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In Brief

Kuleshov et al. developed a web-based

platform that collects and presents drug

and gene sets related to COVID-19

research. Analysis of the results from six

in vitro drug screens by comparing the

overlap among these screens shows that

there is some unexpected overlap among

them. The authors also use the hits from

these screens to develop a machine-

learning classifier that further prioritizes

the hits and identifies a pharmacological

theme that is shared among several hits.
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THE BIGGER PICTURE The COVID-19 pandemic requires rapid response by the research community to
develop vaccines and therapeutics. While the development of vaccines may take years, drug repurposing
can offer pandemic mitigation much quicker. In vitro drug screening is the first step toward identifying
and prioritizing potential safe therapeutics for COVID-19. However, these screens are done by different
laboratories across the world using different methods. As a result, these screens produce different lists
of hits. Here, we attempted to consolidate the results from these drug screens to find out whether
consensus emerges. In addition, we utilized machine-learning methods to further predict and prioritize
the validity of the hits from these drug screens. Such analysis identified molecular mechanisms that
may explain how some of these drugs interfere with viral replication inside human cells. As more
SARS-CoV-2 drug screens are published, a clearer picture of the most promising drug candidates is ex-
pected to emerge.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
In a short period, many research publications that report sets of experimentally validated drugs as potential
COVID-19 therapies have emerged. To organize this accumulating knowledge, we developed the COVID-19
Drug and Gene Set Library (https://amp.pharm.mssm.edu/covid19/), a collection of drug and gene sets
related to COVID-19 research frommultiple sources. The platform enables users to view, download, analyze,
visualize, and contribute drug and gene sets related to COVID-19 research. To evaluate the content of the
library, we compared the results from six in vitro drug screens for COVID-19 repurposing candidates. Surpris-
ingly, we observe low overlap across screens while highlighting overlapping candidates that should receive
more attention as potential therapeutics for COVID-19. Overall, the COVID-19 Drug and Gene Set Library can
be used to identify community consensus, make researchers and clinicians aware of new potential therapies,
enable machine-learning applications, and facilitate the research community to work together toward a cure.
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is a novel coronavirus that causes the coronavirus dis-

ease (COVID-19). Globally, there are more than 21.5 million
This is an open access article under the CC BY-N
confirmed COVID-19 cases and �766,000 reported deaths

(as of August 15, 2020). Many biomedical researchers have

shifted their efforts to investigate different aspects of the co-

ronavirus COVID-19 pandemic. One area of activity is compu-

tationally prioritizing and experimentally testing approved and
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Figure 1. Screenshot from the Landing Page of the COVID-19 Drug and Gene Set Library
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experimental drugs for repurposing as candidate therapies for

COVID-19. Drug-repurposing studies present a promising

avenue for quickly offering a treatment because many of

these drugs have known safety profiles. So far, drug-repur-

posing studies can be categorized into two groups, in vitro

screens1–6 and computational predictions. Computational

predictions are mostly based on structural biology

methods,7–10 but some are based on network analysis and

transcriptomics.11–13 Few studies have validated top compu-

tational predictions in cell-based assays.7,11,12 The lists of

drugs mentioned in these studies can be analyzed

for consensus while identified drugs can be grouped by their

type.

At the same time, many researchers attempt to understand

the molecular mechanisms of the SARS-CoV-2 virus life cy-

cle. Much attention has been given to studies that use
2 Patterns 1, 100090, October 9, 2020
profiling with mass spectrometry proteomics and phospho-

proteomics. These methods identify host proteins that

interact with each of the SARS-CoV-2 proteins12 or differen-

tially phosphorylated proteins before and after SARS-CoV-2

infection.14 Another important study produced RNA-

sequencing gene expression signatures from various relevant

human cell lines, ferret lungs, and human lung biopsies

before and after SARS-CoV-2 infection.15 These are just a

few examples of the many studies that produce gene sets

that can be organized and compared. In the past, we have

developed a crowdsourcing project whereby we asked the

community to identify gene expression signatures from

drug, gene, and disease perturbations.16 The collection of

over 6,000 signatures that were collected with the help

of more than 70 contributors from around the world

enabled us to produce a useful database called CREEDS
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Figure 2. Counts of Library Drugs and Genes

(A) Counts of most common drugs from the

collection of experimental studies that reported lists

of drugs that inhibit SARS-CoV-2.

