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Abstract: MRI is an imaging technology that non-invasively obtains high-quality medical images
for diagnosis. However, MRI has the major disadvantage of long scan times which cause patient
discomfort and image artifacts. As one of the methods for reducing the long scan time of MRI, the
parallel MRI method for reconstructing a high-fidelity MR image from under-sampled multi-coil
k-space data is widely used. In this study, we propose a method to reconstruct a high-fidelity MR
image from under-sampled multi-coil k-space data using deep-learning. The proposed multi-domain
Neumann network with sensitivity maps (MDNNSM) is based on the Neumann network and uses
a forward model including coil sensitivity maps for parallel MRI reconstruction. The MDNNSM
consists of three main structures: the CNN-based sensitivity reconstruction block estimates coil
sensitivity maps from multi-coil under-sampled k-space data; the recursive MR image reconstruction
block reconstructs the MR image; and the skip connection accumulates each output and produces
the final result. Experiments using the fastMRI T1-weighted brain image dataset were conducted at
acceleration factors of 2, 4, and 8. Qualitative and quantitative experimental results show that the
proposed MDNNSM method reconstructs MR images more accurately than other methods, including
the generalized autocalibrating partially parallel acquisitions (GRAPPA) method and the original
Neumann network.

Keywords: magnetic resonance imaging; deep learning; Neumann network

1. Introduction

Magnetic resonance imaging (MRI) is one of the most-used medical imaging technolo-
gies. It is non-invasive and there is no radiation exposure, unlike X-ray and computed
tomography (CT), so it is harmless to the human body. MRI follows the principle of nuclear
magnetic resonance (NMR) to image the inside of the human body. It needs strong mag-
netic fields and electromagnetic waves to resonate hydrogen molecules in the human body,
which either excites or relaxes them. Since the density of hydrogen molecules is different
for each tissue, the intensity of the emitted signal varies with the scan parameters, such
as the repetition time and the echo time. Therefore, by setting the scan parameters for a
precise diagnosis, the suitable contrasts of the MR image can be acquired. The MR signal is
transformed from the frequency domain to the spatial domain. Specifically, the MR signal
collected by the radio frequency (RF) antenna is a complex value and is sampled in k-space.
The k-space contains spatial frequency and phase information. After acquiring the k-space
data, it is reconstructed into an MR image in the spatial domain using Fourier transform
[1]. The conventionally used process for MRI scans has physical limits in terms of speed,
because it has to be acquired sequentially in the k-space domain. Therefore, it requires a
long scan time. In addition, the longitudinal relaxation time (T1) increases as the external
magnetic field strength increases. This results in an increase in scan time. Long scan times
to acquire an MR image make patients uncomfortable. Moreover, artifacts are generated,
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depending on the patient’s movement or the uncontrollable flow of water molecules in
the body (e.g., blood flow), during the MR scan. One of the methods used to reduce the
long MR scan time is to obtain the k-space data by under-sampling. The under-sampling
of an MR signal can reduce scan times because it acquires only a part of the k-space data.
However, it also causes aliasing artifacts, due to the insufficient sampling rate.

Various methods have been proposed and developed in past years to reconstruct an
artifact-free MR image from under-sampled data. One of those methods utilizes parallel
imaging (PI) [2] to increase efficiency and accuracy in reconstruction. PI is a method that
reconstructs under-sampled MR signals with coil sensitivities from multi-receiver RF coils
to generate an artifact-free MR image. Multi-receiver RF coils have different sensitivity
profiles, depending on their spatial location. Measuring the MR signal with multi-receiver
RF coils is equivalent to performing additional sensitivity encoding. Multi-coil MR data
with different spatial sensitivity profiles help the reconstruction process of mapping under-
sampled k-space data to fully sampled MR images. The most important thing in PI is to
effectively remove aliasing artifacts caused by violating the Nyquist theorem. In order to
reconstruct an artifact-free MR image from multi-coil under-sampled k-space data, multiple
methods have been proposed [3–7]. One method is to reconstruct an MR image using
coil sensitivity maps in the image domain [3]. At this time, coil sensitivity maps are
obtained in advance or are calculated from the acquired k-space data. Another method is
to reconstruct an MR image by interpolating multi-coil data in the k-space domain and
then combine the multi-coil data [5]. These PI methods are popular and widely used.
However, it is challenging for conventional reconstruction methods to remove aliasing
artifacts, particularly those with high acceleration factors such as 4 or 8.

