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Abstract: In this study, we investigated the effects of exogenous lactate administration before exercise
on energy substrate utilization during exercise. Mice were divided into exercise control (EX) and
exercise with lactate intake (EXLA) groups; saline/lactate was administered 30 min before exercise.
Respiratory gas was measured during moderate intensity treadmill exercise (30 min). Immediately
after exercise, blood, liver, and skeletal muscle samples were collected and mRNA levels of energy
metabolism-related and metabolic factors were analyzed. At 16–30 min of exercise, the respiratory
exchange ratio (p = 0.045) and carbohydrate oxidation level (p = 0.014) were significantly higher in
the EXLA than in the EX group. Immediately after exercise, the muscle and liver glycogen content
and blood glucose level of the EXLA group were lower than those of the EX group. In addition,
muscle mRNA levels of HK2 (hexokinase 2; p = 0.009), a carbohydrate oxidation-related factor, were
higher in the EXLA than in the EX group, whereas the expression of PDK4 (pyruvate dehydrogenase
kinase 4; p = 0.001), CS (citrate synthase; p = 0.045), and CD36 (cluster of differentiation 36; p = 0.002),
factors related to oxidative metabolism, was higher in the EX than in the EXLA group. These results
suggest that lactate can be used in various research fields to promote carbohydrate metabolism.

Keywords: exogenous lactate; supplement; exercise; metabolism; carbohydrate oxidation

1. Introduction

Supplement consumption before exercise is an important factor that directly affects
metabolism during exercise, and many studies have been conducted on this topic [1,2].
Consumption of supplements, such as capsaicin [3], caffeine [4], and carnitine [2,5], is
known to improve muscular endurance performance by increasing the energy supply
through fat oxidation during exercise [2–5]. However, the use of supplements is associated
with side effects, such as excessive sensitivity and stomachache [4–6]. Therefore, it is
necessary to discover new exercise supplements with minimal side effects.

In earlier studies, intracellular acidosis in skeletal muscles was identified along with a
high accumulation of lactate when high intensity exercise was continued until exhaustion.
Accordingly, lactate was regarded a “fatigue-inducing molecule” and “metabolic end-
product” of an anaerobic process [7–9]. However, further research on lactate confirmed
that the amount of lactate produced during exercise is not sufficient to have a direct effect
on acidosis [10]. In high-intensity exercise, fatigue is caused by the depletion of stored
glycogen and intracellular acidosis in skeletal muscles develops because of an increase
in the H+ ion concentration produced from ATP hydrolysis [10–12]. Furthermore, it is
known that lactate is the main energy source of the body [13–15] and is a gluconeogenic
precursor in the liver [15–17]. It is transported to oxidative fibers through the blood by
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monocarboxylate transport proteins and used as an energy source [18,19]. Hence, lactate is
considered an important molecule for metabolic regulation.

Recent studies have investigated the effects of exogenous lactate intake on energy
metabolism. Yu Kitaoka et al. [20] suggested that lactate, as a signaling molecule, up-
regulates genes related to mitochondrial function by confirming that the expression of
PGC-1α, PDK4, and UCP3 was upregulated in the skeletal muscle of mice 3 h after lactate
administration. Takahashi et al. [21] reported that exogenous lactate intake before exercise
for 4 weeks increases the activity of mitochondrial cytochrome c oxidase in the oxidative
phenotype of the muscle. Hoshino et al. [22] reported that chronic post-exercise lactate
administration increased the levels of monocarboxylate transporter 1 (MCT1) and im-
proved skeletal muscle glycogen recovery and storage capacity. Moreover, Kyun et al. [23]
reported that exogenous lactate administration increased the mRNA and protein levels of
protein-synthesis-related factors in the skeletal muscle, suggesting the potential of lactate
as a supplement that promotes muscle synthesis. In addition, at rest, exogenous lactate
intake increased glycogen synthesis- and fat metabolism-related factors [24]. These findings
suggest the potential of exogenous lactate as a new exercise supplement.