(B) Counts of most common drugs from the

collection of computational studies that reported

lists of drugs that may inhibit COVID-19.

(C) Counts of most common genes from the

collection of all gene sets in the library.
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(https://amp.pharm.mssm.edu/CREEDS/). Similarly, for this

project, we developed a crowdsourcing project to integrate

drug and gene sets related to COVID-19 research collected

with the assistance of the research community. The resource

is delivered as a web-based platform that has already been

accessed by >1,700 unique users.
RESULTS

Analysis and Visualization of
Consensus Drug and Gene Sets
So far, we have collected 173 drug sets

composed of 1,620 unique drugs, and

444 gene sets consisting of 18,676 unique

human genes. These are presented to

users via the COVID-19 Drug and Gene

Set Library website in several sortable

and searchable tables (Figure 1). The drug

sets are subdivided into two categories:

experimental (n = 26) and computational

(n = 81). The top 20 most frequent drugs

and genes across all sets are displayed in

Figures 2A–2C. The experimental drugs,

with most supportive evidence, are remde-

sivir, chloroquine, hydroxychloroquine,

and mefloquine (Figure 2A). Although hy-

droxychloroquine, chloroquine, and re-

mdesivir have received a lot of attention

by the media and are tested in many clin-

ical trials, mefloquine received far less

attention. Mefloquine, just like hydroxy-

chloroquine and chloroquine, is an anti-

malaria drug.17 However, it has a different

chemical structure and is known to act

via different mechanisms. The top 20

most commonly computational predicted

drugs include several known antivirals

such as ritonavir, darunavir, lopinavir, and

ribavirin (Figure 2B). This might be due to

their pre-selection as candidates for

computational docking. The top 20 most

frequently submitted genes are all mem-

bers of the innate immune response (Fig-

ure 2C). These genes include the typical

interferon and cytokine response genes

observed to be involved in the response

of human cells to most pathogens.

While most of the drug sets in the library

are from studies that utilized computa-
tional methods, several key studies are from large-scale drug

screens that include mostly Food and Drug Administration-

approved drugs.1–6 Using a Venn diagram, we compared the

results from these six in vitro SARS-CoV-2 drug screen

studies (Figure 3). Overall, there is little overlap across these

screens, with only 11 drugs shared across two or more studies
Patterns 1, 100090, October 9, 2020 3
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(Table 1). Namely, the drugs that appear as hits in more than one

screen, in addition to remdesivir and chloroquine, are meflo-

quine, clofazimine, acitretin, gilteritinib, hexachlorophene, niclo-

samide, tetrandrine, tioguanine, and almitrine. Clofazimine is the

only drug that appeared as a hit in three out of the six screens.

Clofazimine is a drug used to treat leprosy, and its mechanisms

of action suggest that it interferes with DNA synthesis.18 Acitretin

is an anti-inflammatory second-generation retinoid that is used
Table 1. Summary of the Six In Vitro COVID-19 Drug Screens

Analyzed

Authors Journal Hits Method Cells

Jeon et al.2 Antimicrob.

Agents

Chemother.

24 inhibition assay Vero cells

Touret et al.3 bioRxiv 12 inhibition assay Vero cells

Ellinger et al.4 Research

Square

66 inhibition assay Caco-2

Heiser et al.5 bioRxiv 36 image-based

assay

HRCE cells

Riva et al.6 bioRxiv 18 inhibition assay Vero cells

Mirabelli et al.1 bioRxiv 15 image-based

assay

Huh-1 cells
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to treat severe psoriasis; it is a metabolite

of etretinate.19 Almitrine is a drug that

stimulates respiratory respiration by acti-

vating receptors of carotid bodies.20 It is

used for the treatment of chronic obstruc-

tive pulmonary disease,21 and as such, it is

relevant to COVID-19 symptoms. It should

be noted that remdesivir appears as a hit

in all six screens, but it was pre-selected

as a positive control in half of the studies.

