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Abstract

Limited efficacy of current therapeutic approaches for neurodegenerative disease

has led to increased interest in alternative therapies. Cord blood plasma (CBP)

derived from human umbilical cord blood (hUCB) may be a potential therapeutic.

Benefits of CBP injection into rodent models of aging or ischaemic stroke have been

demonstrated, though how benefits are elicited is still unclear. The present study

evaluated various factors within the same samples of CBP and human adult blood

plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum

supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were deter-

mined. Results showed significantly low concentrations of pro‐inflammatory cytoki-

nes (IL‐2, IL‐6, IFN‐γ, and TNF‐α) and elevated chemokine IL‐8 in CBP. Significantly

higher levels of VEGF, G‐CSF, EGF and FGF‐basic growth factors were determined

in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC

hUCB viability and decreased apoptotic cell activity. We are first to demonstrate

the unique CBP composition of cytokines and growth factors within the same CBP

samples derived from hUCB. Also, our novel finding that autologous CBP promoted

MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP's poten-

tial as a sole therapeutic or cell‐additive agent in developing therapies for various

neurodegenerative diseases.
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1 | INTRODUCTION

Cord blood plasma (CBP) is commonly obtained from human umbili-

cal cord blood (hUCB) during cell isolation and has mainly been con-

sidered a waste product. However, the trophic effect of CBP has

been shown in replacing standard serum during the expansion of

hUCB‐derived mesenchymal stem cells,1 human dental stem cells,2

hUCB‐derived T‐lymphocytes,3 or human endothelial colony‐forming

cells4 in vitro. Moreover, the therapeutic potential of CBP adminis-

tration into rats modelling acute ischaemic stroke was demonstrated

by enhancement of neurogenesis and reduction of inflammation

leading to significant post‐stroke functional recovery.5 Also, tissue

inhibitor of metalloproteinases 2, a plasticity‐enhancing protein from

CBP, has been found to promote restoration of hippocampal func-

tion and memory in aged 18 months old mice after CBP treatment.6

A recent study7 showed beneficial functional improvement in an
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Alzheimer's disease (AD) mouse model by injection of a specific frac-

tion from cord blood serum compared to adult blood serum. Addi-

tionally, umbilical cord serum has being effectively employed for the

treatment of corneal defects8,9 and neurotrophic keratitis10 in

humans.

In a relatively recent study,11 we showed the ability of CBP to

modulate mitogen‐induced in vitro proliferation of mononuclear cells

(MNC) isolated from the peripheral blood of amyotrophic lateral scle-

rosis (ALS) patients. Interestingly, three distinct cell responses to the

mitogenic factor phytohemmagglutinin were noted, suggesting

altered lymphocyte functionality in ALS patients. MNC responses

were shown to be regulated by CBP treatment in vitro. Additionally,

the apoptotic activity of MNCs isolated from ALS patients was sig-

nificantly reduced by supplementing media with CBP. Thus, these

study results have not only broadened the therapeutic application of

CBP for ALS, but also further expanded its potential for treatment

of other neurodegenerative disorders with immunological aspects.

It has been shown that CBP contains high amounts of various

growth factors, such as vascular endothelial growth factor (VEGF),

insulin‐like growth factor‐1 and transforming growth factor (TGF)‐β,
that are required for cell maintenance during hematopoiesis.3,12

Although CBP can exert a favourable effect on hematopoietic stem

cells, whether CBP elicits therapeutic benefit as an additive to, or

substitute for, cells must be determined before developing clinically

relevant CBP‐based therapies for various neurodegenerative

diseases.

The aim of this study was to characterize the composition of fac-

tors in CBP derived from hUCB, which might mediate therapeutic

benefit. First, cytokine and growth factor profiles were analyzed in

the same CBP samples. Second, the efficacy of autologous CBP on

MNC hUCB viability in vitro was investigated. Finally, the effect of

autologous CBP upon the apoptotic MNC hUCB response in vitro

was examined. These study results provide a basis for further estab-

lishment of CBP as a potential self‐contained therapeutic or as a

supportive diluent for MNC hUCB infusion in treatment of neurode-

generative diseases.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

The human umbilical cord blood (hUCB) units were collected by

Texas Cord Blood Bank (TCBB, GenCure, West San Antonio, TX,

USA) and provided to Saneron CCEL Therapeutics, Inc. for research

purposes. The cord blood units were obtained from full‐term preg-

nancies by vaginal delivery. The umbilical cord blood units were

received within 48 hours of collection. Maternal blood samples, col-

lected as the same time as the cord blood, were tested by TCBB for

infectious disease markers of HIV, hepatitis B and C, syphilis, CMV

and HTLV I&II, and test results were provided for validation of the

cord blood units. Each cord blood unit in the study was negative for

all infectious disease markers as determined in maternal blood.

