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Abstract

Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping,
which involves micro-malting experiments. Although there is abundant historical information available for different cultivars
in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit
historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-
wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European
spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested
with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal
components scores obtained from marker information. We detected 140 marker-trait associations. Some of these
associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other
associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to
the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when
designing strategies for multiple trait improvements.
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For the past 80 years, to optimize the malting traits in barley,
breeders mainly focused on a narrow gene pool of spring barley
types [1]; the most important quality parameters to optimize were
the amounts of soluble protein, extract, raw protein, and friability.
Further improvements in malting quality must rely on new
combinations of genes and germplasms. Molecular marker-assisted
selection (MAS) schemes have been applied to developing barley
varieties with improved malting quality traits. Those studies have
identified many quantitative trait loci (Q'TL) in barley [2—4]. MAS
strategies have facilitated gene pyramiding techniques to acquire
advantageous alleles from different loci. With MAS, the breeding
efficiency can be improved by eliminating undesired genotypes at
early stages, which can reduce time and costs [4-7]. The genome-
wide association approach provides a good basis for selection
strategies in any breeding program.

The identification of barley genomic regions that influence yield
and malting properties will increase our understanding of the

Introduction

Barley (Hordewm vulgare 1.) is a major cereal crop in Europe. It
ranks fourth in worldwide production, after wheat, rice, and
maize. It is grown for feed, food, and malting. Most of the malt
produced is used for brewing beer and, to a lesser extent, for
distilling (e.g., whiskey). In Europe, two-rowed spring cultivars are
used mainly for malting and brewing; six-rowed winter barleys are
predominantly used for food. However, six-rowed barley has been
increasingly used for malting in Europe, following the trend started
in the US. Therefore, depending on the end-use, there are two
primary aims in breeding barley: 1) superior food and feed quality
with high protein content, and 2) high malting quality with high
starch and low protein contents. Improving the malting quality is a
central goal in breeding, in addition to improving the yield of
barley. Malting quality is a complex trait, because it consists of
several components, and all are polygenic. Moreover, the

definition of high malting quality is not straightforward; it depends
on the processing and brewing methods. In general, the main
breeding goals for malting barley are high malting extract, low
protein content, good solubility properties, good kernel formation,
and low glume content.
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genetics and promote the development of cultivars with improved
kernel and malting quality. The genetic and biochemical bases of
malting quality in barley have been addressed previously [2,8,9].
However, quantification of malting quality parameters requires
elaborate, expensive phenotypic analyses.
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Typically, the high cost of assessing malting quality in barley
lines is due to expensive equipment, laboratory facilities, and
experienced personnel. Moreover, assessing malting and brewing
quality requires substantial amounts of grain (100-1,000 g), which
is often not feasible in the early generations of a breeding cycle. In
addition, some malting quality parameters can only be determined
in time-consuming, wet lab analyses. These limitations may be
overcome with the use of historical phenotypic data recorded in
statistical year books, like those from the Deutsche Braugersten-
gemeinschaft or the European Brewery Association. These
resources may provide a cost-effective approach. The complex
dataset considered in the present study may serve as a valid
resource for breeding barley varieties with high malting quality.

In addition, the identification of marker-trait associations
(MTASs) may represent a cost effective strategy for selecting traits
that are typically expensive to identify in MAS schemes [2,3,10].
Molecular markers and QTLs have been described for numerous
traits in barley, and major genes have been detected in segregating
populations derived from biparental crosses [3,10-14]. The use of
genome-wide association mapping for QTL detection has
attracted interest in agricultural settings, due to the recent
availability of high-throughput genotyping technology and the
development of new statistics methodologies [15-17].

Association mapping, also known as linkage disequilibrium (LD)
mapping, represents an interesting alternative to traditional
linkage analysis. It provides the advantages of (1) wider genomic
diversity than provided by biparental segregating populations, (ii)
high mapping resolution, by exploiting historical recombinations
in the population, and (iii) rapid results, because it is not necessary
to create a segregating population [18,19]. In combination with
high-density genotyping, association mapping can resolve complex
trait variation down to the sequence level by incorporating
historical recombination events that occurred at the population
level [20,21].

Two association mapping methodologies are widely used in
plants. The first is a candidate gene approach, which relates
polymorphisms in candidate genes to phenotypic variations in
traits. The second approach is a genome-wide association study
(GWAS), which relates polymorphisms of anonymous markers to
trait variations [16,22]. Candidate gene studies are widely
conducted in crop plant species, including barley and maize.
Those studies aim to detect functional markers that directly impact
the trait of interest [23-27]. The GWAS approach has recently
benefitted from the advent of cost-effective high throughput
marker technology, like Diversity Array Technology (DArT) [28]
and Illumina Bead Chips or Bead arrays [29,30]. High marker
coverage is required for conducting a GWAS, but the potential of
this approach has been demonstrated in barley [15,22,30-35].

