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Abstract: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion
Intolerance Disease (SEID) is a chronic multisystem illness of unconfirmed etiology. There are
currently no biomarkers and/or signatures available to assist in the diagnosis of the syndrome
and while numerous mechanisms have been hypothesized to explain the pathology of ME/CFS,
the triggers and/or drivers remain unknown. Initial studies suggested a potential role of the
human herpesviruses especially Epstein-Barr virus (EBV) in the disease process but inconsistent and
conflicting data led to the erroneous suggestion that these viruses had no role in the syndrome. New
studies using more advanced approaches have now demonstrated that specific proteins encoded
by EBV could contribute to the immune and neurological abnormalities exhibited by a subgroup of
patients with ME/CFS. Elucidating the role of these herpesvirus proteins in ME/CFS may lead to the
identification of specific biomarkers and the development of novel therapeutics.

Keywords: myalgic encephalomyelitis/chronic fatigue syndrome; epstein-barr virus (EBV); human
herpesvirus 6 (HHV-6); immune dysfunction; BRRF1; BLLF3; deoxyuridine triphosphate nucleotido-
hydrolase (dUTPase)

1. Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exer-
tion Intolerance Disease (SEID) is a complex chronic multisystem illness of unconfirmed
etiology. ME/CFS is a highly debilitating disorder characterized by severe exacerbation
of fatigue and other symptoms after even mild exertion. The Centers for Disease Control
(CDC)/Fukuda [1], Canadian [2], International Consensus Criteria [3] and the Institute of
Medicine (IOM) [4] have each established criteria to be used in the diagnosis of ME/CFS.
As such, numerous criteria, primarily long-lasting fatigue, have been used over the years
to identify patients afflicted with this syndrome. The lack of a universally accepted clinical
criteria has led to multiple problems and confusion as to how to accurately diagnose and
stratify patients with this syndrome and has made it difficult, if not impossible, to be able to
compare study outcomes in a biologically meaningful way across the board. Furthermore,
numerous studies using small size patient cohorts, which lack statistical power to achieve
reproducible and rigorous results, have further complicated the daunting task of identi-
fying biomarkers/signatures that would be useful for diagnosis and stratification. These
problems have resulted in conflicting data further delaying the pursuit of valid studies on
triggers of this syndrome. Diagnosis of ME/CFS, which is currently conducted according to
the modified Fukuda/Canadian and/or the Institute of Medicine case definition [1,2,4], is
based only on symptom-based exclusion criteria, which include unexplained and persistent
post-exertional fatigue accompanied by numerous symptoms related to immune, endocrine
and cognitive dysfunction. The general consensus of the clinical and research community
is that ME/CFS is not a single illness but rather it represents a heterogeneous population
exhibiting the same symptomology, but with multiple etiologies.
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2. Hypotheses Regarding Mechanisms of Underlying Causes of ME/CFS

In addition to the new name of SEID, a new-case-criteria for clinical diagnosis was
introduced in 2015 (IOM) [4]. This criteria are based exclusively upon symptoms and
require that a patient has: (i) a “substantial reduction/impairment in the ability to engage
in pre-illness levels of occupational, educational, social or personal activities that persists for
more than six months and is accompanied by fatigue, which is new or of definite onset (not
lifelong), is not the result of ongoing excessive exertion and is not substantially alleviated by
rest, (ii) post-exertional malaise, (iii) unrefreshing sleep and (iv) either cognitive impairment
or orthostatic intolerance.” While it is apparent that such diverse symptomology must
be due to alterations in multiple physiological processes, thus a multisystem illness, the
sequence of events leading to the initiation and/or progression of this disease are unknown.
A model depicting the mechanism by which the combined effect of environmental insults,
and stress in genetically susceptible individuals can trigger the symptomology observed in
patients with ME/CFS is shown in Figure 1.
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Figure 1. Model depicting how the combined effect of environmental insults, and stress in genetically
susceptible individuals can trigger neurological, immune and metabolic dysfunction, which together
could contribute to the symptomology observed in ME/CFS [4].