Nevertheless, the effect of lactate intake on metabolism during exercise has not yet
been directly investigated. In the aforementioned study by Kyun et al. [24], it was also
confirmed that glycogen synthesis- and fat metabolism-related factors increased over time
after lactate administration. This study investigated the metabolic changes in exogenous
lactate intake at rest over time; however, it did not determine the effect of lactate on
metabolism during exercise. Russ et al. [25] reported that lactate intake did not improve
aerobic capacity, such as the oxygen uptake (VO2) peak and time to exhaustion. Hence, it is
essential to directly identify the energy substrate changes that take place during exercise to
clarify the effect of lactate on metabolic substrate use and to define its value as an exercise
supplement. Therefore, we aimed to investigate the effect of exogenous lactate intake on
energy metabolism and substrate use during exercise and to evaluate its potential as an
exercise supplement.

2. Results
2.1. Energy Metabolism during Exercise

There was no significant difference in metabolism during the total exercise period
(30 min) between the EX (exercise) and EXLA (exercise + lactate intake) groups. However,
we observed (Figure 1a,c, Figure 2a, Figure 3a, Figure 4a) that the lines representing the
data of the two groups in the metabolic graphs crossed at 15 min. Based on this observation,
we divided the 30 min exercise period into the following two 15 min periods: 0–15 min
(0–15 M) and 16–30 min (16–30 M). The results showed no significant differences between
the two groups in the 0–15 M period. In the 16–30 M period, VO2 and fat oxidation (FO)
were not significantly different between the two groups (Figure 1b,d); however, significantly
higher carbon dioxide production (VCO2; p = 0.027), respiratory exchange rate (RER;
p = 0.045), and carbohydrate oxidation (CO; p = 0.014) were observed in the EXLA group
than in the EX group (Figure 2d, Figure 3d, Figure 4d). Although not statistically significant,
the total energy expenditure (EE) of the EXLA group tended to be higher than that of the
EX group in the 16–30 M period (Figure 5). Thus, lactate intake before exercise may increase
the use of carbohydrates as an energy substrate during exercise.
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Figure 1. Changes in VO2 and FO during exercise. (a,c) VO2 and FO changes over time for 30 min, 
respectively; (b,d) total VO2 and FO for 30 min, respectively. Supple, supplement effect; Inter, inter-
action effect; VO2, oxygen uptake; FO, fat oxidation; EX, exercise control group; EXLA, exercise with 
lactate intake group. Values represent the mean ± standard deviation (n = 8). 

 
Figure 2. Changes in VCO2 during exercise. (a) VCO2 changes over time for 30 min; (b) total VCO2 
for 30 min; (c,d) total VCO2 for 0–15 min (0–15 M) and 16–30 min (16–30 M), respectively. Supple, 
supplement effect; Inter, interaction effect; VCO2, carbon dioxide production; EX, exercise control 
group; EXLA, exercise with lactate intake group. Values represent the mean ± standard deviation (n 
= 8). * p < 0.05. 

Figure 1. Changes in VO2 and FO during exercise. (a,c) VO2 and FO changes over time for 30 min,
respectively; (b,d) total VO2 and FO for 30 min, respectively. Supple, supplement effect; Inter,
interaction effect; VO2, oxygen uptake; FO, fat oxidation; EX, exercise control group; EXLA, exercise
with lactate intake group. Values represent the mean ± standard deviation (n = 8).
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Figure 4. Changes in CO during exercise: (a) CO changes over time for 30 min; (b) total CO for 30 
min; (c,d) total CO for 0–15 min (0–15 M) and 16–30 min (16–30 M), respectively. Supple, supplement 
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Figure 3. Changes in RER during exercise. (a) RER changes over time for 30 min; (b) average RER
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* p < 0.05.
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2.2. Glycogen Content

We analyzed the glycogen content in the liver and skeletal muscle to determine
how the intake of lactate before exercise affects the use of glycogen, a storage form of
carbohydrate, during exercise. The results showed that the muscle glycogen content
(Figure 6a) was significantly lower in the EXLA group than in the EX group (p = 0.008).
The liver glycogen content (Figure 6b) was also significantly lower in the EXLA group than
in the EX group (p = 0.001). These results indicate that lactate intake before exercise can
increase the use of glycogen as an energy substrate during exercise.
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2.3. Blood Analysis-Whole Blood

Blood analysis was performed immediately after exercise using whole blood to identify
factors directly related to the use of energy substrates during exercise (Table 1). The results
showed that the concentrations of glucose (p = 0.001) and triglyceride (TG; p = 0.001) in the
EXLA group were significantly lower than those in the EX group. Although not statistically
significant, the concentration of lactate in the EXLA group was higher than that in the EX
group (p = 0.061).