DArT markers are bi-allelic, dominant markers. A single DArT
assay can genotype thousands of SNPs and insertions/deletions
across the genome simultaneously. Barley was one of the first plant
species for which DArT markers became available [36-38]. The
integrated barley consensus map now contains 3,542 markers,
including DArT markers. This map has been used to locate
meaningful associations [39]. The first examples of applying DArT
marker technology to Hordeum included a GWAS conducted to
detect yield-associated genes [40] and a QTL mapping study
conducted to identify net blotch resistance in a segregating
population [41]. Other examples included the study of linkage
disequilibrium (LD) and population structures in association
studies that aimed to identify powdery mildew and yield
components in barley [42-45]. Another study associated DArT
markers with malting quality characteristics from two row
Canadian barley lines [46]. In another GWAS, 138 wild barley

PLOS ONE | www.plosone.org

Association Mapping Barley

accessions were genotyped with DArT markers and SNP markers
from the Illumina Golden Gate Assay to detect genomic regions
associated with spot blotch resistance [47].

An important issue in GWAS is that the population structure
which arises from heterogeneous genetic relatedness between
entries in the association panel can cause high LDs between
unlinked loci [48]. When LDs between markers and traits occur as
a consequence of the population structure, they are called false
positives or spurious associations. Therefore, a statistical model
must account for genetic relatedness, typically by choosing an
appropriate mixed linear model that accommodates genetic
covariance between observations [44,49,50]. A wide range of
models have been proposed that account in one way or another for
relationships between genotypes [18,19,49-54]. Population struc-
ture is particularly prominent in self-pollinating barley [17,33]; it
causes clear spurious associations between spike morphologies
(two- versus six-rowed types) and between growth habits and
vernalization requirements (winter and spring genotypes) [22,55—
59]. The barley collection used in the present study exhibited a
combination of those characteristics. Therefore, proper consider-
ation of population structure was required to assure meaningful
MTA:s.

This study aimed to identify chromosomal regions that
influenced kernel and malting quality parameters in barley, based
on a diverse set of cultivars and historical phenotypic data. The
approach included (7)) genotyping the germplasm with DArT
markerDArT markers, (i) investigating the degree of intrachro-
mosomal LD decay within this barley collection, and (i)
performing a GWAS with a mixed linear model approach.

Results

Phenotypic data analysis

Based on the available historical data, we obtained best linear
unbiased estimators (BLUEs) for grain yield, eight kernel traits,
and ten malting quality traits for each cultivar (Table SI).
Inspection of residual plots showed no deviations from model
assumptions (Figure S1). Traits expressed in percentages were log-
transformed before analysis to stabilize the variance. Summary
statistics of the adjusted means are shown in Table 1. A large
range of variation was observed for most traits, including soluble
nitrogen (solN), grain yield (GY), thousand grain weight (TGW),
soluble protein (SolP), and saccharification number (VZ45). In
general, broad sense heritabilities were above 0.4, with few
exceptions, which indicated that a relatively large genetic
component was involved in the determination of the observed
trait variation (Table 1).

The correlations among all considered traits are shown in
Figure 1. In general, correlations were moderate, with absolute
values ranging between 0.30 and 0.70. Strong positive correlations
were found between malt extract and the malting quality index
MQ]) (r=0.88), malt extract and friability (r = 0.81); and between
MQI and friability (r=0.82). Furthermore, a high correlation
(r=0.78) was observed between soluble nitrogen (SolN) and
soluble protein (SolP). SoIN and SolP were also related to color
and to the saccharification number (VZ45), as reflected in their
relatively high correlations with VZ45 (r=0.73, and r=0.76,
respectively). Four highly negative correlations were observed
between friability and viscosity (r = —0.91); between a larger grain
fraction (>2.8 mm) and two smaller grain fractions (r = —0.85 and
r=—0.71); and between friability and kernel raw protein (K_RP;
r=—0.71). Strongly negative correlations were also observed
between malt extract and sieve fractions (SF) <2.2 mm, the
K_RP, and viscosity (r=—0.67, —0.67, and r=—0.66, respec-
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Trait correlation |[GY TGW HLW KF GF izz ifszn']z_ i;.Sm K_RP |M_RP SoIN SolP Visc Col Fria  Vz45 Extr FiAt MaQl
GY

TGW 0,89

HLW -0.33 0.10

KF 0.47 -0.16| -0.45

GF 0.55 0.00| -0.68

SF <2.2 mm 0.31 -0.51 -0.25' 0.55 0.39

SF 2.2-2.5mm 0.17| -0.44 -0.19/ 0.50 0.30

SF >2.8mm 0.05f 0.65 0.16| -0.57 -0.23

K_RP 0.22 -0.09 -0.06 0.06 0.18 0.37 042

M_RP -0.25 -0.32 0.22| -0.26 -0.22 0.30 0.13

SolN -0.39 0.00 0.06 -044 -049 -040 -0.34 032 -0.12

SolP -0.23 0.18 -0.09| -0.30 -0.32 -0.57 -0.38 0.44 -0.56

Visc 0.48 -0.01 -0.09 031 045 061 035 -0.33 047

Col -0.19 -0.06 -0.01 -0.03 -0.08 -0.01 -0.02 0.06 -0.26

Fria -0.44 029 0.02 -034 -046 -0.66 -0.41 0.49- 0.29

Vz45 -0.34 0.08 0.04 -032 -0.37 -041 -041 0.0 -0.45 ' -0.68 0.23

Extr -0.48 034 0.02 -054 -056 -0.67 -0.52 0.62 -0.67| -0.57 0.37 -0.66 0.23

FiAt 0.39 0.10 0.02 -0.15 -0.12 -0.17 -0.07 0.25 -0.26| -0.17 0.31 043 -0.37 0.16. 0.40 0.46