Numerous mechanisms including chronic infections, energy metabolic defects, en-
docrine, immunological and neurological disturbances, as well as autoimmunity have
been hypothesized to explain the pathology of ME/CFS, but as of this time the etiology
of ME/CFS is unknown. Many studies have been conducted that support or dispute
the various hypotheses and while there are several reasons for the occurrence of such
discrepancies, the bottom line is that we do not know what triggers ME/CFS or what the
underlying mechanisms are which result in the manifestation of specific symptoms.

There have been multiple reports of “outbreaks”, associated with exposure to in-
fectious agents, as likely candidates responsible for the symptoms observed in ME/CFS
patients [5]. Various bacteria, including members of the gut microbiome, and viruses such
as human parvovirus B19, enteroviruses, as well as the herpesviruses Epstein-Barr virus
(EBV), human herpesvirus-6 types A and B (HHV-6), and human cytomegalovirus (HCMV),
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have been implicated as possible triggers of ME/CFS. However, conflicting results have
been obtained and the potential role of virus infections remain uncertain despite the fact
that 49 to 93% of patients who develop ME/CFS report that their symptoms developed
after an illness exhibiting “flu-like” symptoms [6–9]. These conflicting results are due to
many variables such as heterogeneity of the patient population, the small size of patient
cohorts used in some studies that does not allow for statistical evaluation, inclusion of
patients who do not fit the case criteria definitions, inadequate/poor controls, different
methodological approaches as well as misinterpretation of the data to name a few.

3. Herpesviruses and ME/CFS
3.1. Serology

There are nine herpesviruses known to infect humans. These include EBV, herpes
simplex virus types 1 and 2 (HSV-1 & -2), HCMV, HHV-6, human herpesvirus-7 (HHV-7),
human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV). While these viruses can
be distinguished based upon cellular tropism, serological reactivities, epidemiological
features and DNA sequences, they share one common feature, in that all establish latent
(persistent) infections in their host and can be periodically reactivated over a person’s
lifetime. Herpesviruses are ubiquitous in the adult population with greater that 95% of the
adults being persistently infected with EBV, HHV-6 and HHV-7.

While there have been sporadic reports in the literature concerning the potential role
of HSV-1&2, HCMV, HHV-7, HHV-8 and VZV in ME/CFS such reports have not been
validated. There have been also numerous studies attempting to link EBV and HHV-6 as po-
tential triggers of ME/CFS. However, these studies provided conflicting data and resulted
in Soto and Straus prematurely declaring that the evidence for herpesviruses involvement
in ME/CFS was fading [10]. What are the reasons for this conclusion? Most of the initial
studies linking ME/CFS to EBV were serological studies performed using the classical EBV
antigens: Early antigen-diffuse pattern (EA-D), Early antigen restricted pattern (EA-R), vi-
ral capsid antigen (VCA) and Epstein-Barr Nuclear Antigen 1 (EBNA 1) [6,11–20]. Overall,
these studies gave conflicting results. Recent studies using more advanced technologies
such as peptide microarray [21] and suspension multiplex immunoassay [22] reported that
the EBV anti-IgG response in ME/CFS patients was not significantly different than controls.
In both studies there were small non-significant differences in IgG response to Epstein-Barr
Nuclear antigen 3C (EBNA-3; EBNA 6) and in the Blomberg study to EA-D. These findings
are consistent with numerous reports raising awareness to the fact that analyses of EBV
serological data are complicated and thus, cautious interpretation is required. This is due
to several factors including, but not limited to, the heterogeneity of the populations under
study, the lack of case study definition, questions concerning the reliability and precision
of the results obtained from different commercial laboratories as well as the lack of a
demonstrated correlation between serological data and viral load indicating that classical
serological data may be of limited use as an indicator of EBV reactivation [23].

3.2. Viral Load

With the exception of a single study by Shikova et al. [24] indicating an active EBV
infection in some ME/CFS patients, most studies have reported no increase in EBV and/or
HHV-6 viral load in patients with ME/CFS [20,25–27]. The overall result of these studies
was that no significant increase in virus load occurred in ME/CFS patients when compared
to controls. These findings combined with the lack of a significant serological response
support the premise of Soto and Straus [10] declaring that the evidence for herpesviruses
involvement in ME/CFS was “fading”. As discussed above, the inability to demonstrate
a herpesvirus such as EBV or HHV-6 as triggers for ME/CFS could be due to numerous
factors including the heterogeneity of the patient population, the small size of patients
used in some studies, the use of patients who do not fit the case criteria definitions, and
inadequate/poor controls. However, and perhaps more importantly, it might be due to



Biomolecules 2021, 11, 185 4 of 17

the choice of methods used to approach the problem and the established dogma regarding
how these viruses replicate and are maintained in vivo.

