genet 118:

937–952.

33. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, et al. (2010) Genome-
wide association mapping to candidate polymorphism resolution in the

unsequenced barley genome. Proc Natl Acad Sci 107: 21611–21616.

34. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, et al. (2011)
INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an

ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature
Genet 43: 169–173.

35. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, et al. (2012) Natural

variation in a homolog of Anthirrhinum CENTRORADIALIS contributed to
spring growth habit and environmental adaptation in cultivated barley. Nature

Genet 44: 1388–1393.

36. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, et al. (2004) Diversity
arrays technology (DArT) for whole-genome profiling of barley. Proc Nat Acad

Sci 101: 9915–9920.

37. Wenzl P, Li H, Carling J, Zhou M, Raman H, et al. (2006) A high-density
consensus map of barley linking DArT markers toSSR, RFLP and STS loci and

agricultural traits. BMC Genomics 7: 206.

38. Varshney RK, Glaszmann JC, Leung H, Ribaut JM (2010) More genomic
resources for less-studied crops. Trends Biotechnol 28: 452–460.

39. Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, et al. (2010) Development of

wild barley-derived DArT markers and their integration into a barley consensus
map. Mol Breed 27: 77–92.

40. Pswarayi A, van Eeuwijk FA, Ceccarelli S, Grando S, Comadran J, et al. (2008)

Changes in allele frequencies in landraces, old and modern barley cultivars of

marker loci close to QTL for grain yield under high and low input conditions.
Euphytica 163: 435–44.

41. Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative

trait loci associated with barley net blotch resistance. Theor Appl Genet 116:
529–539.

42. Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and

linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet
119: 43–52.

43. Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, et al.

(2009) Patterns of genetic diversity and linkage disequilibrium in a highly
structured Hordeum vulgare association-mapping population for the Mediter-

ranean basin. Theor Appl Genet 119: 175–187.

44. Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, et al. (2011) Mixed
model association scans of multi-environmental trial data reveal major loci

controlling yield and yield related traits in Hordeum vulgare in Mediterranean
environments. Theor Appl Genet 122: 1363–1373.

45. Matthies IE, van Hintum T, Weise S, Röder MS (2012) Population structure
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