MaQl -0.45 0.27 -0.02 -0.51 -0.59 -0.54 -0.48 059 -0.58[ -0.36 0.49 0.69 -0.69 0.24- 0.67 0.36

Figure 1. Correlation matrix of yield, kernel quality, and malting quality parameters based on BLUES for each cultivar. The Pearson
coefficients of the two sided test are given only for the significant phenotypic trait correlations. BLUES = best linear unbiased estimators, GY =grain
yield, MY = marketable yield, TGW =thousand grain weight, HLW = hectoliter weight, KF =kernel formation, GF = glume fineness, SF =sieve fraction,
K_RP=raw kernel protein content, M_RP =raw malt protein content, solN=soluble nitrogen, solP =soluble protein, Visc=viscosity, Col=color,
Fria =friability, VZ45 = saccharification number VZ45°C, Extr =malt extract, FiAt=final attenuation, MQI = malting quality index.

doi:10.1371/journal.pone.0110046.9001

tively); and between viscosity and VZ45 (r = —0.68). The GY and
TGW showed only moderate or low correlations with agronomic
and malting quality traits. Both, hectoliter weight (HLW) and
color showed low correlations with all other traits. Overall, the
correlations among malting quality traits were higher than the
correlations among agronomic quality traits. In general, the
correlations among agronomic and malting quality traits were
moderate to low, which hinted that the genetic determinants of
these two types of quality parameters were relatively independent.

Genotyping with DArT markers

The original set of 1088 DArT markers was reduced to 839,
because we discarded monomorphic markers, markers with rare
alleles (minor allele frequency <<0.05), and markers missing more
than 10% of the values. The marker map showed a high genomic
coverage, with a density of about one marker in every 5 cM for
most genomic regions, except for chromosome 4H, which showed
some inter-marker distances larger than 15 cM (Table 2; Figure

S2).

Population structure and intrachromosomal linkage
disequilibrium (LD)

The first three principal components were found to be
significant factors by the eigen analysis, and they cumulatively
explained 28% of the total variation (20.2% and 5.3% with the
first and second axes, respectively). The plot of the first two
principal components showed a clear division of the germplasm
mnto three subpools, which largely coincided with the row number
and seasonal habit (2-rowed spring, 2-rowed winter, and 6-rowed
winter; Figure 2). The only exceptions were five cultivars, which
clustered differently, according to what their a priori classifications
would suggest. These included the 2-row spring varieties “Fergie”
and “Phantom”, which were located in the 2- and 6-row winter
pools, respectively; the 2-row winter variety “Cordoba”, which
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was grouped with the 6-row winter types; the 6-row winter variety
“Tilia”, which was located in the 2-row spring pool; and the 2-row
spring variety “Stella”, which appeared isolated between the 2-
row spring and the 6-row winter pools. These results were
consistent with results observed in other barley studies [45]. Based
on this principal component analysis (PCA), we concluded that the
first three principal components represented the major structure in
the population. Therefore, we decided to use principal component
scores as covariates in other models as an effective strategy to
correct for population stratification (i.e., when assessing LD
between markers, and when testing for associations between
markers and traits).

After correcting for population structure, the intrachromosomal
LD was studied in all seven barley chromosomes by inspecting the
plot of the associations between linked markers (r* values) and
their map distances, in cM (Figure 3; Figure S3). Taking a value of
r?=0.20 as a strict threshold, based on the upper 0.95 quantile of
the observed r? values between unlinked markers, we found that
the markers were, on average, in LD up to a distance of 5 cM.
When we imposed the more liberal threshold of r*=0.10 (upper
0.80 quantile), the markers were, on average, in LD up to a
distance of 10 cM.

In addition to assessing the marker density, the LD-decay
information was used to define a Bonferroni-like multiple testing
correction factor that we applied in the GWAS. The correction
factor was defined as the total number of genome-wide
independent tests, which was calculated as the number of
chromosome blocks which were in LD, summed over all
chromosomes. The corresponding correction factors were used
for evaluating the significance (expressed as -log|oP) of MTAs. We
used significance thresholds of -log;o(P) >3.65 and —log;o(P) >
3.35, based on the strict (r?=0.20) and more liberal (r*=0.10)
thresholds for LD, respectively. Cumulative p-values obtained by
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the naive model and the MLM with correction for population
structure and kinship by PCA were compared (Figure S4).