4. “New” Data Suggesting That Some Herpesviruses, Particularly EBV and HHV-6,
May Be Involved with the Symptomology of ME/CFS in a Subgroup of Patients
4.1. Abortive Lytic Replication (ALR)

A central concept regarding the biology of herpesviruses is that two distinct phases of
viral gene expression exist either in latency or lytic replication where virus progeny are pro-
duced. However, there is accumulating data to suggest that, at least in the case of EBV, this
central concept may be incorrect and that in vivo a third state exists: abortive lytic/leaky
replication. Laichalk and Thorley-Lawson [28] first described ALR in tonsillar plasma cells
and this was further supported by studies of Al Tabaa et al. [29,30], which demonstrated in
plasma cells that only 10–20% of the cells expressing BZLF1 (immediate early protein that
initiates lytic replication) synthesize gp350/gp220 (BLLF1 late gene expression), suggesting
lack of completion of virus replication. Studies by Altmann and Hammerschmidt [31] and
Wen et al. [32] demonstrated the transient expression of several immediate early and early
genes following primary infection of B cells and Shannon-Lowe et al. [33] demonstrated
that this also occurred in epithelial cells. Additional studies by Kalla et al. [34] demon-
strated that in primary B cells, transient expression of these immediate early/early genes
was required to establish latency. However, no late gene expression occurs during this time
and as such this represents ALR. The transient expression of the immediate early/early
lytic genes during this pre-latent state, which can last approximately fourteen days, is
required for the establishment of latency in memory B cells.

There is substantial evidence demonstrating that abortive lytic replication also occurs
in EBV positive malignant tissues from primary biopsies of patients with nasopharyngeal
carcinoma (NPC) [35–38], Burkitt’s lymphoma (BL) [39] and gastric carcinoma [40,41].
Furthermore, studies using a humanized mouse model demonstrated that abortive lytic
replication contributed to lymphoma development in these animals [42,43].

Recent studies analyzing the EBV genome from T and NK cells of patients with
chronic active EBV infection (CAEBV), classified as a lymphoproliferative disorder by the
2016 World Health Organization, revealed viral genomes harboring intragenic deletions in
the BART region and in essential lytic genes (BALF5-DNA polymerase, BMRF1—Double
stranded DNA binding protein, BSLF1—primase, BBLF2/3—helicase-primase and BBLF4—
helicase) [44,45]. Using a BALF5 knockout virus these investigators demonstrated that the
knockout virus immortalized primary B cells as effectively as wild-type virus. Somewhat
surprising was the observation that B cells immortalized with the knockout virus exhibited
higher levels of lytic gene expression than cells immortalized with wild-type virus. The
investigators proposed that deletions in essential lytic genes allowed reactivation of the
lytic cycle but averted virus production and cell lysis. They concluded that the increased
expression of viral lytic genes is reminiscent of the “pre-latent abortive lytic” state, in which
a substantial number of lytic genes are produced for weeks in the absence of progeny
production, which contributes to cell survival upon de novo infection. Furthermore,
these results provide evidence that execution of the entire lytic program is not needed for
cell growth of EBV-associated lymphomas. Interestingly, in some patients with CAEBV
hypersensitivity to mosquito bites and skin lesions resembling hydroa vacciniforme, it was
reported that EBV reactivation occurs in cutaneous lesions of systemic hydroa vacciniforme,
but it is abortive [46].