Human adult blood plasma or sera (ABP/S) was obtained from a

commercially available source (Sigma‐Aldrich, St. Louis, MO, USA).

Upon receipt of ABP/S, samples were aliquoted and stored at

−20°C.

2.2 | Human umbilical cord blood processing and
plasma isolation

Human umbilical cord blood (hUCB) units (n = 20), with maternal

blood samples negative for all tested infectious markers, were pro-

cessed to obtain an autologous CBP fraction and mononuclear cell

population (MNC hUCB, U‐CORD‐CELL™, Saneron CCEL Therapeu-

tics, Inc., Tampa, FL, USA) as detailed below. Upon receipt, the cord

blood units were diluted (1:1) with sterile phosphate buffered saline

(PBS) without Mg2+ or Ca2+ (Sigma‐Aldrich, St. Louis, MO, USA). The

cord blood was then fractionated using the density gradient solution

Ficoll (Ficoll‐Paque Premium: 1.078 g/mL, Cat. No. 17544202; Milli-

poreSigma, St. Louis, MO, USA) in the Sepax 2 fully automated cell

processing system (Biosafe America Inc., Houston, TX, USA). This

allowed for the sterile collection of both CBP and MNC hUCB from

each unit of cord blood. The CBP was further centrifuged at 3000 g

for 10 minutes to remove any additional red blood cells. The CBP

was then aliquoted and stored at −20°C. The MNC hUCB cell num-

bers and viability were determined using the Vi‐CELL Viability Ana-

lyzer (Beckman Coulter, Brea, CA, USA). MNC hUCB was then

frozen at 5 × 107 cells per vial using a proprietary cryopreservation

media (Saneron CCEL Therapeutics, Inc.) and stored in liquid

nitrogen.

2.3 | Cytokine profile in human umbilical cord
blood plasma

A human ultrasensitive cytokine 10‐plex panel (Invitrogen, Carlsbad,

CA, USA; Cat. No. LHC6004) was used as previously described13 to

determine the concentrations of cytokines within CBP (n = 20) and

ABP/S (n = 6) in triplicate, following the manufacturer's protocol. All

measurements were performed by an investigator blinded to the

sample source. Granulocyte‐macrophage colony‐stimulating factor

(GM‐CSF) and cytokine levels of interleukin (IL)‐1β, IL‐2, IL‐4, IL‐5,
IL‐6, IL‐8, IL‐10, interferon‐gamma (IFN‐γ), tumour necrosis factor‐
alpha (TNF‐α) and GM‐CSF were quantified using the Bio‐Rad Bio‐
Plex® Luminex 200 multiplex assay system (Bio‐Rad Laboratories

Inc., Hercules, CA, USA). The Bio‐Rad Bio‐Plex® 200 software

(BioRad Laboratories Inc., Hercules CA, USA) was used to calculate

the sample cytokine concentrations according to a standard curve

and results were presented as picograms of analyte per milliliter

(pg/mL).

2.4 | Growth factor profile in human umbilical cord
blood plasma

A human growth factor 4‐plex panel (Invitrogen; Cat No. LHC0007)

was employed to determine various growth factor levels within CBP

(n = 20) and ABP/S (n = 6) samples in triplicate, following the
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manufacturer's protocol. All measurements were performed by an

investigator blinded to the source of the samples. Levels of VEGF,

granulocyte colony‐stimulating factor (G‐CSF), epidermal growth fac-

tor (EGF) and fibroblast growth factor basic (FGF‐basic) were deter-

mined using the Bio‐Rad Bio‐Plex® Luminex 200 multiplex assay

(BioRad Laboratories Inc., Hercules CA, USA). The Bio‐Rad Bio‐Plex®

200 software (BioRad Laboratories Inc., Hercules CA, USA) was used

to calculate the sample growth factor concentrations accordingly to

a standard curve and results were presented as pg/mL.

2.5 | Viability of MNC hUCB cultured with
autologous CBP

Cryopreserved MNC hUCB cells (n = 4 units) were quickly thawed

at 37°C, washed with PBS, and centrifuged at 400 g for 5 minutes.