Genome-wide association study (GWAS)

The inflation factors for all traits and models are shown in
Table 3. As expected, a large inflation factor was observed for
nearly all traits when the model did not account for genetic
relatedness (naive model). However, we observed that, even with
the naive model, the inflation factor was low for final attenuation
(FiAt), TGW, raw protein in malt (M_RP), and beer color, which
indicated that few strong associations were expected between the
markers and those traits (as confirmed with the other models). The
inflation factor fell substantially in all five models that accounted
for genetic relatedness. The kinship model showed the steepest fall
in inflation factor, with values very close to 1 (values below 1
indicated that the correction was too conservative). In models that
used groups (based on population structure) and principal
component scores to correct for genetic relatedness, the inflation
factors decreased substantially, but not as much as the drop
observed with the kinship model. Little difference was observed
when the correction was considered a fixed or random term in a
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Figure 2. Scatter plot of the first two principal components
show the distribution among the cultivars. Cultivars are classified
by type: 2-row spring (blue), 2-row winter (red), and 6-row winter
(green). The variance explained by each principal component is given in
the axis heading.

doi:10.1371/journal.pone.0110046.9002
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Table 2. Summary statistics of the 839 DArT markers used in this study.

Chromosome Length [cM] No. of markers Median inter-marker distance 95" percentile of the inter-marker distance
H 148.1 98 0.2 5.4
2H 163.2 172 0.2 4.9
3H 177.6 138 <0.1 6.1
4H 147.4 57 0.3 16.9
5H 185.3 112 0.5 55
6H 1414 119 <0.1 6.9
7H 160.2 143 <0.1 52
Genome 1123.1 839 0.1 5.8
doi:10.1371/journal.pone.0110046.t002

given model. However, on average, across all traits, the model that
used principal component scores as fixed covariables performed
slightly better (lower inflation factor) than the other models.
Therefore, the following discussion is focused on the MTAs found
with the model that used PCA scores as fixed terms.

With a threshold of —log;o(P) >3.35, we identified 140 MTAs.
With a more strict threshold of —logo(P) >3.65, we found 101
significant MTAs. These numbers are remarkably large, consid-
ering the relatively low sample size of this study (Table 4,
Figure 4). We also observed an association between the heritability
(h?) of the traits and the number of detected MTAs. More MTAs
were found for high-heritability traits than for low-heritability
traits. For example, kernel formation (KF) and glume fineness (GF)
had nearly the highest h? values (both 0.78; Table 1) and were
associated with high numbers of markers (10 and 13, respectively;
Table 4). In contrast, final attenuation had one of the lowest h?
values (Table 1), and it was not associated with any markers (no
MTAs; Table 4).

The complete list of MTAs is shown as supporting information
in Table S2. Most of the 140 MTAs were observed on barley
chromosomes 1H and 5H (Table 4 and Figure 4). Chromosome
5H clearly stood out, with about one third of the detected MTAs
(41 out of 140). This was followed by chromosomes 1H and 2H
with 30 and 28 MTAs, respectively. Only one M'TA was detected
on chromosome 4H (Table 4). The locations of markers and their
associated traits are displayed in Figure 4 and summarized in
Table 4 and Table 5. Some markers were associated with multiple
traits. Most of the MTAs that were associated with multiple traits
were located on chromosomes 1H, 2H, and 5H, and to some
extent on chromosomes 3H and 7H. Some MTAs for different
traits were co-localized within a small region of a chromosome
(cluster). Most MTA clusters were located on 1H, 2H, 3H, and 5H
(Figure 4). The region around 94.5 cM on chromosome 1H was
tagged with many MTAs that were associated with multiple traits
(SoIN, SolP, and VZ45) consistent with the high correlations
observed among these traits (Figure 1). The region between 110
and 165 ¢cM on 2H was tagged with MTAs for several different
traits, which indicated another hot spot relevant to malting and
brewing quality. Furthermore, MTAs for GY, TGW, friability,
and K_RP were located on chromosome 5H in the region
between 13.8 and 18.0 cM. On the same chromosome, another
dense concentration of MTAs was found in the region between
159 and 180 cM (Figure 4, Figure 5, and Figure S5). A summary
of the common MTAs is provided as supporting information
(Table S2). In addition, Table S2 shows the marker-allele
substitution effects for all 140 M'TAs.
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Figure 3. Intrachromosomal Linkage disequilibrium (LD)-decay between all pairs of DArT markers for chromosome 1H. LD between

markers (/) is a function of marker distances (cM).
doi:10.1371/journal.pone.0110046.g003

Discussion

This study employed an association mapping approach to reveal
the genetic basis of several kernel and malting quality parameters
in barley. The MTAs identified in this study suggested that some
genetic regions are highly important for breeding barleys with
enhanced kernel and malting qualities. Some of the identified
MTAs confirmed previously known QTLs [[12,46,60-80], but
others were identified for the first time in this study (Table 5).
Here, we discovered M'TAs on all seven barley chromosomes. We
found high MTA concentrations on chromosomes 1H, 2H, and
5H (Figure 4), which mostly represented former identified QTL-
hotspots [62].