Prusty et al. [47] using an epithelial (U2OS) cell culture-HHV-6 latency model recently
identified an early stage of HHV-6 reactivation, termed transactivation, characterized
by the transcription of several viral small non-coding RNAs (sncRNAs) and the absence
of increased viral replication. The data suggest that ALR might be occurring in HHV-6
infections. Furthermore, while the lack of complete/productive viral replication occurred
in these cells, the cells gained partial function by viral genome transactivation and the
investigators suggested that this might have clinical significance.
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Halpin et al. [48] reported a significant increase in the levels of anti-herpesviruses
deoxyuridine triphosphate nucleotidohydrolase (dUTPase) antibodies in longitudinal and
single sera samples from patients diagnosed with ME/CFS compared to the controls. More-
over, this group found that a significant percentage of patients with ME/CFS (30.91–52.7%)
were simultaneously producing antibodies against multiple human herpesviruses (EBV
and HHV-6) dUTPases and/or the human dUTPase compared to controls (17.21%). Since
the herpesvirus dUTPases are only expressed during lytic/abortive lytic replication and
these ME/CFS patients had no reported evidence of symptomatic herpesvirus infections,
these results are highly suggestive that ALR was occurring.

4.2. EBV and the Immune System in ME/CFS

Loebel et al. [26] reported a significant reduction of EBNA-1 and VCA antibody
secreting EBV-specific memory B cells in two separate cohorts of ME/CFS patients, who
were diagnosed using the Fukuda criteria. Analyses of CD4+ and CD8+ T cell subsets in
a small cohort of patients also revealed significantly diminished frequencies of EBNA-1-
specific triple TNF-α/IFN-γ/IL-2 producing cells in these patients. Furthermore, when
examining EBV load in PBMCs from ME/CFS patients and healthy control individuals, a
higher frequency of EBER-DNA but not BZLF-1 RNA was observed in ME/CFS patients
compared to healthy individuals, which the authors concluded suggested that latent
replication was a frequent event. Altogether the authors concluded that their data strongly
suggested a deficient EBV-specific B- and T-cell memory response in ME/CFS patients
and highlighted an impaired ability to control early steps of EBV reactivation in these
patients. In a follow up study using a serological peptide microarray approach they
showed that the EBV anti-IgG response to peptides from proteins expressed during lytic
replication (BALF2, BLRF2, BMRF1, BALF5, BZLF1, BFRF3, BLLF1, BLLF3) and during
latency (EBNA1, EBNA3A, EBNA3C, LMP1, LMP2) was not significantly different from
the controls. However, there were small non-significant differences in IgG response to
Epstein-Barr nuclear antigen 3C (EBNA3C; EBNA 6) [21]. This was recently confirmed in a
study conducted by Blomberg et al. [22] using high-throughput serological approaches.

Several studies [49–52] by the same group showed that regulatory T cells (FOXP3+,
Tregs) were significantly elevated in ME/CFS patients compared to controls. Tregs are a
specialized subpopulation of T cells that function to suppress the immune response and,
thus, their increase in ME/CFS patients could indicate an overall disruption of the immune
system. Sepulveda et al. [53] recently proposed a model by which the herpesviruses may
drive ME/CFS through Tregs. However, to date there is no experimental data to validate
this model or to demonstrate how the herpesviruses may modulate Treg proliferation in
patients with ME/CFS.

4.3. Can EBV Proteins Produced during ALR Contribute to the Symptomology of ME/CFS?

A basic question that needs to be addressed is “If a herpesvirus is capable of trig-
gering the development of ME/CFS in a cohort of patients, what is the mechanism(s)
by which this may be accomplished?”. Could a single protein or a group of proteins be
required? How does it proceed—in a linear fashion where disruption of one system results
in the sequential disruption of other systems or rather in a cascade of events resulting
in dysfunction of multiple systems simultaneously? A hypothetical model depicting the
potential interactions between the EBV early proteins Na and dUTPase, encoded by BRRF1
and BLLF3, respectively, and their contribution to the immune dysfunction observed in
ME/CFS patients is shown in Figure 2.
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and dUTPase, encoded by BRRF1 and BLLF3, respectively, and their contribution to the immune
dysfunction observed in patients with ME/CFS.