Table 1. Whole blood glucose, triglyceride, and lactate concentrations.

EX EXLA

Glucose (mg/dL) 158.5 ± 26 65.5 ± 27.2 ***
Triglyceride (mg/dL) 145.9 ± 13.3 92.3 ± 15.7 ***

Lactate (mmol/L) 7.4 ± 1.8 10.8 ± 4.2
EX, exercise control group; EXLA, exercise with intake lactate group. Values represent the mean ± standard
deviation (n = 8). *** p < 0.001.

2.4. Blood Analysis-Serum

The concentration of glycerol and free fatty acids (FFAs) was measured in the serum
(Table 2). According to the results, the concentrations of glycerol (p = 0.004) and FFAs
(p = 0.003) of the EXLA group were significantly lower than those of the EX group.

Table 2. Serum glycerol and free fatty acid concentrations.

EX EXLA

Glycerol (mmol/L) 0.51 ± 0.05 0.4 ± 0.08 **
Free fatty acid (mmol/L) 0.59 ± 0.16 0.37 ± 0.07 **

EX, exercise control group; EXLA, exercise with intake lactate group. Values represent the mean ± standard
deviation (n = 8). ** p < 0.01.

2.5. mRNA Expression of Energy Metabolism-Related Factors

To determine how the administration of lactate before exercise affects the use of
energy substrates during exercise, we examined the expression of energy metabolism-
related mRNAs in the gastrocnemius skeletal muscle (Figure 7). The expression level of
hexokinase 2 (HK2) was significantly higher in the EXLA group than in the EX group
(p = 0.009). The mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4; p = 0.001)
and citrate synthase (CS; p = 0.045) were significantly lower in the EXLA group than in
the EX group. In addition, the levels of pyruvate carboxylase (PC; p = 0.041), glucose
6-phosphatase (G6Pase; p = 0.014), and monocarboxylate transporter 1 (MCT1; p = 0.03)
were significantly higher in the EXLA group than in the EX group. Furthermore, the levels
of cluster of differentiation 36 (CD36) were significantly lower in the EXLA group than in
the EX group (p = 0.002).
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phosphate dehydrogenase; EX, exercise control group; EXLA, exercise with lactate intake group. GAPDH was used for the
normalization of the target mRNA expression. Values represent the mean ± standard deviation (n = 8). * p < 0.05; ** p < 0.01;
*** p < 0.001.

3. Discussion

The purpose of this study was to investigate the effect of exogenous lactate admin-
istration as an exercise supplement on the use of energy substrates during exercise. The
results showed that exogenous lactate intake did not differ in the total exercise period of
30 min. However, CO increased in the 16–30 M period, and the glycogen contents and
blood glucose concentration in the liver and muscle were low immediately after exercise.
In addition, mRNA expression associated with carbohydrate utilization was upregulated.

In general, when the exercise intensity is high, VO2, VCO2, RER, CO, and EE increase
and FO decreases. This is considered a result of an increased rate of carbohydrate oxidation,
which quickly provides energy to meet the increased energy requirements, and a decreased
rate of fat oxidation, which is a slower process [26,27]. However, the results of breathing
gas generated during exercise confirmed that the VCO2, CO, and RER of the EXLA group
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were significantly higher than those of the EX group at 15 min of exercise. Although there
was no change in exercise intensity and no significant difference between the two groups in
VO2 and EE after 16 min, lactate intake might have increased the carbohydrate oxidation
rate and the use of carbohydrates as an energy substrate during exercise.