We discovered some novel genomic regions associated with
malting quality on chromosomes 2H, 5H, 6H, and 7H. For
example, we found associations for M_RP, SF (2.2-2.5 mm), and
color on chromosomal regions of 6H that had not been identified
before as QTLs. Furthermore, new MTAs were detected for
K_RP, extract, KF, and GF, on chromosome 2H; for TGW,
friability, and MQI on chromosome 5H; and for viscosity and
MOQI on chromosome 7H. Overall, the DAr'T markers located in
previously described QTLs and the MTAs that we found were
generally associated with the same or similar characteristics
(Table 5). For example, the MTA found at 58.7-59.4 cM on
chromosome 1H was associated with malt extract, viscosity, and
friability, consistent with QTLs reported elsewhere [60-63].
Moreover, two strong QTLs for grain yield on chromosomes 1H
and 7H coincided with those described previously [12,60,61] and
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[62,71,80], respectively. MTAs for GY and TGW on 5H and 6H
were comparable to those detected in other studies [12,78,79].
Furthermore, the MTA found on 5H at 184.4 cM for SolP
matched a QTL in this genomic region [66] and two other QTLs
for yield on 7H [12]. Some of the MTAs that were associated with
phenotypic characteristics also mapped to genomic regions close to
QTLs associated with related traits. For example, the QTL
QYl1d.StMo-3H.1 for GY [3,63,72-74] was located at 48.3 cM on
chromosome 3H, where we found seven DArT markers that were
strongly associated with kernel formation and glume fineness. On
chromosome 2H, we detected some markers that were associated
with these two traits in genomic regions that were previously
reported to have an impact on yield parameters [62,66-68]. We
also discovered two DArT markers, bPb-0994 and bPb-6822
(located on chromosome 2H at 113.2 and 114.4 cM, respectively)
associated with grain protein content, which were also found in
another study [69]. We also found that the marker bPb-0994,
located on chromosome 2H, was highly significant for kernel raw
protein content. This marker was previously shown to be
significant for grain protein content [69], in addition to three
markers on 2H and 3H. Two other DArT markers on
chromosome 3H, which were associated with grain protein
content [69], were related to other traits in our study, including
sieve fraction >2.2 mm (bPb-5298 at 145.5 cM) and friability
(bPb-9599 at 149.8 cM), because we used a different germplasm.

It was not always straightforward to make comparisons with
other known QTLs reported in the literature, because different
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studies used different reference maps, marker types, germplasms,
experimental sites, and trait measuring protocols [46,62,81-86].
For example, we did not find MTAs identical to those found by
Beattie et al. 2010 [46], because different germplasms were
studied (North American wvs. European material). A similar
explanation can account for differences in GWAS that mapped
GY in landraces cultivated in the high- and low-yield environ-
ments of Spain and Syria, respectively [40]. Only one of their
associated DArT markers was also detected in our European elite
germplasm (bPb-9163 on 5H). Again, this discrepancy was
probably caused by the lack of correspondence between the
different genetic backgrounds used by Pswarayi et al. (2008) [40]
and our study. An association study with kernel quality parameters
in a restricted subset of 101 almost identical winter barley varieties
(48 2-row and 61 6-row types) was performed based on Illumina-
SNP-markers [83]. Only the MTAs that we primarily associated
with grain yield and hectoliter weight on chromosomes 1H and
5H matched the findings in that study [83]. Other barley
association panel results that were based on different marker
systems and germplasm pools (e.g., the Barley CAP germplasm)
[87-88] also showed little congruence with our results.

Genetic correlations among traits typically result from either
pleiotropic or tightly-linked QTLs. In the present study, we found
many MTAs for different traits that co-localized to a single
chromosomal region. This co-localization may drive genetic
correlations among barley quality traits. In particular, we found
clusters of MTAs for malting quality traits on chromosomes 1H,
2H, and 5H, which pointed to hot spots for barley quality. This
was consistent with findings from Sziics et al. 2009 [62] and with
another study that reported evidence of multilocus clusters that
may regulate or control barley malting characteristics [71].

In general, our findings were consistent with the literature and
corresponded well with the observed correlations among traits
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Table 3. Genome-wide inflation factors of the naive (uncorrected) model and five other models that account for genetic
relatedness.

Trait Naive Groups random Groups fixed PCA scores random PCA scores fixed Kinship
GY 8.27 117 1.21 1.33 1.38 1.12
TGW 2.29 1.46 1.46 1.54 1.55 1.10
HLW 3.01 1.55 1.53 1.46 1.50 1.02
KF 4.03 1.44 1.43 1.38 1.51 113
GF 6.91 1.85 1.82 1.57 1.73 1.20
SF <22 mm 7.05 1.45 1.46 142 144 1.02
SF_2.2-2.5 mm 5.09 1.31 1.28 1.34 1.33 0.10
SF_>2.8 mm 4.29 1.49 1.45 1.47 1.46 1.00
K_RP 11.98 1.94 1.87 1.93 1.80 1.31
M_RP 2.06 1.72 1.69 1.57 1.65 113
SolN 3.25 1.47 1.59 1.46 1.55 1.06
SolP 484 173 1.79 1.61 1.68 1.03
Visc 6.50 1.31 132 119 1.23 115
Col 2.09 1.44 1.42 1.46 1.42 1.06
Fria 8.89 1.84 1.86 1.69 1.75 1.07
vz4s 5.06 1.59 1.59 1.46 1.46 1.06
Extr 8.03 1.66 1.64 1.50 1.51 1.10
FiAt 1.38 1.38 1.73 1.38 136 1.01
mal 6.29 1.85 1.87 1.65 1.71 1.1
doi:10.1371/journal.pone.0110046.t003