4.3.1. BRRF1 and Epstein-Barr Induced Gene 2 (EBI2)

BRRF1 encodes for the transcription factor Na, is expressed as an early gene during
lytic replication [54] and it is thought it may play a role in the switch between latent and
lytic EBV replication [55]. Cornaby et al. [56] reported that the EBV BRRF1 gene exhibited a
similar expression pattern to the cellular gene Epstein-Barr induced gene 2 (EBI2) and that
while a BRRF1-deficient virus could not induce EBI2, B cells transduced with the BRRF1
gene resulted in up-regulation of EBI2. Using microarray gene profiling approaches, Kerr
and co-investigators [57–60] identified 88 genes in PBMCs from patients with ME/CFS,
which clustered into eight gene expression subtypes. Interestingly, 12 human genes (NFKB1,
EGR1, ETS1, GABPA, CREBBP, CXCR4, EBI2, HIF1A, JAK1, IL6R, IL7R and PIK3R1) have
been shown to be upregulated, either directly or indirectly, by EBV infection. Of these genes,
EBI2 was the most highly induced gene in one subgroup of patients consisting of only
ME/CFS females, who had the most severe clinical phenotype, the lowest functional level
on the patient short health survey form SF-36 scoring and a high frequency of muscle pain
and sleep problems. EBI2 encodes for GPR183, a member of the rhodopsin-like subfamily
of seven transmembrane G protein-coupled receptors. The natural ligand of EBI2 is an oxys-
terol, 7α, 25-dihydroxycholesterol (7α, 25-OHC), which is expressed primarily in secondary
lymph tissue by stromal cells. EBI2 regulates B cell positioning in lymphoid tissue and is
necessary for initiating T cell-dependent antibody responses [61]. It has been reported that
the EBI2 signaling pathway responds to proinflammatory signals and that it attenuates
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the response of astrocytes to proinflammatory signals in the brain [62,63]. While these
results suggest that EBI2 may play a role in EBV infections, its precise role in this process
remains unknown. Similarly, while EBI2 up-regulation in ME/CFS patients could possibly
contribute to some immune dysfunction observed in these patients, its contributions to
other symptoms such as POTS, brain fog and fatigue, need to be determined.

4.3.2. BLLF3

BLLF3 is expressed as an early gene during lytic replication of EBV and encodes for
a dUTPase. dUTPases represent a family of metalloenzymes that catalyze the hydrolysis
of dUTP to dUMP and pyrophosphate, thus preventing dUTP from being incorporated
into DNA by DNA polymerases. Interestingly, dUTPases are encoded by numerous
viruses including the human herpesviruses, vaccinia virus, African swine fever virus and
human endogenous retrovirus K (HERV-K). In addition to their role in DNA synthesis,
several studies have now demonstrated that the herpesviruses and HERV-K dUTPases
have novel functions and are capable of altering physiological processes independent of
their enzymatic activities [48,64–79].

BLLF3 in ME/CFS

It has been reported that patients with ME/CFS exhibit a statistically significant in-
crease in anti-EBV/HHV-6 dUTPase antibodies compared to controls [48,70]. This suggests
that expression of the BLLF3 gene of EBV and the U45 gene of HHV-6 is occurring in this
subgroup of patients with ME/CFS and raises the question could the dUTPase proteins be
contributing to the symptomology observed in these patients?

BLLF3 Pro-Inflammatory Cytokines and Immune Dysfunction

There have been numerous studies addressing cytokines and/or cytokines networks
in patients with ME/CFS with the hope of elucidating possible mechanisms that cause
immune dysfunction and also of finding a “signature” that would be useful in diagnosing or
stratifying symptom severity [49,80–83]. Systematic reviews of the literature coupled with a
few meta-analysis studies have produced conflicting results [84–87]. TGF-β was identified
in one study as the only cytokine elevated in ME/CFS patients [84] while another study
reported that TNF, IL-2, IL-4 and C-reactive protein were elevated in ME/CFS patients [85].
Yet two additional studies concluded that there were no significant differences in the levels
of plasma cytokines in ME/CFS patients [86,87]. There are many reasons that may have
contributed to the problems associated with developing a specific cytokine signature in
ME/CFS, as discussed earlier, and as such these studies do not preclude the possibility that
specific cytokines may contribute to the immune dysfunction observed in these patients.

Initial studies using EBV dUTPase as the prototype for the monomeric herpesviruses
dUTPases demonstrated that it was capable of inducing the increased secretion of multiple
cytokines and chemokines including TNF-α, TGF-α, IL-1β, IL-6, IL-8, IL-12p40, IL-23,
CCL5, CCL20, and IFN-γ in PBMCs and human primary monocyte derived dendritic cells
(hDCs) [67,72,74,79]. TNF-α, IL-1β, and IL-6 have been identified as important modulators
of sickness behavior in mice [88]. The EBV dUTPase has been reported to cause anxiety
and sickness behavior, which is enhanced by chronic stress [73,75,76]. IFN-γ has also been
associated with the early phase of ME/CFS, suggesting a possible virus trigger for the
disease [81].