Carbohydrates and fats are the main energy sources used by the human body. Car-
bohydrates are stored in the form of glucose in the blood and as glycogen in the liver
and muscles and are immediately supplied as an energy source when required [28,29]. By
analyzing the blood glucose concentration immediately after exercise and the glycogen
content stored in the liver and muscles, we found that the blood glucose concentration and
glycogen contents of the EXLA group were significantly lower than those of the EX group.
Most likely, the energy requirements were met through the supply of blood glucose and
glycogen when the ratio of carbohydrates used during exercise increased.

Brooks et al. [30] reported that a high blood lactate concentration inhibits adipose
tissue lipolysis. In a previous study, the blood lactate concentration was found to increase
rapidly at 15 min of exercise [20,31]. Our blood analysis results confirmed that the levels
of the lipid metabolism indicators TG, glycerol, and FFAs were significantly lower in
the EXLA group than in the EX group. However, we did not confirm the blood lactate
concentration after lactate ingestion. Nonetheless, based on our results, it is expected that
lactate intake before exercise increases the concentration of blood lactate, thereby inhibiting
adipose tissue lipolysis and thus fat metabolism during exercise.

To confirm the effect of lactate intake before exercise on energy substrate use during
exercise, respiratory gas, blood glucose, and glycogen contents were measured. The
findings demonstrated that carbohydrate metabolism during exercise increased when
lactate was consumed before exercise. To confirm these results, mRNA expression analysis
related to energy metabolism was performed. The results showed that the expression
of HK2 was significantly higher in the EXLA group than in the EX group. HK2 is a
major enzyme that converts glucose to glucose-6-phosphate and regulates the overall
speed of glycolysis [32,33]. Hence, an increased expression level of HK2 indicates high
levels of carbohydrate oxidation. Further, the levels of factors related to oxidative energy
metabolism or metabolic utilization, such as PDK4 and CS, were significantly lower in the
EXLA group than in the EX group. PDK4 inhibits the oxidation of carbohydrates through
phosphorylation and inactivation of the pyruvate dehydrogenase complex that converts
pyruvate to acetyl Co-A [28]. CS converts acetyl Co-A and oxaloacetate into citrate in the
first step of the tricarboxylic acid cycle [34]. CS is thus used as an indicator of oxidative
metabolic capacity [35].

MCT1, a lactate carrier that promotes the use of lactate in skeletal muscles [36], plays
a role in inducing lactate removal by transferring lactate transported through the blood to
the mitochondria [19]. According to previous studies, chronic lactate intake after exercise
increases the expression level of MCT1 protein, leading to effective removal of increased
lactate during exercise [22]. Our results showed that the EXLA group had significantly
higher MCT1 mRNA expression level than the EX group, suggesting that the expression
level of MCT1 was increased to remove a large amount of lactate. In addition, CD36 plays
a role in transporting fat to muscle tissue to oxidize fat; it is highly correlated with whole
body fat oxidation or utilization [37]. Spriet et al. reported that CD36 deficiency was related
to problems with fat transport and oxidation [38]. Our CD36 mRNA expression analysis
showed significantly lower CD36 mRNA levels in the EXLA group than in the EX group.
This is consistent with the blood TG, glycerol, and FFA results shown in Tables 1 and 2,
indicating that the fat metabolism of the EXLA group during exercise was not optimal.

PC, a key factor, is considered a rate-limiting enzyme in the gluconeogenesis process.
PC determines whether pyruvate is converted to oxaloacetate or oxidized to acetyl-CoA.
In addition, G6Pase converts glucose-6-phosphate to glucose and is considered to be a
regulatory factor for gluconeogenesis and glycogen metabolism [39]. Our results showed
that the EXLA group had significantly higher PC and G6Pase mRNA levels than the EX
group. These results suggest that both glycolysis and gluconeogenesis were upregulated
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in the EXLA group than in the EX group. When the respiratory gas data, blood glucose
levels, liver and muscle glycogen contents, and HK2 expression at the mRNA level were
examined, the activation of glycolysis in the EXLA group was significant. Furthermore,
since there are only limited studies on the activation of gluconeogenesis in the EXLA group,
it is necessary to approach it from various perspectives, and further studies should be
conducted. Based on the low expression of PDK4 and CS mRNA and low blood TG, FFA,
and glycerol levels in the EXLA group, we estimated that the oxidative metabolic response
in this group was lower than that in the EX group. It was hypothesized that the activation
of gluconeogenesis to resynthesize carbohydrates immediately after exercise was higher in
the EXLA group than in the EX group due to glycogen depletion and low blood glucose
levels.