Cell quantity and viability were determined using a haemocytometer.

The cells were then re‐suspended with phenol‐free RPMI‐1640
media (Gibco, Dublin, Ireland; Cat. No. 11835030) and plated in a

24‐well cell culture plate at a density of 5 × 104 cells/well. Pre‐desig-
nated wells were supplemented with 10% of autologous CBP, ABP/

S, or foetal bovine serum (FBS) (Gibco, Dublin, Ireland; Cat No.

10438026) upon initial plating in duplicate. Cells were incubated at

37°C with 5% CO2 for 5 days. Media was changed at 24 hours and

3 days after cell plating. On day 5, cell viability was determined

using the LIVE/DEAD viability/cytotoxicity kit (Molecular Probes, Cat

No. R37601) accordingly to the manufacturer's instructions. Briefly,

the culture media was replaced with 250 μL of fresh PBS in each

well. In an equal volume to PBS, LIVE/DEAD working solution

(250 μL) was added to each well and incubated at 37°C for 30 min-

utes. After incubation, confocal microscopy images (n = 3‐4/well,

totalling n = 16‐20/supplement, mainly from the middle of the well)

of cell fluorescence were obtained at 10x magnification for cell

quantification using the Olympus FluoView 1000 confocal laser

scanning microscope (Olympus Corporation of the Americas, Center

Valley, PA, USA). Live cells were labelled with green fluorescence

through the conversion of non‐fluorescent cell‐permanent calcein

acetoxymethyl to intensely fluorescent calcein by ubiquitous intracel-

lular esterase enzyme activity. Dead cells were identified using ethid-

ium homodimer‐1, which enters cells through damaged membranes

and produces a red fluorescence upon binding to nucleic acids. Cell

counts of live (green) and dead (red) cells were determined using

NIH ImageJ software (version 1.46).

2.6 | Apoptotic activity of MNC hUCB cultured
with autologous CBP

Cryopreserved MNC hUCB cells (n = 6 units) were quickly thawed

at 37°C, washed with PBS, and centrifuged at 400 g for 5 minutes.

Cell quantity and viability were determined using a haemocytometer.

Cells were then re‐suspended with phenol‐free RPMI‐1640 media

and plated in a 96‐well culture plate at a density of 2 × 104 cells/

well. Pre‐designated wells were supplemented with 10% of either

autologous CBP, ABP/S, or FBS upon initial plating in duplicate. Cells

were incubated at 37°C with 5% CO2 for 5 days. Media was chan-

ged at 24 hours and 3 days after cell plating. On day 5, the apop-

totic activity of the cells was determined using the HT TiterTACS™

Assay kit (Trevigen, Bio‐Techne, Minneapolis, MN, USA; Cat No.

4822‐96‐K) accordingly to the manufacturer's instructions. Briefly,

the cells were washed with 200 μL of sterile PBS, then quickly fixed

using a 3.7% PBS buffered formaldehyde solution. The cells were

washed once more with PBS and then permeabilized with Cytonin™

(50 μL/well). TACS‐Nuclease™ (50 μL/well) was then added to desig-

nated wells to determine total absorbance. The plate was incubated

for 60 minutes at 37°C following a wash with PBS. The endogenous

peroxidase activity was quenched with a 3% hydrogen peroxide

solution. The wells were then washed once more with PBS and a 1x

TdT labelling buffer reaction mix was added to the wells and incu-

bated at 37°C for 60 minutes. To stop the labelling reaction, 1x TdT

stop buffer was added to the well and incubated for 5 minutes, fol-

lowed by a wash with PBS. The streptavidin‐HRP enzyme solution

was then added to the wells and incubated for 10 minutes at RT.

After an additional wash with PBS, the TACS‐Sapphire substrate

solution was added and incubated for 30 minutes at RT with light

protection. Stop solution of 0.2N HCl was added to each well and

absorbance at 450 nm was measured using a spectrophotometer

(SpectraMax Plus 384 microplate reader, Molecular Devices, LLC.,

San Jose, CA, USA). Results were calculated as the percentage of rel-

ative apoptotic absorbance values to maximum absorbance values

determined for each culture condition. Cell morphology was

observed using phase contrast images (n = 6/supplement) obtained

at 20x using an Olympus IX70 inverted microscope (Olympus Corpo-

ration of the Americas, Center Valley, PA, USA).