In recent years, deep learning has been proposed in several studies for image restora-
tion methods, such as for denoising [8–10], super-resolution [11–14], and inpainting [15–17],
and it has been shown to work effectively. After that, model-based deep learning showed
excellent performance by mathematically taking into account the image restoration operator
as a forward model and solving the inverse problem to estimate the clean image for deep
learning [18–20]. In particular, the Neumann network outperformed standard unrolled net-
work architectures, such as model-based reconstruction with deep learned priors (MODL),
by directly incorporating the forward model into the network optimization [19]. Moreover,
deep learning-based methods show great promise in parallel MRI reconstruction when a
high acceleration factor is used [21–29]. In addition, model-based deep learning, which sets
parallel MRI reconstruction as an inverse problem and implements a forward model using
prior knowledge, including coil sensitivity maps, shows excellent performance [30–33].
Coil sensitivity maps used in model-based deep learning for parallel MRI reconstruction are
obtained in advance or calculated from auto-calibration signal (ACS) lines of the MR data,
using an estimation method such as the ESPIRiT method [7]. Unfortunately, additional
MR scanning to obtain coil sensitivity maps has the disadvantage of increasing the scan
time, and estimation methods such as ESPIRiT have the disadvantage of low-accuracy
estimations of sensitivity maps when the acceleration factor is high or when the ACS lines
are few. Therefore, not only the MR image, but also the coil sensitivity maps, are necessary
to estimate with deep learning [31,32].

In this study, we propose a multi-domain Neumann network with sensitivity maps
(MDNNSM) that takes account into both image-domain and k-space-domain denoising,
with the Neumann network’s regularization block combined with coil sensitivity maps. The
MDNNSM consists of a data consistency block, a regularization block, and skip connections
of the standard Neumann network, and an added sensitivity map reconstruction block.
The new regularization block consists of two convolutional neural networks (CNNs) to
reconstruct an MR image in the both image and frequency domains. The added sensitivity
map reconstruction block maps multi-coil under-sampled k-space data to coil sensitivity
maps for use in the forward model of parallel MRI reconstruction using CNNs. By inte-
grating k-space data regularization and coil sensitivity map estimation into the Neumann
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Network, we achieved significant improvement in reconstruction quality when compared
with the standard Neumann network [19].

2. Related Work
2.1. Parallel MRI Reconstruction Formulation

When acquiring MR signals, multi-receiver RF coils measure the signals in the fre-
quency domain called the k-space. The MR image can be obtained by an inverse Fourier
transform (IFT) of the acquired k-space data. Considering y is the measured under-sampled
k-space data and x is the MR image that should be reconstructed, the process of scanning
an MR image can be formulated as follows:

y = Fx + ε, (1)

where F is the Fourier transform (FT) and ε is the measurement noise. In parallel MRI, the
MR scanner has multiple receiver RF coils, and each coil has a different sensitivity map,
depending on its location. Each coil acquires signals in which the MR signal of x is affected
by the coil’s sensitivity map as k-space data. Therefore, the MR signal acquisition in parallel
MRI can be expressed as follows:

A = M ◦ F ◦ S, (2)

y = Ax + ε (3)

where A is a forward operator consisting of F, coil sensitivity maps S, and under-sampling
mask operator M. With Equation (3) as an inverse problem, x can be obtained from the
measured y. Unfortunately, since parallel MRI reconstruction is an ill-posed problem, there
is no closed-form solution. So, the optimal solution is found using the optimization method
that minimizes the least-squares problem as follows:

x = argmin
x

1
2
‖Ax− y‖2

2 + λR(x) (4)

where λ is a learning rate and R(·) is a regularization term. The regularizer R limits the
degree of freedom of the solution by using prior knowledge about the MR image to be
reconstructed. Classically, in the field of image reconstruction, total variation [34,35], L1-
norm wavelet transform [36], etc., are used. In MRI compression sensing (CS) [37], the
L1-norm wavelet transform is used as a regularization function to exploit image sparsity
in the wavelet domain. Equation (4) can be solved by a gradient descent algorithm or
a conjugate gradient algorithm. If it is solved using the gradient descent method, x is
updated as follows in the t-th step.

xt = xt−1 − λ
(

A−1
(

Axt−1 − y
)
+ R

(
xt−1

))
(5)

Equation (5) calculates the approximate solution iteratively.

2.2. Deep Learning for Parallel MRI Reconstruction

In the past few years, many parallel MRI reconstruction methods using deep learning
have been proposed [21–29]. Model-based deep learning architectures have recently gained
popularity and achieved state-of-the-art performance [30–33]. This model-based method
uses a regularizer R as a deep neural network in Equation (5) and reconstructs an MR
image using an unrolled optimization.

R(x) = CNN(x) (6)

CNN-based regularization with a deep structure and nonlinear functions is also called
data-driven regularization, and can approximate better than classical regularization. In
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addition, since CNNs learn the prior from the training data, the more data, the more the
prior is helpful for the image reconstruction. For the model-based method, coil sensitivity
maps S are used, and thus, need to be obtained or estimated. When coil sensitivity maps
are obtained through additional MR scans, the scan time increases and the advantage of
parallel imaging decreases. Another method is to estimate coil sensitivity maps from the
acquired multi-coil k-space data. However, in conventional methods, such as ESPIRiT, as
the acceleration factor increases, estimating accurate sensitivity maps becomes less likely.
Recently, a method to reconstruct not only MR images, but also sensitivity maps by using
deep learning has shown great promise [31,32].

2.3. Neumann Network

A Neumann network [19] is a deep neural network proposed to solve the inverse
problem in the image processing field. Neumann series expansion is introduced to the
inverse problem, and the solution is estimated by expanding as follows. The normal form
of Equation (3) with the regularizer R is:

x =
(

A−1 A + R
)−1

Ay (7)

Using Neumann series expansion, Equation (7) can be expanded as:

x =
∞

∑
j=0

(
I − λA−1 A− λR

)j(
λA−1y

)
, (8)

where λ represents trainable parameters. By truncating the series at N, we obtain:

x =
N

∑
j=0

(
I − λA−1 A− λR

)j(
λA−1y

)
, (9)

where the regularizer R is a trainable neural network. Equation (9) can be written in
recursive form:

x0 = λA−1y, (10)

xj = xj−1 − λA−1 Axj−1 − R
(

xj−1
)

. (11)

Then:

x̂ =
N

∑
j=0

xj. (12)

3. Multi-Domain Neumann Network with Sensitivity Maps

Unlike the standard Neumann network, we propose a multi-domain Neumann net-
work with sensitivity maps (MDNNSM), which incorporates coil sensitivity maps corre-
sponding to multi-coil k-space data into a forward model for parallel MRI reconstruction.
In this study, coil sensitivity maps are estimated and used with a deep learning-based
method, instead of a conventional method such as ESPIRiT. Figure 1 illustrates the overall
architecture of the MDNNSM. The network consists of a sensitivity map estimation block,
a data consistency block, a regularization block, and skip connections. The sensitivity map
estimation block estimates coil sensitivity maps from multi-coil k-space data using a CNN.
the Data consistency and regularization blocks reconstruct an MR image using a forward
model and a CNN. The skip connections accumulate outputs of each iterative and output
them as the final output of the network.