[75,77,87-94]. Most co-localized MTAs represented traits with
high phenotypic correlations. For example, MTAs that correlated
with the malting quality parameters, SolP, SolN, and VZ45, were
detected in the same region on 1H (and 5H). This information
may provide valuable guidance for understanding a multivariate
response to a protocol designed to select for these traits.

Some traits, like MQI, friability, and extract are genetically
correlated with each other. This correlation was reflected in our
results by the finding that these traits were significantly associated
with the same markers. Traits such as viscosity and friability or
final attenuation, VZ45, and extract interact to define malting
properties, which contribute to important phenotypic effects. It is
crucial to be aware of these interactions to understand the trade-
offs implied in the optimization of cultivars.

For example, breeders should be aware that high grain protein
concentration is associated with low levels of malt extract. High
grain protein increases the likelihood of a chill haze in beer, and
barleys with low grain protein concentrations are more econom-
ically efficient in the malting process [90]. High protein reduces
efficiency, because the grain takes up water slowly and unevenly
during the germination process. In addition to producing low
levels of malt extract, the resulting beer has a longer filtration time,
develops cloudiness, and possesses a shorter shelf life. On the other
hand, insufficient levels of grain protein may limit the growth of
yeast during the fermentation process; it also reduces the stability
of the beer head because the beer foam cannot cling effectively to
the side of the glass. Consequently, maltsters prefer a GPC close to
10.5% [90]. It behooves the breeder to know which parameters
are correlated, because these parameters require balancing to
achieve the optimal outcome.
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Conclusions

The current work contributed to the understanding of the
genetic basis of kernel and malting qualities in barley. The use of a
broad phenotypic data collection that spanned a long time range
and several locations provided a means to de-emphasize environ-
mental effects on barley trait expression. We found that combining
this historical phenotypic dataset with high-density, low-cost
markers such as DArTs facilitated the discovery of new MTAs
for barley. As shown previously, we found that association
mapping was a powerful, promising approach for dissecting the
complexities of malting and brewing qualities in barley. In
addition to confirming various known QTLs, we identified some
new MTAs; e.g., markers for MQI and viscosity. The MTAs
identified in this study will be useful for selecting favorable
genotypes in this germplasm that can be used to develop improved
barley varieties. The findings of this study should be validated in
future field experiments. Our research demonstrated the advan-
tage of combining more than 20 years of expensive phenotyping
information with high-density, low-cost marker technology.

Materials and Methods

Germplasm and phenotypic data

A set of 174 European barley cultivars that included 85 two-
rowed spring and 89 winter types (57 two-rowed and 32 six-rowed)
were included in this study. Historical phenotypic data were
available for all 174 cultivars in the annual statistical reports
from the German Brewery Association (http://www.
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Table 4. Number of significant (# sign) MTAs, based on high and low thresholds of significance, identified by applying the GWAS

model with eigenvalues as fixed effects (fixed PCA score model).

Trait # sign. MTAs # sign. MTAs # sign. MTAs Chromosomes
-log10(P) >3.65 3.35 < —log10(P) <3.65 —log10(P) >3.35 with MTAs

GY 6 2 8 1H, 5H®, 7H

TGW 3 5 8 1H, 5H®

HLW 2 0 2 1H, 5H

KF 9 1 10 2H@, 3H

GF 13 0 13 1H, 2H?, 3H, 7H

SF_<2.2 mm 3 1 4 3H

SF_2.2-2.5 mm 1 0 1 6H

SF_>2.8 mm 1 5 6 2H

K_RP 11 4 15 2H®, 5H®), 6H, 7H

M_RP 8 0 8 5H, 6H

SoIN 8 2 10 1H,7H

SolP 7 3 10 1H, 5H?

Visc 4 0 4 7H®

Col 2 0 2 1H, 6H

Fria 6 7 13 3H, 4H, 5H?

VZ45 5 4 9 1H, 3H

Extr 5 1 6 1H, 2H, 5H

FiAt 0 0 0 -

mal 7 4 1 2H®), 5H@, 7H®@

Total 101 39 140

Markers located within 5 cM of each other were considered to be the same MTA. The superscript number shown in parentheses next to a chromosome number

indicates the number of MTAs on that chromosome.

doi:10.1371/journal.pone.0110046.t004

braugerstengemeinschaft.de). The historical data were collected
from 1985 to 2007 and stored in a database called “MetaBrew”
[95]. The following nine agronomic traits were considered: grain
yield (GY), thousand grain weight (TGW), hectoliter weight
(HLW), kernel formation (KF), glume fineness (GF), three sieve
fractions (SF), and raw kernel protein content (K_RP). Ten
malting quality traits were also considered: raw malt protein
content (M_RP), soluble nitrogen (solN), soluble protein (solP),
viscosity (Visc), color (Col), friability (Fria), saccharification
number VZ45°C (VZ45), malt extract (Extr), final attenuation
(FiAt), and malting quality index (MQI). Malting quality
parameters were assessed with standard procedures recommended
by the European Brewery Convention (EBC) and the ‘Mitteleur-
opaische Brautechnische Analysenkommission (MEBAK)’.