Interestingly, we have previously confirmed the potential of lactate as a supplement
by examining the effects of lactate intake at rest on metabolism [23,24]. The main aim of the
present study was to investigate the effect of lactate intake on metabolism during exercise.
Therefore, we did not use sedentary mice as the control. However, to clarify the direct
effect of lactate and the synergistic effects of lactate administration in combination with
exercise on energy metabolism in detail, it would be important to include a resting group
to the present experimental setting or to extend the duration of the experimental period.

Nevertheless, we investigated that the lactate intake before exercise increased the use
of carbohydrates as energy substrates during exercise. Therefore, this study highlights the
potential of using lactate as a supplement in various physiological condition that require
the promotion of carbohydrate metabolism.

4. Materials and Methods
4.1. Animal Care

Seven-week-old male ICR mice (n = 16), purchased from Orient Bio Inc. (Seongnam,
Korea), were used in this study, which was approved by the Konkuk University Insti-
tutional Animal Care and Use Committee (No. KU19149). Prior to the initiation of this
study, the mice were adapted to the laboratory environment for a week. The mice were
housed in standard plastic cages (four mice per cage) under controlled humidity (45–50%),
temperature (22 ± 1 ◦C), and lighting (12:12-h light-dark cycle; lights on at 07:00 a.m.)
conditions [40], and fed ad libitum with a standard commercial diet (60% carbohydrate,
20% protein, and 9.6% fat).

4.2. Study Design

Mice were randomly divided into the EX and EXLA groups (n = 8 per group, average
weight: EX group = 32.4 ± 0.84, EXLA group = 32.5 ± 1.28). Prior to conducting the
experiment, all groups were fasted for 8 h. The EXLA group was administered 3 g/kg
of sodium lactate with an oral sonde and the EX group an equal amount of a saline
solution [23,41]. The mice were orally administered the appropriate supplement 30 min
before a moderate intensity (about 60–70% VO2max) exercise was conducted for 30 min
(treadmill exercise at a speed of 18 m/min and slope of 6◦) [42,43]. Immediately after
exercise, the mice were anesthetized with 10 µL/g of 1.25% avertin and the tissues were
collected.

4.3. Metabolic Analysis during Exercise

To investigate how lactate intake affects the use of energy substrate during exercise,
experiments were conducted using metabolic analysis machines. The mice were orally
administered lactate 30 min before the measurement. The mice used a metabolic treadmill
chamber, which was divided one by one, to measure energy metabolism during exercise
(treadmill exercise at a speed of 18 m/min and slope of 6◦). The metabolic chambers
were constructed using an open-circuit method and the volume of each chamber was
3 L. The average flow rate for each chamber was set to 3 L/min. An acrylic tube was
connected to each chamber for air volume manipulation. Respiratory gas (O2 uptake and
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CO2 production) was analyzed using a mass spectrometer (model ARCO-2000, ARCO
System, Chiba, Japan) and switching system (model ARCO-2000-GS-8, ARCO System)
allowing the spectrometer to sample the gas from each chamber. VO2, VCO2, RER, CO,
FO, and EE were calculated based on the measured respiratory gas.

4.4. Determination of Blood Parameters

Venous blood samples were collected immediately after exercise, and blood analysis
was performed using whole blood and serum. To collect the serum, the venous blood
samples were allowed to clot at 24–25 ◦C for 30 min, centrifuged at 2000× g for 15 min at
4 ◦C, and transferred to new tubes before being stored at −80 ◦C. Whole blood was used to
measure the concentration of blood glucose (ACCU CHEK Performa Glucometer, Roche,
Diagnostics, Penzberg, Germany), lactate (Lactate Pro2, LT-1730, ARKRAY, Kyoto, Japan),
and TG (Standard LipidoCare Strips–Lipid Profile, 02LA10G, SD Biosensor, Suwon, Korea).
Serum was used in ELISA kits for the analysis of the concentration of glycerol (EGLY-200,
BioAssay System, Hayward, CA, USA) and FFAs (K612-100, BioVision, Milpitas, CA, USA).