The small overlap among the screens

can be due to various reasons including

different assay types, cellular contexts, in-

clusion criteria, original library content,

and different laboratory protocols. We

carefully reviewed and compared the

results from these screens including com-

pounds screened, assays, drug concen-

trations used in screens, incubation, multi-

plicity of infection, and hit criteria. These

aspects are summarized in Table S1, and

the final drug sets from each study are

provided in Table S2. This analysis

enabled us to compare the IC50 values

reported for those drugs that appeared in

multiple screens (Tables 2 and S3). Over-

all, we observe relative consistency of re-

ported IC50 values across screens. We
also checked whether the hits from the six COVID-19 screens

also appeared as hits in other previously published similar

screens for other viruses and other diseases (Figure 4; Tables

S4 and S5). We observe that the hits from the Jeon et al. study2

overlap with several other screens that reported potential antivi-

rals for Zika,22 Ebola,23 and MERS.24 This might confirm the

potentially good quality of the Jeon et al. screen. Next, we exam-

ined whether any of the drugs considered as hits across the six

COVID-19 screens contain pan assay interference compounds

(PAINS) chemotypes.25 To achieve this we compared the

COVID-19 screen hits with a list of PAINS filters downloaded

from ChEMBL.26 To check for possible PAINS among the hits,

we checked whether any of the hits contain any one of the PAINS

substructure chemotypes (Table S6). Six hits, namely eltrombo-

pag, ketoconazole, phenazopyridine, posaconazole, SDZ-62-

434, and Z-Leu-Val-Gly-diazomethylketone, out of 195 total

hits contain such substructures, although this level of overlap

is not statistically significant (Fisher’s exact test, p = 0.57).

ACE2 Up- or Downregulation Effects of Drug Hits?
To further explore the molecular effects of the positive hits from

the six in vitro drug screens and to demonstrate the utility of the

collected library, we developed a case study that asks whether

the hits from the six screens up- or downregulate genes that

are highly co-expressed with the ACE2 gene. ACE2 is the



Table 2. Compounds that Appear as Hits in Multiple Studies

Drug

Touret et al.3

IC50 (mM)

Heiser et al.5

IC50 (mM)

Riva et al.6

IC50 (mM)

Ellinger et al.4

IC50 (mM)

Jeon et al.2

IC50 (mM)

Mirabelli et al.1

IC50 (mM) Overlap

Remdesivir 1.65 x 0.62 0.76 11.41 0.10 6

Clofazimine x x 0.08 3

Acitretin x x 2

Almitrine x 1.42 2

Gilteritinib 6.76 0.22 2

Hexachlorophene x 0.90 2

Lopinavir 19.11 9.12 2

Mefloquine 14.15 4.33 2

Niclosamide 0.28 0.14 2

Tetrandrine 1.1 3 2

Tioguanine 1.71 0.022 2

If available, the IC50 value calculated in each study is shown. Otherwise, the hit is marked by an ‘‘x.’’ Note that different studies use different assays and

cell lines to measure dose response.
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suspected cell surface receptor for SARS-CoV-2,27 and cells

that do not express this gene have been shown to be less prone

to SARS-CoV-2 infection. Since it is still undetermined whether it
Le
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Figure 5. L1000 Profiled Drugs’ Effects on the ACE2 Module

Average change in overall expression of the ACE2 co-expression module for

61 drug hits from the six published in vitro screens that also have L1000

profiling gene expression data.
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L1000 data.28We identified 61 drug hits from the six screens that

have been profiled by L1000 assay. There are two drugs that

significantly upregulate the ACE2 module (50 genes most corre-

lated with ACE2 based on RNA-sequencing data from the Gene

Expression Omnibus [GEO]) and one drug that significantly

downregulates these genes after p-value correction (false dis-

covery rate <0.1) (upregulated: homoharringtonine, 5.32 3

10�9; alvocidib, 1.58 3 10�5; downregulated: tazarotene,

5.77 3 10�2). Overall, 33 drugs on average upregulate the

ACE2 module and 28 downregulate the module (Figure 5), sug-

gesting that upregulating the ACE2 module might be more pro-

tective than harmful, which is counterintuitive. However, the rela-

tively balanced division of drugs that induce or suppress this

module makes this assertion inconclusive.
Machine Learning to Rank Hits and Prioritize Other
Candidates
The positive hits from the six COVID-19 drug screens can be