Genotyping with DArT markers

Seeds for all cultivars were obtained from the breeders. Seeds
were grown into young plantlets. Leaf material was harvested from
five to six seedlings that were 10 days old. The material was
bulked, and genomic DNA was extracted according to the
requirements of Triticarte Pty. Ltd. (Canberra, Australia), as
described previously [25,26]. A dense, whole genome scan was
performed with Diversity Array Technology (DArT), which
generated 1,088 mapped and 774 unmapped biallelic markers
for this population, according to the published DArT consensus
map [37]. The locus designations used by Triticarte Pty. Ltd. were
adopted in this study, and DArT markers were named with the
prefix “bPb,” followed by a unique numerical identifier. We
removed markers with minor allele frequencies less than 0.05.
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Figure 4. Barley consensus map with DArT markers significantly associated with kernel and malting quality traits. Only markers with
the highest effect on a given chromosomal position are depicted. All MTAs that reflect kernel and malting quality parameters are defined either with
a strict significance threshold =-log,(P)>3.65 (dark red) or a liberal significance threshold=-log,o(P) <3.35 (light red). DArT =Diversity Array
Technology, MTA=marker-trait association, GY=grain yield, TGW =thousand grain weight, HLW =hectoliter weight, KF=kernel formation,
GF =glume fineness, SF =sieve fraction, K_RP =raw kernel protein content, M_RP =raw malt protein content, soIN = soluble nitrogen, solP =soluble
protein, Visc = viscosity, Col = color, Fria =friability, VZ45 = saccharification number VZ45°C, Extr = malt extract, FiAt =final attenuation, MQIl = malting

quality index.
doi:10.1371/journal.pone.0110046.g004

Then, a set of 839 mapped DArT markers was selected for the
GWAS to provide coverage that was evenly distributed over the
seven barley linkage groups (Figure S2).

Analysis of phenotypic data

Our objective was to concentrate on major, stable MTAs.
Therefore, we calculated cultivar-adjusted means over locations
and years for each of the traits. Prior to the analysis, traits that
were expressed in percentages were log-transformed, such as sieve
fraction (SF) and raw protein in kernel or malt (K_RP, M_RP).
The following mixed model was used to estimate adjusted cultivar
means (random terms underlined):

Y=kt Git Y+ GYij+en

. . -th . . th th
Vi 18 the observation of the i cultivar, in the j year, and the &
replicate (location) nested within year j; u is an intercept; G; is the
fixed cultivar effect; ¥; is the random vyear effect, where;
Y,~N (0,02)/); GY; is the interaction between the cultivar and
the year, where; GYU~N(0,0'2GY); and gy is a residual term,
where; g ~N(0,Ug). Note that, because locations are considered

replications within a year, location effects (and corresponding
interactions with cultivars) do not appear explicitly in the statistical
model, but are pooled within the residual term, ;. Evaluating
locations as replicates was justified in this type of trial network,
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Model Eigenanalysis fixed trait GY
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Figure 5. Manhattan plot for GWAS of grain yield (GY),
considering eigenvalues (PCA scores) as fixed effects. The
significance threshold is -log,o(P) >3.65.
doi:10.1371/journal.pone.0110046.g005
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because all testing sites were mainly selected to represent the same
target production environment. The best linear unbiased estimates
(BLUEs) obtained from this model were used in the subsequent
GWAS (Table S1).

Analysis of linkage disequilibrium (LD) between markers

According to previous studies [96,97], the LD between every
pair of markers (m, n) in the same linkage group was assessed with
the following statistical model:

mi=Po+ > spd,+nify+e;
r

where; m; and n; are the scores of markers, m and n, of genotype ¢

(with values —1 or 1 for either of the two homozygous genotypes);
S;p denotes the scores of the first p principal components from an
eigenanalysis (singular value decomposition of the molecular
marker matrix), as described in [53]. This term represents the
effect of population structure. The magnitude of the LD between
the markers was assessed by the partial 7 associated with the 1,
term. An empirical threshold for LD was determined by randomly
sampling 1000 pairs of independent markers (i.e., markers known
to map to different linkage groups). T'wo thresholds were used: one
was strict, based on the upper 95% quantile of the distribution of
#? values and the other was more liberal, based on the upper 80%
quantile of the observed 7? values. To assess how far the LD
extended on a particular chromosome, we used the intersection of
the threshold »* with a 95% quantile non-linear regression line
fitted to the observed 7 values on the particular chromosome. The
non-linear quantile regression fitting was based on the method of
Koenker & D’Orey [98], which has been implemented in GenStat
16 software [99]. The strict threshold was used to define a lower
limit of the LD extension and the liberal threshold used to define
an upper limit of the LD extension.