Sensors 2022, 22, 3943 5 of 14

Figure 1. The overall architecture of the multi-domain Neumann network with sensitivity maps.
The CNN-based sensitivity map reconstruction block reconstructs coil sensitivity maps from multi-
coil under-sampled k-space. The block marked with (I − λM) is a data consistency block. The
regularization block R reconstructs an MR image. The outputs of each iteration are accumulated in
skip connections to become the final output.

3.1. Sensitivity Maps Estimation

Since we use the forward model of parallel MRI reconstruction in Equation (3) for the
Neumann network, we estimate coil sensitivity maps from multi-coil k-space data, which
is an input to the model. We use a CNN to reconstruct coil sensitivity maps, which can be
rewritten as:

S = CNNC

(
F−1 ◦MACS(y)

)
. (13)

where MACS is the ACS lines mask operator and CNNC is the CNN used to estimate the
coil sensitivity maps. Except for low-frequency lines acquired by the ACS of multi-coil
k-space data, zeros are filled in the other areas, transformed into an image domain by IFT,
and then used as an input for CNNC [31]. Coil sensitivity maps estimated in this way are
used for the forward model operation.

3.2. MR Image Reconstruction

Based on Equation (11), an MR image is reconstructed using a data consistency block
with the forward model and a CNN-based regularization block. Figure 2 illustrates the
detail of the CNN-based regularization block. The CNN-based regularization block recon-
structs an MR image in parallel with the regularization operating in both the image domain
and the frequency domain. Using this, the CNN-based regularization R of Equation (11) is
formulated as follows.

R(x) = CNNI(x) + F−1CNNF(Fx), (14)

where CNNI and CNNF represent the CNN-based regularization that reconstructs an MR
image in the image domain and the frequency domain, respectively. To reconstruct the MR
image in the frequency domain, FT is applied to the MR image and used as the input of
CNNF; then, the IFT is applied to the output.
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Figure 2. CNN-based regularization block. An MR image is reconstructed in parallel in the image
domain and the k-space domain with two U-Nets and then added.

3.3. K-Space Domain Accumulation

The standard Neumann Network derives the final output by adding both the initial
value and iteration outputs in the image domain [38]. Because the proposed MDNNSM
handles data in the k-space domain (Equations (10)–(12)), the equation is updated by
applying F ◦ S to both sides so that an MR image can be mapped to multi-coil k-space data.

k0 = λMy, (15)

kj = kj−1 − λMkj−1 − F ◦ S ◦ R
(

S−1 ◦ F−1kj−1
)
∀j = 1, ..., N, (16)

k̂ =
N

∑
j=0

kj, (17)

Finally, since the final output is the multi-coil k-space data, it is transformed into the
image domain with IFT, and combined into an MR image with root sum squares:

x̂ =

√√√√ N

∑
i=1

∥∥∥F−1k̂i

∥∥∥2
, (18)

where k̂i is the i-th coil k-space data of the final output.

4. Experiments

We compare our MDNNSM with the zero-filled method, the GRAPPA algorithm [5],
U-Net [39], and Neumann networks [19]. Zero-filled MR images are used as the input of
U-Net. Neumann networks reconstruct an MR image from multi-coil k-space data without
considering the sensitivity map using CNN-based regularization in the image domain only.
The reference image and the reconstruction images are normalized from 0 to 4095, and the
difference map, depicting the difference between the reference image and the reconstruction
image, is visualized. We evaluate MR images reconstructed by each method quantitatively,
based on the normalized mean squared error (NMSE) and structural similarity (SSIM).

4.1. Implementation Details

We split the complex-valued k-space data into two channels, a real channel and an
imaginary channel, and then concatenate them in the channel dimension to treat them as a
real value. For example, 16-coil complex-valued data is treated as 32-channel data. Addi-
tionally, since the target ground truth is an MR image with a real value only, we calculate
the loss between the target and the magnitude of the final output with a complex value.