2.7 | Statistical analysis

Data was presented as mean ± SEM Statistical analysis was per-

formed using GraphPad Prism Software version 5 (GraphPad Soft-

ware, Inc.). The results for MNC hUCB viability and apoptotic

activity were evaluated using a one‐way ANOVA with Tukey's Multi-

ple Comparison post‐hoc test. The results for cytokine and growth

factors in CBP were analyzed with a two‐tailed t test using same

software. A value of P < 0.05 was considered significant.

3 | RESULTS

3.1 | Cord blood plasma cytokine profile

Samples of CBP and ABP/S were assayed to determine cytokine pro-

files using an ultrasensitive human cytokine 10‐plex panel. Results

showed significantly (P < 0.01) lower concentrations of the pro‐
inflammatory cytokines IL‐2, IFN‐γ and TNF‐α in CBP compared to

ABP/S (Figure 1B,H,I). Additionally, levels of immunomodulatory IL‐5
(Figure 1D) and multifunctional IL‐6 (Figure 1E) cytokines were also

significantly (P < 0.01) lower in CBP vs. ABP/S. Significantly

(P < 0.01) elevated concentrations of the chemokine IL‐8 were

determined in CBP in comparison in ABP/S (Figure 1F). Interestingly,
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levels of the pro‐inflammatory immune cell maturating factor, GM‐
CSF, were significantly (P < 0.01) lower in CBP than in ABP/S

(Figure 1J). Although the levels of IL‐1β, IL‐4 and IL‐10 were slightly

reduced in CBP compared to ABP/S, these reductions were not sta-

tistically significant (P > 0.05) (Figure 1A,C,G). While anti‐inflamma-

tory IL‐4 and IL‐10 cytokine concentrations were not significantly

different between CBP and ABP/S, it is important to note that most

of the pro‐inflammatory cytokines within CBP were present at lower

concentrations than their anti‐inflammatory counterparts. Concentra-

tions of cytokines in CBP and ABP/S are provided in Table 1A.

3.2 | Cord blood plasma growth factor profile

The levels of several common growth factors were measured in CBP

and ABP/S using a human growth factor four‐plex assay. The con-

centrations of VEGF were significantly (P < 0.01) higher in CBP,

more than two‐fold, vs. ABP/S (Figure 2A). The concentrations of

G‐CSF, a bone marrow stem cell stimulating growth factor, were also

significantly (P < 0.05) higher in CBP compared to ABP/S (Figure 2B).

Also, the cell proliferating growth factors: epidermal growth factor

(EGF) and fibroblast growth factor basic (FGF‐basic) were signifi-

cantly (P < 0.01) elevated in CBP (Figure 2C,D; respectively). Of

note, the levels of EGF and FGF‐basic factors were about 2.5‐fold

higher in CBP vs. ABP/S. Levels of growth factors in CBP and ABP/S

are indicated in Table 1B.

3.3 | Viability of MNC hUCB cultured with
autologous CBP

Cryopreserved MNC hUCB was incubated with RPMI‐1640 media

supplemented with autologous CBP, ABP/S, or FBS for 5 days. After

5 days in vitro, the cells were stained using the LIVE/DEAD Viability/

Cytotoxicity assay to identify the viable (green fluorescence) and

non‐viable cytotoxic cell populations (red fluorescence). Numerous

viable MNC hUCB were observed in cultures with CBP (Figure 3Aa)

and FBS (Figure 3Ac) supplements. Fewer viable cells were seen

with ABP/S (Figure 3Ab) added into media. Live cell counts of MNC

hUCB supplemented with autologous CBP were significantly

(83.83 ± 10.86 cell number, P < 0.05) higher vs. cultured cells sup-

plemented with ABP/S (60.35 ± 5.50 cell number, Figure 3B). How-

ever, numbers of viable cells cultured with CBP (83.83 ± 10.86 cell

number) and FBS (87.33 ± 7.17 cell number) were similar

(Figure 3B). Importantly, media supplemented with CBP showed sig-

nificantly (P < 0.01) reduced numbers of dead MNC hUCB

(22.50 ± 3.67 cell number) compared to FBS (79.33 ± 10.48 cell

number). Yet, MNC hUCB cultured with FBS demonstrated a

F IGURE 1 Cord blood plasma cytokine profile. The cytokine profiles of CBP (n = 20) and ABP/S (n = 6) were assayed using an
ultrasensitive human cytokine panel in triplicate. Significantly lower concentrations of the pro‐inflammatory cytokines (B) IL‐2, (E) IL‐6, (H)
IFN‐γ and (I) TNF‐α were detected in CBP vs. ABP/S. Levels of immunomodulatory (D) IL‐5 cytokine and (J) GM‐CSF were significantly low in
CBP. A significant increase in (F) IL‐8 was also determined in CBP. There were no significant differences between CBP and ABP/S for (A) IL‐1β,
(C) IL‐4 and (G) IL‐10. **P < 0.01
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significant (P < 0.05) increase of dead cells vs. cultured cells supple-