In turn, the LD-decay information for each chromosome was
used to define a multiple testing correction threshold for the
GWAS, as described previously [96]. This approach was based on
a Bonferroni correction, but instead of using all markers as the
denominator, it used the number of effective (independent) tests
performed genome-wide. We defined the number of independent

/ . .
tests as n, = Z d—c, where; /. is the length in ¢cM of chromosome c,
¢ (4

and dc is the extension of LD for chromosome ¢, and calculated
the P-value significance threshold, as follows (on a log scale) where;
P* is the genome-wide threshold level (set as 0.05 in our study):

— log(P)=—log <Zj)

Genome-wide marker-trait association analysis (GWAS)

GWAS was performed with models that accounted for the
genetic relatedness between varieties. Genetic relatedness was
expressed in several alternate ways, including the realized kinship
(model K), a group factor, based on population structure (fixed or
random group models), or a set of individual principal components
scores that served as fixed or random covariables in the model
(fixed or random PCA score models, respectively). We also used a
model that did not include a correction for genetic relatedness
(naive model).
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Y, =utxio+g +eg, ~N(0,46%),

A=2K,g;~N(0,6>) (modelK)

¥ =+ Sk +x0+¢;, g~ N(0,l0%)

(fixed group model)

yi=u+S; +x,-oc+g§k~N(0,a§),

g;~N(0,1 ) (random group model)

Yi=p+

> sy +Xintg g~ N(0.I6%)
»

(fixed PCA score model)

vi=ut Y spd, +xoteid, ~N(O0,1o}), £~ N(0,I°)
P

(random PCA score model)

yi =+ xi0+g;,€;~ N(0,I6%)(naive model)

In the models above, u is a constant (intercept); X; is a marker
covariate with values —1 or 1 to denote one of the two
homozygous marker genotypes; o is the marker effect; g; is a
random polygenic effect; is the fixed group effect (random when
underlined); si, denotes the scores of the first p principal
components, and ¢, is the associated fixed effect (random when
underlined).

The significance of each MTA was assessed with the Wald test,
and results are expressed with the associated P-values on a —log
scale. The performances of the different models were compared by
their inflation factors. We focused the discussion of significant
MTASs on results from the model that performed best (fixed PCA
score model).

All models were fitted with GenStat version 16 [99] with the
available features for LD mapping. The mixed linear model
(MLM) was fitted with the residual maximum likelihood (REML)
method. Graphical mapping of the most significant MTAs was
performed with QGene version 4.3.7 [100].

Comparison with known QTLs

For comparisons between significantly-associated DArT mark-
ers and known QTLs, the marker and chromosome position
information from GrainGenes (http://www.graingenes.org) and
from Barley World (http://www.barleyworld.org/) were com-
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pared to the reference DArT map created previously [37]. Some
marker-associated traits assessed in this study were similar to those
identified with known QTLs reported for barley in the
GrainGenes database or literature. When the trait designation
was missing, but similar, or limited information was available,
results were compared between traits with similar features. For
example, in some cases, HLW was compared to test weight; KF
was compared to kernel length and plumpness; kernel weight was
compared to TGW; plan test weight was compared to yield;
friability was compared to milling energy and malt tenderness; and
SolP was compared to the ratio of soluble/total protein
(=Kolbach index).

Supporting Information

Figure S1 Histograms of the phenotypic trait distribu-
tion among cultivars. GY =grain yield, MY =marketable
yield, TGW = thousand grain weight, HLW = hectoliter weight,
KF =kernel formation, GF = glume fineness, SF =sieve fraction,
K_RP=raw kernel protein content, M_RP =raw malt protein
content, solN =soluble nitrogen, solP =soluble protein, Visc=-
viscosity, Col=color, Fria=friability, VZ45 =saccharification
number VZ45°C, Extr =malt extract, FiAt=final attenuation,
MQI = malting quality index.

(ZIP)

Figure S2 Chromosomal distribution of the 839 DArT
markerDArT markers used for the genome-wide asso-

ciation analysis. Distances are given in cM.
(TTF)

Figure S3 Intrachromosomal LD-decay between all
pairs of DArT markers shown for each barley chromo-

some, 1H to 7H, after correcting for population
structure.
(TIF)

Figure S4 Comparison of P-values obtained by applying
the naive model (blue line) and the mixed linear model
(MLM). The MLM incorporates corrections for population
structure and kinship, based on PCA scores (red line). The
comparison permits a check of the quality of the association results
depicted for four traits (a) Grain yield (GY), (b) hectoliter weight
(HLW), (c) kernel formation (KF), and (d) thousand grain weight
(TGW).

(Z1IP)

Figure S5 Manhattan plots show GWAS results from the
PCA-corrected model for all kernel and malting param-
eters. GY =grain yield, MY = marketable yield, TGW = thou-
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