In the MDNNSM, we use CNNC for the sensitivity map reconstruction and CNNI
and CNNF for the MR image reconstruction. These three CNNs (CNNC, CNNI and CNNF)
are implemented using same U-Net architecture [39]. U-Net consists of 2D convolution
layers, leaky rectified linear units with a coefficient of 0.2 for negative values, and instance
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normalization [40]. We set the number of iteration blocks to 6 in the MDNNSM. The
λ is initialized to 1 for all blocks. We use the SSIM loss function [41] and the ADAM
optimizer [42] to train our network, with a learning rate of 0.0001 and 50 epochs.

We used T1-weighted MR images of the NYU fastMRI brain dataset [43], which
were obtained from four different MR scanners. The number of T1-weighted MR im-
ages is 498 scans (axial 7782 slices) for training and 169 scans (axial 2646 slices) for val-
idation. The data used in our study subscribes to the following parameters: magnetic
field strength = (1.5, 3) T, the number of multi-receiver coils = (2, 4, 6, 8, 12, 14, 16, 18,
20, 24), matrix size = ((640 × 260), (640 × 272), (640 × 290), (640 × 320), (640 × 332)),
resolution = ((0.69 × 0.69), (0.69 × 0.72), (0.72 × 0.72), (0.75 × 0.75)) mm2, and slice thick-
ness = (5, 7.5) mm. We used all 7782 slices for training; however, we conducted the
validation without using the entire validation dataset, using only 1542 slices and excluding
the data with ringing artifacts (as shown in Figure 3).To generate the multi-coil under-
sampled k-space to be used for training and validation, multi-coil fully-sampled k-space
data was multiplied pixel-wise by a sampling mask. As the sampling mask, equi-spaced
sampling masks for regular under-sampling were used, as is shown in Figure 4. The
acceleration factor and ACS ratio for sampling are as follows: (2, 10%), (4, 8%), and (8, 4%).

(a)

(b)

Figure 3. Examples of the NYU fastMRI brain dataset. (a) Artifact-free T1 weighted MR image;
(b) Ringing artifact T1 weighted MR image.

4.2. Results

In Figure 5, we present the fully sampled reference image and parallel MRI reconstruc-
tion images by various FFT-based and deep learning-based methods, with an acceleration
factor of 2. The zero-filled image has severe aliasing artifacts due to the effect of under-
sampling, making it difficult to observe the anatomy of the brain. When comparing
reconstructed MR images of GRAPPA, U-Net, the Neumann network, and the MDNNSM,
aliasing artifacts are removed, and the quality of reconstruction results is comparable to the
fully sampled reference image.
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(a) (b) (c)

Figure 4. Examples of equi-spaced under-sampling masks with acceleration factors and ACS ratios of
(a) (2, 0.1%), (b) (4, 0.08%), and (c) (8, 0.04%), respectively.

Figure 6 shows the fully-sampled reference image and the T1-weighted MR images
reconstructed at an acceleration factor of 4 by each method. In the zero-filled image, there
are more severe aliasing artifacts than in the result of Figure 5, due to the influence of the
higher acceleration factor. For the same reason, the GRAPPA method also reconstructs
the MR image with speckle noise. The U-Net method removes artifacts and noise well,
but the image is blurred and details are lost. The Neumann network and the MDNNSM,
which are model-based methods, have less blurring compared to the previous methods and
reconstruct details well. In the difference map, the image reconstruction by the model-based
method has a lower value, showing that it is reconstructed more similarly to the reference
image. This indicates that incorporating a forward model into deep neural networks helps
to improve fast MRI reconstruction.