mented with ABP/S (38.15 ± 6.90 cell number, Figure 3B). Addition-

ally, cells supplemented in media with CBP had a greater ratio of live

to dead cells (3.7:1) compared to cultures that received ABP/S (1.6:1)

or FBS (1.1:1).

3.4 | Apoptotic activity of MNC hUCB cultured
with autologous CBP

Apoptotic activity of cultured MNC hUCB in media supplemented

with autologous CBP, ABP/S, or FBS was analyzed on day 5 in vitro

using a colormetric TUNEL assay. The percentage of apoptotic cells

cultured with CBP was significantly lower (17.39 ± 1.70%) compared

to cultures supplemented with ABP/S (34.72 ± 2.61%, P < 0.001) or

FBS (26.62 ± 2.08%, P < 0.01) (Figure 4A). Interestingly, MNC hUCB

cultured in media containing FBS showed significantly (P < 0.05)

lower apoptotic activity vs. cultured cells with ABP/S. Phase contrast

microscopic images of MNC hUCB in vitro demonstrated a few cells

with abnormal morphology displaying dislocated nuclei in cultures

supplemented with CBP (Figure 4Ba) compared to numerous mor-

phologically damaged cells cultured with ABP/S (Figure 4Bb) or FBS

(Figure 4Bc), supporting apoptotic cell counts.

TABLE 1 Cytokine and growth factor profiles in cord blood plasma and adult blood plasma/serum

A. Cytokine profile (pg/mL) B. Growth factor profile (pg/mL)

Cytokine CBP ABP/S Growth factor CBP ABP/S

IL‐1β 0.97 ± 0.14 1.24 ± 0.19 VEGF 7.23 ± 0.28** 2.94 ± 0.11

IL‐2 0.93 ± 0.05** 2.29 ± 0.27 G‐CSF 59.89 ± 2.26* 46.22 ± 0.52

IL‐4 5.40 ± 0.28 6.05 ± 0.23 EGF 11.00 ± 0.41** 4.64 ± 0.13

IL‐5 1.17 ± 0.07** 1.93 ± 0.22 FGF Basic 6.07 ± 0.18** 2.35 ± 0.12

IL‐6 0.64 ± 0.07** 1.20 ± 0.17

IL‐8 13.02 ± 1.22** 2.98 ± 0.79

IL‐10 1.64 ± 0.08 1.91 ± 0.14

IFN‐γ 0.57 ± 0.08** 1.41 ± 0.21

TNF‐α 1.23 ± 0.07** 2.77 ± 0.25

GM‐CSF 1.91 ± 0.26** 4.46 ± 0.15

Levels of cytokines and growth factors presented as mean ± SEM.

CBP: Cord Blood Plasma; ABP/S: Adult Blood Plasma/Serum; Interleukin (IL): 1β, 2, 4, 5, 6, 8, and 10; IFN‐γ: Interferon‐gamma; TNF‐α: Tumour necrosis

factor‐alpha; GM‐CSF: Granulocyte‐macrophage colony stimulating factor; VEGF: Vascular endothelial growth factor; G‐CSF: Granulocyte‐colony stimu-

lating factor, EGF: Epithelial growth factor; FGF Basic: Fibroblast growth factor basic.

Significance of CBP vs. ABP/S denoted by: *P < 0.05; **P < 0.01.