To determine the mechanism(s) by which EBV dUTPase induced heightened cy-
tokine and chemokine levels, studies using specific inhibitors, blocking antibodies and
various dominant negative constructs demonstrated that the increase expression of these
cytokines/chemokines was dependent on Toll-like receptor 2 (TLR2) signaling, which
resulted in NF-κB activation [67]. Furthermore, it was demonstrated that EBV dUTPase
is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce
NF-κB activation and cytokine secretion in hDCs and PBMCs through a TLR 2-dependent
mechanism [72]. Exosomes are produced by numerous cell types, have been implicated in
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numerous diseases, including ME/CFS [84], and are capable of trafficking to various or-
gans within the body, including the brain, where they function as intercellular messengers.
These results demonstrated that the EBV dUTPase is acting as a novel Pathogen-Associated
Molecular Pattern (PAMP) ligand protein for TLR2 [72]. Additional studies demonstrated
that the ability to act as a PAMP was not a unique property of EBV dUTPase but a common
feature to the dUTPases encoded by other herpesviruses (HSV-2, HHV-6A, HHV-8, VZV)
and the human endogenous retrovirus-K [68,74]. However, unlike EBV dUTPase, which
formed TLR2 homodimers, these dUTPases differentially activated NF-κB through ligation
of TLR2/TLR1 heterodimers [74].

BLLF3 in Autoimmune Disease

Several studies have demonstrated the presence of autoantibodies in patients with
ME/CFS against numerous cellular components including anchorage molecules [89,90],
heat shock protein 60 [91], human nuclear dUTPase [48], microtubule associated protein
2 [92], muscarinic cholinergic and β-adrenergic receptors [93,94] nuclear envelop protein
lamin B1 [95], serotonin [96,97] and single and double stranded DNA [98], resulting in
the hypothesis that ME/CFS may represent an autoimmune disease [99,100]. It has been
suggested that EBV may be inducing the formation of autoreactive B cells through a
molecular mimicry process with an EBV antigen and self-antigens [99,100]. However,
studies to demonstrate whether or not EBV is inducing the formation of autoantibodies
in patients with ME/CFS through a molecular mimicry mechanism are lacking [21,53].
Furthermore, studies to address B cell populations in patients with ME/CFS have provided
conflicting information [51,101–104].

Cox et al. [105] have recently demonstrated a potential mechanism by which the EBV
and HHV-6 dUTPases could contribute to autoantibody development. Examination of sera
from ME/CFS patients revealed significant increases in levels of activin A and IL-21 but not
CXCL13 in ME/CFS patients, which correlated with seropositivity for anti-EBV and anti-
HHV-6 dUTPase antibodies in these patients. Activin A belongs to the transforming growth
factor-beta (TGF-β) superfamily and is a pleiotropic cytokine affecting several cell types
involved with immune regulation. Activin A has been implicated in several autoimmune
and inflammatory diseases but a causal role has not been established [106]. Elevated activin
A expression has been linked to muscle wasting and loss of muscle mass [107,108]. IL-21 is
a pleiotropic cytokine produced primarily by invariant natural killer T cells (iNKT) cells,
follicular helper T (TFH) cells and TH17 cells [109]. IL-21 is required for the differentiation of
TFH cells, which are important for the germinal center (GC) antibody response [110]. More
importantly, increased serum IL-21 levels have been reported in patients with autoimmune
diseases [111].

In a parallel study, these investigators demonstrated that EBV and HHV-6 dUTPases
induced the secretion of activin A in hDCs at sufficient quantities to promote the differ-
entiation of naïve CD4+ T cells into a TFH cell-like phenotype [105]. Interestingly, serum
from ME/CFS patients was sufficient to drive naive CD4+ T cell differentiation into a TFH
cell-like phenotype.