Figure 7 shows the reconstructed MR images of each method at an acceleration factor
of 8. The analysis results of Figure 7 are similar to those of Figure 6. However, the quality
of the reconstructed MR image is worse than the results of Figures 5 and 6, due to the
influence of a higher acceleration factor. In particular, MDNNSM significantly outperforms
the standard Neumann network, as highlighted in the difference image. This shows the
benefit of using CNN-based sensitivity map reconstruction.

Reference Zero Filled Grappa U-Net Neumann Net MDNNSM

Di
ffe

re
nc

e 
m

ap

NMSE: 0.0196
SSIM: 0.8225

NMSE: 0.0027
SSIM: 0.9158

NMSE: 0.0036
SSIM: 0.9494

NMSE: 0.0010
SSIM: 0.9642

NMSE: 0.0008
SSIM: 0.9670

0

500

1000

1500

2000

2500

3000

3500

4000

0

100

200

300

400

500

Figure 5. The top row shows fully sampled and reconstructed T1-weighted images using the zero-
filled, Grappa, U-net, Neumann network, and MDNNSM methods, with an acceleration factor of 2
and an ACS rate of 10%. The middle row shows detailed images zooming the red box area of the top
row. The bottom row shows the difference between the reference and reconstruction images. The
MDNNSM showed the lowest NMSE and the highest SSIM.
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We also report quantitative evaluation scores for parallel MRI reconstruction with
acceleration factors of 2, 4, and 8 in Table 1. Our proposed MDNNSM produces significantly
lower NMSE and higher SSIM than other reconstruction methods, including the original
Neumann network.

Reference Zero Filled Grappa U-Net Neumann Net MDNNSM

Di
ffe

re
nc

e 
m

ap

NMSE: 0.0356
SSIM: 0.6945

NMSE: 0.0457
SSIM: 0.5497

NMSE: 0.0050
SSIM: 0.9026

NMSE: 0.0019
SSIM: 0.9244

NMSE: 0.0014
SSIM: 0.9316

0
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2000

2500
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3500
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Figure 6. The top row shows fully sampled and reconstructed T1-weighted images using the zero-
filled, Grappa, U-net, Neumann network, and MDNNSM methods, with an acceleration factor of 4
and an ACS rate 8%. The middle row shows detailed images zooming the red box area of the top
row. The bottom row shows the difference between the reference and reconstruction images. The
MDNNSM showed the lowest NMSE and the highest SSIM.

Reference Zero Filled Grappa U-Net Neumann Net MDNNSM
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e 
m
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NMSE: 0.1231
SSIM: 0.6681

NMSE: 0.1079
SSIM: 0.4518

NMSE: 0.0074
SSIM: 0.9284

NMSE: 0.0054
SSIM: 0.9362

NMSE: 0.0029
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Figure 7. The top row shows fully sampled and reconstructed T1-weighted images using the zero-
filled, Grappa, U-net, Neumann network, and MDNNSM methods, with an acceleration factor of 8
and an ACS rate 4%. The middle row shows detailed images zooming the red box area of the top
row. The bottom row shows the difference between the reference and reconstruction images. The
MDNNSM showed the lowest NMSE and the highest SSIM.
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Table 1. Quantitative evaluation of reconstructed T1-weighted images with acceleration factors of 2,
4, and 8.

Model
2X Acceleration Factor 4X Acceleration Factor 8X Acceleration Factor

NMSE SSIM NMSE SSIM NMSE SSIM

Zero-filled 0.0133 0.9084 0.0360 0.8079 0.0913 0.7003
GRAPPA 0.0049 0.9247 0.0584 0.6823 0.0939 0.5848
U-Net 0.0020 0.9696 0.0045 0.9501 0.0102 0.9259
Neumann network 0.0013 0.9737 0.0028 0.9579 0.0069 0.9362
MDNNSM 0.0012 0.9747 0.0023 0.9612 0.0051 0.9441

4.3. The Amount of Data

We compare the performance of the U-Net, Neumann network and MDNNSM meth-
ods according to the number of patient subjects used for training. Figure 8 shows the SSIM
scores of the U-Net, Neumann network, and MDNNSM methods at an acceleration factor
of 8 when the number of training subjects is 100, 300, and 498. Regardless of the number
of data, the performance is good in the order of the MDNNSM, the Neumann network,
and U-Net. When comparing the MDNNSM and U-Net, the increase in SSIM score is
0.0211, 0.0192, and 0.0182 for 100, 300, and 498 training subjects, respectively. This indicates
that the MDNNSM, using the forward model, is robust even when trained with less data
than U-Net.