F IGURE 2 Cord blood plasma growth
factor profile. The levels of the growth
factors were analyzed in CBP (n = 20) and
ABP/S (n = 6) using a human growth factor
multiplex assay in triplicate. Significantly
higher concentrations of (A) VEGF, (B)
G‐CSF, (C) EGF and (D) FGF basic growth
factors were detected in CBP vs. ABP/S.
*P < 0.05, **P < 0.01
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4 | DISCUSSION

In the present study, various factors in CBP derived from hUCB and

the effect of CBP on mononuclear cells isolated from hUCB (MNC

hUCB) in vitro were evaluated in the context of establishing CBP as

a potential therapeutic agent. Cytokine and growth factor profiles

were examined within the same samples of CBP and human adult

blood plasma/sera (ABP/S). The effect of autologous CBP on MNC

hUCB in vitro was determined and compared to ABP/S and standard

FBS media supplements. The major study findings were that CBP

demonstrated: (a) significantly “low” concentrations of the pro‐
inflammatory cytokines IL‐2, IL‐6, IFN‐γ, and TNF‐α; (b) significantly
“low” concentrations of immunomodulatory IL‐5 cytokine and

GM‐CSF; (c) significantly “elevated” level of the chemokine IL‐8; (d)
significantly high concentrations of VEGF, G‐CSF, EGF and

FGF‐basic growth factors; (e) significantly “increased” viability of

MNC hUCB in vitro with autologous CBP media supplement; and (f)

significantly “decreased” apoptotic MNC hUCB in vitro with autolo-

gous CBP media supplement. To our knowledge, we are the first to

demonstrate the unique CBP composition of cytokines and growth

factors within the same samples, providing evidence of the unique

protein content in CBP. Also, our novel finding is that autologous

CBP promoted MNC hUCB viability and reduced apoptotic cell

death in vitro, supporting the notion that CBP has potential as a sole

therapeutic or cell‐additive agent in developing clinically relevant

CBP‐based therapies for various neurodegenerative diseases.

In development of alternative approaches in treatment for age‐
related diseases, proteins from “young” blood have been intensely

investigated. Studies of parabiosis, with shared blood circulatory sys-

tems between old (16‐20 months of age) and young (2‐3 months of

age) mice, have shown significantly improved cognition and physical

F IGURE 3 Viability of MNC hUCB in vitro. MNC hUCB (n = 4 units) was cultured for 5 d in media supplemented with either autologous
CBP, ABP/S, or FBS in duplicate. The cells were stained using the LIVE/DEAD Viability/Cytotoxicity assay to identify the viable (green
fluorescence) and non‐viable cytotoxic (red fluorescence) cell populations from images totalling n = 16‐20/supplemental condition. A, Confocal
microscopy images demonstrated numerous viable (green) MNC hUCB cultured with (Aa) CBP and (Ac) FBS supplements. Fewer viable cells
were detected in culture supplemented with (Ab) ABP/S. Scale bar in Aa‐Ac is 100 μm. (B) MNCs cultured with autologous CBP supplement
showed significantly greater cell survival vs. ABP/S. Also, media supplemented with CBP showed significantly reduced numbers of dead (red)
MNC hUCB compared to FBS. Cells supplemented in media with CBP had a greater live (green)/dead (red) cell ratio compared to cultures that
received ABP/S or FBS.*P < 0.05, **P < 0.01

F IGURE 4 Apoptotic activity of MNC hUCB in vitro. MNC hUCB
(n = 6 units) was cultured for 5 d in media supplemented with either
autologous CBP, ABP/S, or FBS in duplicate. Apoptosis was detected
by TUNEL assay. A, MNCs cultured in autologous CBP showed a
significantly lower percentage of apoptotic absorbance vs. cultures
supplemented with ABP/S or FBS. Cells incubated with FBS also
exhibited significantly lower absorbance of apoptotic activity
compared to ABP/S. *P < 0.05, **P < 0.01, ***P < 0.001. B, Phase
contrast images of MNC hUCB in vitro demonstrated a few cells
with abnormal morphology displaying dislocated nuclei in cultures
supplemented with (Ba) CBP compared to numerous morphologically
damaged cells cultured with (Bb) ABP/S or (Bc) FBS, supporting
apoptotic cell counts. Arrowheads indicate healthy cells with normal
morphology. Arrows indicate cells with abnormal morphology. Scale
bar in Ba‐Bc is 50 μm
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function in both aged wild‐type mice14 and a mouse model of Alz-

heimer's disease (AD).15 Middeldorp et al15 demonstrated that para-

biosis of young wild‐type mice with AD mice for 5 weeks effectively

improved learning and memory while also reducing inflammation in

AD mice. Additionally, the authors noted increased synaptic activity

in the hippocampus of AD mice. Based on these study results, clini-

cal trial (NCT02256306) investigated the safety of 4‐weekly infu-

sions of young blood plasma from donors aged between 18 and

30 years of age into patients with AD. Although no serious adverse

reactions occurred, the study found no significant effect on patient

cognition but did show significant improvements in daily living skills.