used to train machine-learning models that can be used to prior-

itize the hits and suggest additional compounds that strongly

share features with these hits. Using gene expression (GE) and

chemical structure (CS) features of the hits and additional drugs

and small molecules profiled via the L1000 assay, we imple-

mented an Extra Trees (ET) classifier as a model that can be

used to predict whether a drug is likely to inhibit SARS-CoV-2

in vitro. The ET classifier was able to predict hits from the six

SARS-CoV-2 drug screens with an average area under the

receiver-operating characteristic curve (AUROC) of 0.76 across

cross-validation splits, suggesting that GE and CS features are

overall predictive of the types of compounds that could inhibit

SARS-CoV-2 infection (Figures 6A and 6B; Table S7). The lower

value for the area under the precision recall curve can be ex-

plained by the class imbalance, which causes many non-hits

to be ranked above known hits (Tables 3 and 4). Similar training
6 Patterns 1, 100090, October 9, 2020
and predictions were done using only GE features as input. In

this case, the ET classifier achieved an average cross-validation

AUROC of 0.66, which was lower than when CS features were

also included but still statistically significant (Figures 6C and

6D; Table S8). It should be noted that the top-ranked predicted

drugs are all from the same class of ATPase inhibitor cardiac

drugs that have a similar structure and a similar GE signature ef-

fect in the L1000 assay. These drugs are over-represented in the

Jeon et al. screen,2 so these initial results should be viewed with

caution. The classifier also highly ranked lanatoside C, a drug

identified as an active compound against MERS-CoV infec-

tion.24 This confirms that themachine-learningmethod could pri-

oritize compounds that were missed by the six drug screens. In

sum, this simple machine learning classification model is in-

tended to demonstrate the potential for utilizing the drug sets

collected for the library for machine-learning applications.

DISCUSSION

Here we describe a platform created to collect drug and gene

sets related to COVID-19 research using various methods of

data accrual. Many top-ranked frequent genes that are associ-

ated with COVID-19 are part of the interferon pathway. This is

consistent with our knowledge that type I (IFN-a, IFN-b) and

type III (IFN-l) interferon systems are the primary defense

against viral infections. However, it was suggested that one of

the evasionmechanisms by SARS-CoV-2 is to dampen the inter-

feron response.15 It has been hypothesized that hyperinflamma-

tion in COVID-19 could drive disease severity and would be

amenable to treatment with drugs that reduce inflammation.29,30

However, this remains controversial because the high level of

antiviral response could be reflective of increased viral burden

rather than an inappropriate host response.31 The most striking

result from the meta-analysis applied to the content of the library

is the limited overlap across drug screen studies. It is expected

that experimental validation of drugs to inhibit SARS-CoV-2

in vitro will be more consistent. The inconsistency across these

studies could be due to a need to produce results quickly

because of the urgency for discovering potential treatments.

Regardless, there is some interesting overlap that cannot be ex-

plained by artifacts such as PAINS chemotypes. Hence, there is

an expectation that as more similar screens are published, the

topmost consistent leads will advance to animal models and hu-

man trials for further testing. To prioritize compounds that may

treat COVID-19, some researchers have used the strategy of

finding drugs that modulate genes related to ACE2 GE.32 We

found few hits that also highly significantly up- or downregulate

the genesmost correlatedwith ACE2. However, it is inconclusive

whether up- or downregulation of this module is beneficial.

Finally, we have demonstrated how the positive hits across the

screens can be pooled to develop machine-learning models

that can further prioritize candidates based on direct experi-

mental accumulating evidence about potential SARS-CoV-2

inhibitors.