100 300 498
The number of subject

0.90

0.91

0.92

0.93

0.94

0.95

SS
IM

0.9113

0.9240
0.92590.9243

0.9331
0.9362

0.9324

0.9432 0.9441

Accelerated factor = 8
U-Net
Neumann Net
MDNNSM

Figure 8. SSIM score according to the amount of training data at an acceleration factor of 8.

4.4. Ablation Studies

To evaluate the efficacy of the network architecture, we evaluated the MDNNSM by
implementing its architecture depending on the following three points:

1. Sensitivity maps estimation: A comparison of the performance according to the
sensitivity maps estimated by ESPIRiT or CNNC;

2. Accumulating domain: A comparison of the performance according to the domain
where data accumulates in the skip connections, either in the image domain or the
frequency domain;

3. Sharing network parameters: A comparison of the performance according to para-
maters that were shared with U-Net for the CNN-based regularization block in
each iteration;

4.4.1. Sensitivity Maps Estimation

Table 2 shows the quantitative performance comparison of MR image reconstruction
according to the sensitivity map estimation method. The MR image reconstruction perfor-
mance of the MDNNSM is better when using sensitivity maps estimated by CNNC than
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when using sensitivity maps estimated by the ESPIRiT method. In all cases of acceleration
factors 2, 4, and 8, when sensitivity maps estimated by CNNC were used, the NMSE was
lower and the SSIM was higher.

Table 2. Quantitative evaluation of reconstructed T1-weighted images depending on the sensitivity
map estimation method.

Model
2X Acceleration Factor 4X Acceleration Factor 8X Acceleration Factor

NMSE SSIM NMSE SSIM NMSE SSIM

MDNNSM
with ESPRiT 0.0014 0.9711 0.0030 0.9514 0.0068 0.9268

MDNNSM
with CNNC

0.0012 0.9747 0.0023 0.9612 0.0051 0.9441

4.4.2. Accumulating Domain

Table 3 shows the performance of each case quantitatively when data were accumu-
lated in the image domain and the k-space domain in the skip connections of the MDNNSM.
When data was accumulated in the k-space domain at acceleration factors of 2 and 4, it
showed higher NMSE and SSIM scores than the results using accumulated data in the
image domain. When comparing the results from using a factor of 8, the results of the image
domain scored lower errors in NMSE than the results of the k-space domain. However, for
SSIM, the results of the k-space domain were higher than image domain.

Table 3. Quantitative evaluation of reconstructed T1-weighted images depending on the accumulat-
ing domain.

Model
2X Acceleration Factor 4X Acceleration Factor 8X Acceleration Factor

NMSE SSIM NMSE SSIM NMSE SSIM

MDNNSM
Image sum 0.0014 0.9710 0.0024 0.9599 0.0050 0.9439

MDNNSM
K-space sum 0.0012 0.9747 0.0023 0.9612 0.0051 0.9441

4.4.3. Sharing the Network Parameters

Table 4 shows a quantitative comparison of the performance according to shared
parameters in the MDNNSM. Sharing the parameters means sharing a CNN-based reg-
ularization block in each iteration of the MDNNSM. If the parameters are shared in a
regularization block for every iteration, the input is reconstructed by the CNN with the
same weights. In all cases where acceleration factors of 2, 4, and 8, were used, the per-
formance was good for the MDNNSM without parameter sharing. Furthermore, as the
acceleration factor increased, the performance difference between the two cases increased
as well.