4.5. Glycogen Content Analysis

To determine the glycogen content of each tissue, we collected the liver and plantaris
muscle immediately after exercise and stored them at−80 ◦C until analysis. Ten milligrams
of liver and muscle were used for the analysis. The glycogen contents were measured
using the Glycogen Assay Kit (K646-100, BioVision, Milpitas, CA, USA) according to
manufacturer’s instructions.

4.6. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analysis

We performed RT-PCR to determine the mRNA levels of metabolism-related factors.
The mRNA obtained from the gastrocnemius muscle was used to measure the expression
levels of GAPDH and of five other factors. Total RNA was extracted from the gastrocnemius
muscle using the QIAzol Lysis Reagent (79306; Qiagen, Hilden, Germany). We synthesized
complementary DNA (cDNA) from total RNA using the amfiRivert cDNA Synthesis
Platinum Master Mix (R5600; GenDEPOT, Katy, TX, USA). We then performed the RT-
reaction using the following protocol: annealing for 5 min at 25 ◦C, extension for 50 min at
42 ◦C, and RT inactivation for 15 min at 70 ◦C. For RT-PCR, cDNA was amplified using the
amfiEco Taq DNA polymerase (P0701; GenDEPOT) and the following primer pairs: HK2-F
and -R, PDK4-F and -R, CS-F and -R, MCT1-F and -R, CD36-F and -R, PC-F and -R, and
G6Pase-F and -R (Table 3). The cycling conditions were as follows: an initial denaturation
for 2 min at 94 ◦C, followed by 18–30 cycles of 15 s at 94 ◦C, 30 s at 50–60 ◦C (primer Tm
◦C), and 1 min at 72 ◦C. Finally, we separated the products using 1% agarose gels and
visualized them using the Safe-Pinky DNA gel-staining solution (S1001-025; GenDEPOT).

4.7. Statistical Analysis

All data were analyzed using IBM SPSS Statistics 25 software (Armonk, NY, USA).
Significant differences in the means were determined using an independent sample t-test.
Significant differences in values over time were determined using a two-way repeated
analysis of variance (ANOVA). A p-value of <0.05 was considered statistically significant.
The results are presented as the mean ± standard deviation (SD).
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Table 3. Primer sequences for reverse transcription-polymerase chain reaction (RT-PCR).

Gene Sequence

HK2
F-5′ ATC GCC GGA TTG GAA CAG AA 3′

R-5′CTC CGT GAA TAA GCA GGC GA 3′

PDK4
F-5′ CGC CTG GCC AAT ATC CTG AA 3′

R-5′ GCC TTG AGC CAT TGT AGG GA 3′

CS
F-5′ CAA GTC ATC TAC GCC AGG GAC A 3′

R-5′ CAA AGC GTC TCC AGC TAA CCA AG 3′

CD36
F-5′ GGC CAA GCT ATT GCG ACA T 3′

R-5′ CAG ATC CGA ACA CAG CGT AGA 3′

MCT1
F-5′ GGC CTG AGC AAG TCA AGC TA 3′

R-5′ GCA AAT CCA AAG ACT CCG GC 3′

PC
F-5′ GCA GCC TTT GGG AAT GGA 3′

R-5′ GGT GAG ACG TGA GCG AAG TTG 3′

G6Pase
F-5′ CAG AAT GGG TCC ACC TTG ACA 3′

R-5′ GGG CTT CAG AGA GTC AAA GAG ATG 3′

GAPDH
F-5′ AAC TTT GGC ATT GTG GAA GG 3′

R-5′ ACA CAT TGG GGG TAG GAA CA 3′

HK2, hexokinase 2; PDK4, pyruvate dehydrogenase kinase 4; CS, citrate synthase; CD36, cluster of differentiation
36; MCT1, monocarboxylate transporter 1; PC, pyruvate carboxylase; G6Pase, glucose 6-phosphatase; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.
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