It should be clear that the consensus analysis results should

be viewed with caution. The most common drugs are not neces-

sarily the most efficacious or promising treatments. At the same

time, the most common genes may not be the most relevant to

furthering COVID-19 research. It should be noted that not all
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drug sets and gene sets have equal weight in quality and rele-

vancy. A list of computationally predicted drugs is not as useful

toward identifying a therapy for COVID-19 when compared with

a list of experimentally validated drugs. A list of upregulated

genes after SARS-CoV-2 infection of cells may provide more

useful information about the virus life cycle when compared

with a list of genes returned from a PubMed search using the

term SARS. Hence, the users of the data collected for the library

should be aware of such limitations. With these limitations in

mind, we hope that researchers will be able to better develop

or refine their hypotheses by considering the information in the

library.

In a period of rapid development of methods and data related

to COVID-19 research, it is critical to provide the means to orga-

nize the accumulated information in a way that it can be summa-

rized and reused. The COVID-19 Drug and Gene Set Library

provides such utility. The library of drug and gene sets can be

used to identify community consensus and make researchers

and clinicians aware of the developments in new potential ther-

apies as they become available, as well as allow the research

community to work together toward a cure for COVID-19. How-

ever, it is important to note that while there are now many drugs

that show promise in blocking SARS-CoV-2 in vitro, in vivo

studies are needed before any of these drugs can be considered

real original therapeutics.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for digital resources should be directed to

and will be fulfilled by the Lead Contact, Avi Ma’ayan (avi.maayan@

mssm.edu).

Materials Availability

This study generated The COVID-19 Drug and Gene Set Library website

available at: https://amp.pharm.mssm.edu/covid19/.

Data and Code Availability

All data collected for this project is made available via the website https://amp.

pharm.mssm.edu/covid19. The data from the site can be accessed via API.

The code behind the site is available on GitHub at https://github.com/

maayanlab/covid19_crowd_library. The consensus analysis of the drugs that

up- or downregulate the ACE2 module is available from https://github.com/

maayanlab/covid19l1000. All code and data are provided openly under

the Apache License version 2.0. The supporting tables are provided openly

at Mendeley Data at https://data.mendeley.com/datasets/mjbygmkdt3/1

https://doi.org/10.17632/mjbygmkdt3.1.

Collecting Drug Sets from Publications that Describe SAR-CoV-2

Drug Screens

Since the emergence of the COVID-19 pandemic, thousands of new publica-

tions related to COVID-19 research have emerged in just a few months. We

continually surveyed these publications to identify research articles that

describe drug screens and manually extracted drug sets from these studies
Figure 6. Evaluation of ET Classifiers Ability to Predict SARS-CoV-2

Inhibitors

(A) ROC curve for L1000 + MACCS-based predictions across cross-validation

splits.

(B) PR curve for L1000 + MACCS-based predictions across cross-validation

splits.

(C) ROC curve for L1000-only predictions across cross-validation splits.

(D) PR curve for L1000-only predictions across cross-validation splits.
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Table 3. Ranked Predictions for Screen Hits Based on L1000 +