Although results of using young blood are promising, it is still unclear

which constituents of “young” blood are providing beneficial effects.

Potentially, paracrine actions are involved in positive outcomes for

treatment of an age‐related disease such as AD. Also, hormonal sta-

tus of donors should be investigated due to the wide age range (18‐
30 years) of donors. Alternatively, plasma derived from hUCB could

be a more beneficial therapeutic due to its unique and uniform

molecular composition.

It has been shown that in addition to a high concentration of

growth factors (reviewed16), human CBP also contains a great

amount of soluble proliferative and immunomodulatory factors such

as (TGF)‐β, G‐CSF, GM‐CSF, monocyte chemoattractant protein

(MCP)‐1, IL‐6, and IL‐8.17 Also, IL‐16 cytokine, a modulator of T cell

activation, has been detected in CBP18 and potentially presents a

physiological mechanism for foetal‐maternal tolerance. Due to CBP's

specific molecular composition, numerous studies1-4 showed benefi-

cial effect of CBP in replacement of standard FBS for various cell

expansions in vitro, which may be essential to achieve appropriate

cell numbers for clinical use.

In our study, cytokine and growth factor levels were analyzed in

the same CBP samples for a better understanding of CBP molecular

composition prior to proposing CBP as a therapeutic agent. We

showed low concentrations of pro‐inflammatory IL‐2, IL‐6, IFN‐γ and

TNF‐α cytokines in CBP, presumably secreted by various cells in

hUCB, which, likely signify the immune immaturity of these cell pop-

ulations. Additionally, our study findings demonstrated a significantly

low concentration of immunomodulatory cytokine IL‐5 in CBP vs.

ABP/S, supporting previous study results.19 This cytokine, mainly

produced by Th2 helper lymphocytes and mast cells, promotes

growth/differentiation of B cells and granulocytes upon immunologi-

cal and/or antigenic priming in development of the adaptive immune

response. However, increased concentrations of IL‐5, IL‐2 and tran-

scription factor GATA‐4 determined in CBP may result in abnormal

patterns of foetal immune system development and induce risk of

allergic disease.20 Also, it has been shown that antioxidant capacity,

evaluated by carbonyl levels in CBP, was significantly higher in

patients delivering neonates by caesarean vs. vaginal route, suggest-

ing that the delivery method impacts oxidative stress.21 In our study,

the low concentration of GM‐CSF found in CBP together with the

low concentrations of pro‐inflammatory cytokines provide further

evidence of anti‐inflammatory hUCB content. Thus, low levels of

pro‐inflammatory and immunomodulatory cytokines in CBP provide

a favourable microenvironment for cellular content in hUCB. It has

been shown that transplantation of MNC derived from hUCB even

from unrelated donors into patients with haematologic malignancies

causes a low incidence of graft‐versus‐host disease compared to

bone marrow or peripheral blood cell administration.22,23

Our study results also demonstrated similar amounts of anti‐
inflammatory IL‐4 and IL‐10 cytokines in CBP and ABP/S, However,

it is important to note that these anti‐inflammatory cytokines were

present at a greater concentration than the pro‐inflammatory con-

stituents of CBP, suggesting a favourable cytokine composition

towards developing CBP as potential therapeutic agent. Since IL‐10
is an important cytokine for downregulation of Th1 inflammatory

cytokines and MHC class II antigens, a decrease of this cytokine is

mainly associated with altered cell‐mediated immunosuppression and

induction of complications during pregnancy.24 In contrast, increased

cord blood IL‐10 was determined in preterm infants compared to

full‐term newborns.25,26 In our study, hUCB units were used from

healthy infants delivered naturally, so IL‐10 levels determined in CBP

vs. ABP/S likely reflect steady immune/inflammatory humoral status

in hUCB.

Amongst our additional important study findings were significant

elevations of VEGF, G‐CSF, EGF and FGF‐basic growth factors in

CBP vs. ABP/S. Both EGF and FGF‐basic promote stem cell renewal

and inhibit cell senescence27 and elevated levels of EGF largely cor-

relate to gestational age and birth weight of the developing foe-

tus.28,29 Thus, the increased levels of EGF and FGF‐basic in CBP

determined in our study may indicate normal foetal development.