Table 4. Quantitative evaluation of reconstructed T1-weighted images depending on the
shared parameters.

Model
2X Acceleration Factor 4X Acceleration Factor 8X Acceleration Factor

NMSE SSIM NMSE SSIM NMSE SSIM

MDNNSM
with parameter sharing 0.0013 0.9745 0.0025 0.9600 0.0060 0.9404

MDNNSM
without parameter sharing 0.0012 0.9747 0.0023 0.9612 0.0051 0.9441
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5. Discussion

In this study, we introduced a method for parallel MRI reconstruction from under-
sampled multi-coil k-space data. An MDNNSM, based on the Neumann network and with
two added elements, was implemented.

First, a CNN was added for estimating coil sensitivity maps and used to perform
the parallel MRI forward model operation. One method to obtain coil sensitivity maps
without deep learning is to obtain the standard coil sensitivity map using full-scan data.
The standard coil sensitivity maps obtained by this method have the advantage of high
sensitivity profile accuracy, but because full-scan data need to be acquired, the advantage of
accelerated MRI that measures MR signals by under-sampling disappears. Another method
is to derive coil sensitivity maps from ACS lines, such as with the ESPIRiT method. In the
self-calibrated coil sensitivity maps, the accuracy of the sensitivity profile tends to decrease
as the number of ACS lines decreases. The accuracy of the low sensitivity profile may lower
the quality of the reconstructed MR image. Therefore, we designed not only MR image
reconstruction but also coil sensitivity map estimation with a CNN to increase the accuracy
of the sensitivity profile. Consequently, we automated the process of reconstructing an MR
image from multi-coil under-sampled k-space data, and, as shown in Table 2, the resulting
reconstructed MR images were better than those reconstructed using ESPIRiT.

Second, in CNN-based regularization, multi-domain regularization was used for re-
construction in both the image and frequency domains. Using multi-domain regularization,
aliasing artifacts were removed in the image domain and interpolation was performed
by estimating missing data in the frequency domain. As a result of implementing three
acceleration factors, such as 2, 4, and 8, the MDNNSM outperformed the reconstruction
performance of the original Neumann network and other state-of-the-art methods. The
aliasing artifacts were reduced and detailed structures were reconstructed.

The MDNNSM reconstructs an MR image by directly incorporating the forward model
into the network optimization. Instead of reconstructing an MR image without an explicit
formula, we took an MRI-specific approach, using the forward model of parallel MRI. With
this approach, we were able to apply the prior knowledge of parallel MRI acquisitions
to the deep neural network and to improve the quality of the reconstructed MR image.
Moreover, by applying the forward model using estimated sensitivity maps, multi-coil data
could be mapped into single data. Accordingly, not only the reconstruction accuracy was
increased, but the size of the calculated data was also reduced, so the memory efficiency
was also improved.

In the current study, only T1-weighted brain images from the fastMRI dataset were
used. MR images can have various modalities, as well as T1 weights, depending on their
purpose. Therefore, it is necessary to evaluate the MDNNSM using various data in future
studies. The reconstruction performance of the MDNNSM will be evaluated for various
MR images, such as T2-weighted images or fluid attenuated inversion recovery (FLAIR)
images. In addition, since the accuracy of the estimated sensitivity maps has a great effect
on the MR image reconstruction performance, it is necessary to study and apply a method
for estimating the sensitivity maps with high accuracy.

6. Conclusions

We proposed an MDNNSM for parallel MRI reconstruction by incorporating multi-
domain regularization and coil sensitivity map estimation into a Neumann network. Exper-
imental results demonstrated that our MDNNSM shows superior reconstruction quality,
compared with other FFT-based and deep learning-based parallel MRI reconstruction
methods—including even the original Neumann network. This means that, when parallel
MRI reconstruction is performed, using a forward model with sensitivity maps increases
the accuracy of the reconstructed MR image.
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