MACCS Input with p > 0.01

Broad Pert. ID Drug Hit

Prediction

Probability

BRD-K23478508 digoxin 1 0.8677456

BRD-A34806832 proscillaridin 1 0.61186494

BRD-A68930007 ouabain 1 0.48673511

BRD-K13514097 everolimus 1 0.12437698

BRD-K76674262 omacetaxine

mepesuccinate

1 0.03459994

BRD-K88538023 oxiconazole 1 0.02330089

BRD-A29731977 17-hydroxyprogesterone-

caproate

1 0.02278362

BRD-K59873006 digitoxin 1 0.02124448

BRD-K06926592 tretinoin 1 0.02050656

BRD-A80908310 cloperastine 1 0.01705306

BRD-K96390176 calcipotriol 1 0.01589157

BRD-K33882852 ZK-93423 1 0.01579197

BRD-K90699611 acitretin 1 0.01383878

BRD-A10070317 propranolol 1 0.01347796

BRD-A99117172 hydroxychloroquine 1 0.01282602

BRD-A50287119 sirolimus 1 0.01201528

BRD-K15409150 penfluridol 1 0.01139704

BRD-A62025033 temsirolimus 1 0.011242

BRD-K74501079 azithromycin 1 0.01123628

BRD-K87909389 alvocidib 1 0.01096243

BRD-K68392338 ZK-93426 1 0.01075777

BRD-K99964838 bosutinib 1 0.01062753

BRD-A62184259 cycloheximide 1 0.01058221

BRD-K12184470 flunarizine 1 0.01058221

BRD-K17561142 amiodarone 1 0.01029646

BRD-A64290322 cyclosporin A 1 0.0101906

BRD-K68246049 TTNPB 1 0.01013295

BRD-A91699651 chloroquine 1 0.01005631

Table 4. Ranked Predictions for Top Additional Compounds

Based on L1000 + MACCS Input

Broad Pert. ID Drug Hit

Prediction

Probability

BRD-A80502530 cinobufagin 0 0.70859567

BRD-A76528577 vincristine 0 0.3044745

BRD-K51290057 SA-792709 0 0.25357778

BRD-A68202111 BRD-A68202111 0 0.1923075

BRD-U19872303 spiramycin 0 0.186088

BRD-A22783572 vinblastine sulfate 0 0.18156875

BRD-K04010869 prostaglandin A1 0 0.15031656

BRD-K08486545 cymarin 0 0.14312159

BRD-K01188359 vinblastine 0 0.12795675

BRD-A57089740 peruvoside 0 0.12597708

BRD-K67783091 haloperidol 0 0.10281666

BRD-A44827100 erythromycin 0 0.10106031

BRD-K36248164 etretinate 0 0.10086468

BRD-A29322418 canrenoic acid 0 0.09826209

BRD-K46523383 pramocaine 0 0.08840484

BRD-A52650764 ingenol 0 0.08561776

BRD-K80348542 cephaeline 0 0.08324268

BRD-A29854054 lorglumide 0 0.0632068

BRD-K03981224 ethisterone 0 0.06260333

BRD-A90131694 alclometasone 0 0.06221619

BRD-U66370498 androstanol 0 0.06103837

BRD-K21667562 AM 404 0 0.05919457

BRD-A89434049 sarmentogenin 0 0.05852038

BRD-A94810754 ionomycin 0 0.05814178

BRD-A37501891 BRD-A37501891 0 0.05203431
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to populate the COVID-19 Drug and Gene Set Library database. We also sub-

mitted to the platform published drug sets from historical sources such as

those from studies that listed drugs showing antiviral activity for other related

viruses. To assist us with developing and maintaining the collection, we have

received help from the research community by allowing researchers to upload

drug and gene sets to the database. These submissions are manually evalu-

ated before making them publicly available.

Collecting SARSSignatures fromGEOwithGEO2Enrichr, BioJupies,

and GEN3VA

Gene expression signatures resulting from infection of different coronaviruses

for different cell types and tissues, with expression data originating from the

GEO database, were processed using the GEO2Enrichr33 and BioJupies,34

and stored on the GEN3VA platform.35 The entries were submitted to the

COVID-19 crowdsourcing platform, with an upregulated and a downregulated

gene set associated with each signature.

Collecting COVID-19-Related Gene Sets with Geneshot

Geneshot36 is a platform that can be used to convert PubMed searches into

gene sets. Using Geneshot, gene sets associated with the search terms:

SARS, SARS-CoV, MERS-CoV, ACE2, and TMPRSS2 were created using

both the AutoRIF and GeneRIF37 options. Additionally, top COVID-19 drug-re-
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purposing candidates reported in recent literature were included as search

terms. Predictions of additional genes potentially associated with the genes

directly co-mentioned with these terms were also added to the database.