In addition, immunophenotyping studies demonstrated that the EBV dUTPase protein
induced a significant increase in the frequency of iNKTFH cells, marginal zone B (MZB)
cells and plasmablasts/plasma cells in vivo, which was supported by gene expression anal-
yses [105]. iNKT cells provide B cell help in a cognate T cell-dependent response [111–113].
Such an interaction leads to the development of extrafollicular foci, abortive GC formation,
low affinity maturation and short-lived plasma cells. MZB cells also differentiate into
short-lived, low-affinity extrafollicular plasma cells which are important for mounting
a rapid antibody response to pathogens [114,115]. If dysregulated, these processes can
lead to the production of auto-reactive antibodies and autoimmunity. Altogether, these
data suggest that some patients with ME/CFS may exhibit a dysfunctional GC antibody
response and elevated TFH, both of which have been implicated in several autoantibody-
associated autoimmune diseases, including systemic lupus erythematous, lupus nephritis,
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rheumatoid arthritis and multiple sclerosis. Furthermore, the data support a role for EBV
dUTPase protein in this process by stimulating an extrafollicular antibody response, which
could result in the formation of autoreactive B cells and subsequently, the production of
autoreactive antibodies. While there has been a single study conducted in ME/CFS patients
that reported no differences in MZB cell frequency between case and control groups [49],
several studies have shown an increase in iNKT cells in ME/CFS patients [51–53], which
positively correlated with disease severity in some reports [51,52].

Neuroinflammation

Neuroinflammation is a common feature of ME/CFS, affecting 85–90% of all patients,
yet the underlying mechanism(s) responsible for the initiation and/or promotion of this
process is largely unknown. Although neuroimaging studies have found structural and
functional alterations in the brains of ME/CFS patients, there is limited evidence to suggest
activation of astrocytes and microglia or widespread neuroinflammation in the brains of
these patients [116]. Despite the fact that there are in vivo studies in mice suggesting the
involvement of the NLRP3 inflammasome in the neuroinflammatory process [117,118] and
a study in humans indicating metabolic and temperature abnormalities in the brains of
patients with ME/CFS [119], studies to demonstrate the mechanism(s) by which neuroin-
flammation was induced as well as the consequences of this process are lacking.

A recent study [120] in a mouse model revealed that EBV dUTPase altered the ex-
pression of 34 genes with central roles in blood-brain-barrier (BBB) integrity (CGN, TJP2,
RAPGEF6), fatigue (TCB1D1), pain (GCH1, GPR84), synapse structure (LIN 7b, SYNPO,
RAB33A) and function (Egr1), as well as tryptophan, dopamine and serotonin metabolism
(GCH1, DBH, DRD5, GRK6, KMO, Nr4a1, Slc6a3, SLC6a4, Th, Tph2) (Figure 3).
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old) and the potential neurological circuits modulated with direct implications in ME/CFS. Genes in
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Furthermore, EBV dUTPase may alter synaptic plasticity in vivo, which is important
in learning and memory processes, as indicated by the ability of the dUTPase protein to
downregulate the expression of LIN7b, SYNPTO, and RAB33A and upregulate Egr-1 in
mouse brain. These genes have critical functions in (1) ensuring proper localization of the
GRIN2B subunit of the N-methyl-D-aspartate receptor (NMDAR), (2) long-term poten-
tiation, (3) mediating antegrade axonal transport of post-Golgi synaptophysin-positive
vesicles and their fusion at growth cones, and (4) NMDAR-mediated downregulation of
PSD95 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR) trafficking,
all of which are important for synaptic development, plasticity, and functions. AMPAR and
NMDAR play critical roles in the plasticity of most excitatory synapses, as indicated by
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a number of neurologic disorders associated with synaptic dysfunction that have altered
NMDAR and AMPAR expression, trafficking, and signaling. These data suggest that the
EBV dUTPase is capable of altering synaptic structure and function as well as neuronal
communication, which would affect cognitive processes. In addition, in vitro studies using
immortalized primary human cerebral microvascular endothelial cells (hMCEs), astrocytes
and microglia the investigators demonstrated that the EBV dUTPase was a potent inducer
of the proinflammatory cytokines TNF-α, IL-1β and IL-6, which are known to disrupt
the BBB (Figure 4). Thus, the in vitro and in vivo data provide evidence supporting the
premise that EBV dUTPase protein could disrupt the BBB, which would allow the passage
of inflammatory mediators and cells, including dendritic, B and T cells into the brain.
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to controls [120].