Also, increased G‐CSF, a bone marrow stem cell mobilizing factor, in

CBP potentially reflects intensive production of bone marrow

derived stem cells in the foetus. The combination of this growth fac-

tor with MNC hUCB for the treatment of myeloid malignancies in

human adults after radiation promoted cell engraftment in bone mar-

row replacement therapies.30,31 Also, co‐administration of G‐CSF
with MNC hUCB into an animal model of traumatic brain injury

results demonstrated reduction of neuroinflammation and promotion

of stem cells into the injured side of the brain.32

Of note, significantly elevated levels of the chemokine IL‐8 and

VEGF were determined in CBP vs. ABP/S in our study. While IL‐8 is

primarily known as a pro‐inflammatory mediator, it also recognized

as a promoter of angiogenic activity as demonstrated by endothelial

cell survival, proliferation and migration in vitro.33,34 Interestingly,

the concentration of the angiogenic VEGF growth factor was also

significantly higher in CBP vs. ABP/S. It is possible that the elevated

level of VEGF is a result of the high concentration of IL‐8, which

promotes increased expression of VEGF by endothelial cells.35,36 A

recently published study37 demonstrated that microRNA‐containing
exosomes derived from maternal and umbilical cord serum dramati-

cally promote human umbilical vein endothelial cell proliferation,

migration, and tube formation in vitro, highlighting the important role

of exosomes in the regulation of angiogenesis during gestation.

Exclusively, VEGF has been studied for potential therapeutic efficacy

in animal models of ALS38,39 and its use in clinical settings has been

discussed (reviewed40). Nevertheless, CBP containing high levels of
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IL‐8 and VEGF might be a beneficial treatment for repair of the dam-

aged blood–brain barrier and/or blood–spinal cord barrier in patients

with ALS,41-44 AD,45 Parkinson's disease46 and multiple sclerosis.47

Finally, our in vitro studies showed significantly increased viabil-

ity of MNC hUCB when autologous CBP was added to culture

media. Also, apoptotic activity of MNC hUCB in vitro, determined by

TUNEL, was also decreased after autologous CBP exposure com-

pared to cultures supplemented with ABP/S or FBS. Supporting this

novel finding, our previous study has demonstrated reduced activi-

ties of other pro‐apoptotic factors, such as caspase 3/7, from ALS

patient‐derived MNC's cultured in media supplemented with CBP.11

In this context, numerous studies have shown neuroprotective

effects of MNC hUCB administered into animal models of ALS,48-51

AD,52-54 Parkinson's disease,55 ischaemic stroke56,57 and traumatic

brain injury.58,59 However, insignificant numbers of MNC hUCB

were detected in the CNS of these animal models after intravenous

cell administration. This scarcity is likely due to a low rate of cell sur-

vival, since cell preparation and injection involve dilution with a basic

buffer solution. Substitution of this diluent with autologous CBP

might present a more supportive microenvironment for cell survival

and increase therapeutic efficacy of administered MNC hUCB. Espe-

cially, complementing MNC hUCB with autologous CBP may foster

injected cell survival. Our in vitro study results on cell viability and

apoptotic activity support this suggestion. Also, repeated administra-

tions of MNC hUCB cells with autologous CBP may prove even

more advantageous. Alternatively, injection of non‐autologous CBP

alone might be efficacious for treatment of various neurodegenera-

tive diseases and/or aging population per se. Beneficial effects have

been observed from intravenous administration of CBP into rats

modelling acute ischaemic stroke5 or into an animal model of age-

ing.6 In these studies, multiple injections of CBP were performed

and this therapeutic approach needs to be considered. In agreement

with this approach, repeated deliveries of CBP could provide ongo-

ing trophic support for damaged cells and/or tissues. Our study

showed that CBP is a potential therapeutic due to its unique compo-

sition. We are planning in the near future to determine the effect of

CBP alone and in combination with MNC hUCB for treatment of

ALS using a symptomatic animal model of disease for a translational

perspective.

In conclusion, our study results demonstrate uniquely protein

content in the same CBP samples composed of cytokines and

growth factors. The novel in vitro finding of autologous CBP with

MNC hUCB demonstrated the trophic capacity of this combination

through promotion of cell viability and reduction of apoptotic death.

These findings further support the potential of CBP as an indepen-

dent therapeutic or cell‐additive agent in clinical applications for vari-

ous neurodegenerative diseases.
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