These predictions were based on five strategies: co-occurrence via AutoRIF,

GeneRIF,37 Enrichr,38 or Tagger,39 and co-expression using data from

ARCHS4.40

Developing the COVID-19 Gene and Drug Set Library Website

The COVID-19 Drug and Gene Set Library website has two sortable and

searchable tables that list the drug and gene sets. Sorting can be based on

the date of submission, alphabetical ordering, or list size. The tables are

searchable via metadata terms such as title, authors, and descriptions, as

well as via data search for specific drug or gene terms. Users can download

each drug or gene set as well as the entire library. In addition, each gene set

is provided with the option to perform gene set enrichment analysis with En-

richr,38 while genes are linked to Harmonizome41 for further interrogation.

Similarly, drug sets can be analyzed with DrugEnrichr, a drug set enrichment

analysis tool. The individual drugs that map to known compounds are linkable

to their corresponding DrugBank landing pages.42 The website enables users

to submit drug and gene sets related to COVID-19 research by completing a

simple form. The form includes a dataset title, a URL source, and a description

that explains how the set is relevant to COVID-19 research. The submitter is

also provided with mechanisms to add additional metadata terms that can

describe the cell type, tissue, organism, and other critical information about

the submitted set. Users can specify the category of the additional metadata,

allowing for a broad set of expanded annotations for each submitted set.

Users can also submit their contact information; this information is kept

private, but users can opt-in to make it public. Once a user submits a
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contribution to the site, their dataset is directed to a review queue in which we

manually examine the validity and relevance of the contribution. The reviewing

process enables an administrator to approve or reject the submitted set. If

approved, the set is added to the database. To make it easy for contributors

to submit multiple sets, users can access the site via API. The code behind

the site is open source and available at https://github.com/maayanlab/

covid19_crowd_library.

Expression Analysis of In Vitro Screen Hits

Drug sets extracted from the six in vitro screens1–6 werematched to drugs pro-

filed by the L1000 assay available fromGEO: GSE92742.28 Average signatures

for each drug were computed by taking the Z score mean for each gene. To

quantify the average change in expression of genes co-expressed with

ACE2, we obtained the top 50 genes that mostly co-express with ACE2 from

the ARCHS4 resource.40 We then calculated the mean Z scores of the top

50 correlated genes to ACE2 and compared those values against a distribution

calculated from sampling 50 random genes, repeatedly 10,000 times. The p

values were calculated against the sampled distribution and corrected for mul-

tiple hypothesis testing by applying the Bonferroni correction method. The

code behind this analysis is open source and available at https://github.

com/maayanlab/covid19l1000.

Identifying Drug Sets from Previously Published Drug Screens for

Other Diseases

To identify publications that describe similar in vitro drug screens from other

contexts, we followed these steps. (1) We first queried PubMed for studies

that contain the term [‘‘drug screen’’ AND ‘‘in vitro’’]. (2) The text from these

studies was processed such that papers containing a table with drug names

were saved for further manual inspection. (3) We then manually selected

studies that performed drug screens comparable with the published screens

for SARS-CoV-2. The study selection criteria required the identification of

in vitro studies that included quantitative measures of many drugs’ efficacy

against a disease cell-based model.

Machine-Learning Approach to Prioritize Compounds Based on

In Vitro Screens

A list of 195 drug hits from the six in vitro screens1–6 (Table S1) was used as

positives for applying a machine-learning method to prioritize these com-

pounds and additional compounds. GE L1000 signatures for 19,777 drugs

measuring the response of 978 landmark genes and their associated 166

MACCS molecular fingerprints were obtained from the SEP-L1000 project.43

The binary MACCS key association matrix was TF-IDF normalized to account

for the frequency of different chemical structures. The dataset included 19,777

different drugs, of which 96 matched the 195 hits from the drug screens. After

removing compounds from the library that appeared to be similar structurally,

8,787 compounds remained, of which 72 were hits. ET classifiers44 were

trained to identify drug screen hits from the GE and CS features and evaluated

using 3-fold cross-validation. Class weights were set inversely proportional to

the class frequencies to address class imbalance. Otherwise, all ET parame-

ters were the default Scikit-learn values.45 Feature selection was performed

by recursive feature elimination to use 128 when both GE and CS data were

used as features, or 64 features when only GE data were used. Additionally,

prediction probabilities were calibrated across cross-validation splits.
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