Furthermore, while EBV dUTPase induced a transient increase in the expression of
(PTGS2/COX-2) in human astrocytes, it induced a significant and sustained (>24 h) increase
in microglia. The role of COX-2 as an important contributor to neuroinflammatory toxicity
in neurodegenerative diseases is well established [121]

Finally, these studies found that the EBV dUTPase protein modulates tryptophan, sero-
tonin, and dopamine metabolism and use in vitro and in vivo. The EBV dUTPase may alter
kynurenine catabolism in microglia in vitro by increasing the expression of indoleamine
2,3 dioxygenase (IDO1) and kynurenine-3-monooxygenase (KMO), suggesting that there
is an increase synthesis of quinolinic acid. Quinolinic acid, an agonist of NMDAR, can
cause overstimulation that results in neuronal toxicity. Furthermore, the data suggest
the EBV dUTPase protein increases the expression of GTP cyclohydrolase (Gch1), and
down-regulates both tryptophan hydrolase 2 (Tph2) and tyrosine hydrolase (Th). Gch1 is
the rate limiting enzyme necessary for the synthesis of tetrahydropterin (BH4), a substrate
required for serotonin and dopamine synthesis by Tph2 and Th, respectively. Furthermore,
the dopamine receptors Drd1 and Drd5, as well as the serotonin transporter gene Slc6a4,
were also down-regulated. These results suggest that the decreased synthesis and recycling
of dopamine and serotonin coupled with the increased degradation by astrocytes and mi-
croglia could result in low levels of these neurotransmitters ultimately leading to cognitive



Biomolecules 2021, 11, 185 11 of 17

defects and increased oxidative stress. The dopaminergic and serotonergic neurotrans-
mitter systems are reported to play a critical role in the regulation of emotion and mood,
and have been implicated in a wide spectrum of neuropsychiatric disorders. Specifically,
EBV dUTPase simultaneously down-regulated key genes involved with dopamine and
serotonin synthesis as well as key transporters and receptors required for signaling by these
molecules. Low dopamine levels are associated with fatigue, attention deficits, decreased
motivation and depression [122], while low serotonin levels are associated with fatigue,
cognitive impairments, anxiety and digestive problems [123]. These are common symptoms
associated with ME/CFS. Morris et al. [124,125] proposed that alterations in tryptophan
catabolism may contribute to a variety of symptoms observed in several neuroimmune
disorders including ME/CFS.

5. Conclusions and Future Directions

It is clear that the lack of a universally accepted clinical criteria has led to multiple dis-
crepancies, problems and confusion as to how to accurately diagnose and stratify patients
with ME/CFS. This has severely hampered the pursue of studies to clearly define the envi-
ronmental and genetic factors that act as triggers or the downstream mechanisms responsi-
ble for the development/progression of ME/CFS. Furthermore, numerous studies using
small size patient cohorts, which lack the statistical power to achieve reproducible and
rigorous results, have further complicated the task of identifying biomarkers/signatures
that would be useful for diagnosing patients.

The role of some herpesviruses in the development and evolution of ME/CFS in a sub-
set of patients has also been hampered because of the use of classical serological approaches
focused primarily on viral proteins expressed during latency or late in the replicative cycle
of these viruses or viral load as indicators for the involvement of herpesviruses in the
pathobiology of ME/CFS. Recent studies using more advanced serological approaches
as well as mechanistic studies have demonstrated the possible role of the EBV BRRF1
and BLLF3 gene products in ME/CFS pathophysiology. Future directions should focus
on exploring the use of these gene products for the development of novel therapeutics
and/or as biomarkers with diagnostic application or disease progression. Additionally,
additional studies need to be performed in light of the new evidence showing high level
of abortive lytic replication of these viruses to determine whether other early herpesvirus
proteins could contribute to the disease process. Finally, since there is evidence suggesting
simultaneous reactivation of multiple herpesviruses in a large percentage of ME/CFS
patients, studies should examine whether or not there is cooperative effects between these
viruses as well as other viruses within the virome that could contribute to human disease.
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