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Abstract: Sodium voltage-gated channel α subunit 5 (SCN5A)-mutations may cause an array of
arrhythmogenic syndromes most frequently as an autosomal dominant trait, with incomplete pen-
etrance, variable expressivity and male predominance. In the present study, we retrospectively
describe a group of Mexican patients with SCN5A-disease causing variants in whom the onset of
symptoms occurred in the pediatric age range. The study included 17 patients with clinical diagnosis
of primary electrical disease, at least one SCN5A pathogenic or likely pathogenic mutation and
age of onset <18 years, and all available first- and second-degree relatives. Fifteen patients (88.2%)
were male, and sixteen independent variants were found (twelve missense, three truncating and
one complex inframe deletion/insertion). The frequency of compound heterozygosity was remark-
ably high (3/17, 17.6%), with early childhood onset and severe disease. Overall, 70.6% of pediatric
patients presented with overlap syndrome, 11.8% with isolated sick sinus syndrome, 11.8% with
isolated Brugada syndrome (BrS) and 5.9% with isolated type 3 long QT syndrome (LQTS). A total of
24/45 SCN5A mutation carriers were affected (overall penetrance 53.3%), and penetrance was higher
in males (63.3%, 19 affected/30 mutation carriers) than in females (33.3%, 5 affected/15 carriers).
In conclusion, pediatric patients with SCNA-disease causing variants presented mainly as overlap
syndrome, with predominant loss-of-function phenotypes of sick sinus syndrome (SSS), progressive
cardiac conduction disease (PCCD) and ventricular arrhythmias.

Keywords: SCN5A-channelopathy; childhood onset; overlap syndrome; sick sinus syndrome;
progressive cardiac conduction disease; Brugada syndrome; idiopathic ventricular tachycardia;
long QT syndrome; compound heterozygosity

1. Introduction

The function of the cardiac voltage-gated sodium channel α subunit protein (NaV1.5)
is crucial because it initiates the cardiac action potential by generating the inward sodium
current (INa), which mediates cardiomyocyte excitability and impulse conduction in the
myocardium and specialized conduction system. This channel also generates the late
sodium current (INaL), which plays a role in repolarization and refractoriness [1]. The α sub-
unit of NaV1.5 is a 220 kDa transmembrane protein encoded by the sodium voltage-gated
channel α subunit (SCN5A) gene, consisting of a cytoplasmic N-terminal domain, four ho-
mologous transmembrane domains (TMD, DI-DIV) and a cytoplasmic C-terminal domain.
Each TMD has six transmembrane α-helix segments (S1–S6) connected by cytoplasmic link-
ers [2]. Although sodium channel α-subunits are traditionally believed to form functional
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monomers, some SCN5A mutation studies in patients with inherited arrhythmias indicate
that oligomerization of the sodium channel α-subunits may occur, and recent experiments
suggested that sodium channel α-subunits physically interact, assemble, function and gate
as a dimer [3].

SCN5A-mutations may cause several arrhythmogenic phenotypes most frequently
inherited in an autosomal dominant fashion [4,5]. These mutations cause an array of
arrhythmogenic syndromes including dilated, arrhythmogenic or non-compaction car-
diomyopathy, or arrhythmogenic syndromes with minimal or no structural defects such
as sick sinus syndrome (SSS), progressive cardiac conduction disease (PCCD), type 1 Bru-
gada syndrome (BrS), familial atrial fibrillation, idiopathic ventricular tachycardia (VT),
multifocal ectopic Purkinje-related premature contractions (MEPPC), and type 3 long QT
syndrome (LQTS) [6]. Characteristically, SCN5A disease-causing mutations show incom-
plete penetrance, variable expressivity and male predominance for reasons that are not
fully understood, which include both genetic background and environmental factors [7].

Early age of onset is associated with severity in many genetic diseases. Although there
are many isolated case-reports of SCN5A-channelopathy in children in the medical liter-
ature [8–14], few studies have analyzed SCN5A-channelopathy cohorts where onset of
symptoms occurs in pediatric patients. A large prospective multi-center pediatric cohort of
SCN5A mutation-positive neonates reported that 67.9% were asymptomatic at diagnosis,
while age <1 year at diagnosis, compound heterozygous mutations, and mutations with
both gain- and loss-of-function were identified as independent risk factors for cardiac
events [15]. In the present study, we retrospectively describe a group of Mexican patients
with SCN5A-disease causing variants in whom the onset of symptoms occurred in the
pediatric age range, attending the Ignacio Chávez National Institute of Cardiology over a
15 year period. This study provides insight, which can potentially be of aid for diagnosis,
phenotypic characterization and to define therapeutic approaches in pediatric patients with
SCN5A-disease causing variants.

2. Materials and Methods
2.1. Subjects

The study included a group of pediatric patients (age of onset <18 years) recruited
from the Department of Cardiac Electrophysiology at the National Institute of Cardiology
“Ignacio Chavez” in Mexico City over a 15-year period (2005 to 2020). All patients had a
clinical diagnosis of primary electrical disease (SSS, PCCD, BrS, VT, LQTS) and a sodium
channel disease-causing variant. All available first- and second-degree relatives were also
included in the study. Index cases underwent routine clinical evaluation, including interro-
gation of family and medical history, physical examination, electrocardiogram (standard
and high precordial leads), 24-h Holter, stress test, and had a yearly clinical examination
for follow-up. Structural heart disease was ruled out by trans-thoracic echocardiography
and/or magnetic resonance imaging. Informed consent was provided by participants or
by their parents or legal guardian. The study was approved by the Ethics Committees of
the National Institute of Cardiology Ignacio Chávez and the National Institute of Genomic
Medicine in Mexico City.

The arrhythmogenic phenotypes considered were the following: SSS, sinus bradycar-
dia, sinus pause or arrest with or without escape rhythm, sinoatrial exit block, tachy-brady
syndrome, atrial fibrillation with slow ventricular response in the absence of AV node
blocking agents, chronotropic incompetence [16]; PCCD: finding of a major conduction
defect on the electrocardiogram (ECG) such as complete right bundle branch block, com-
plete left bundle branch block, left anterior fascicular block / hemiblock or left posterior
hemiblock, prolonged PR interval or complete AV block with broad QRS complexes [17];
BrS, appearance of a type one ST-segment elevation (coved type) in more than one right
precordial lead (V1 to V3), in the presence or absence of a sodium channel blocker, and
one of the following: documented ventricular fibrillation, ventricular tachycardia or self-
terminating polymorphic ventricular tachycardia, a family history of sudden cardiac death
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(SCD, <45 years), coved type ECGs in family members, electrophysiological inducibility,
syncope, or nocturnal agonal breathing [18]; LQTS was diagnosed when considered as high
probability according the criteria of Schwartz [19]. Patients with more than one of these
arrhythmogenic phenotypes were considered as SCN5A overlap syndrome cases.

2.2. Targeted Sequencing

Genomic DNA was extracted from peripheral blood of all participants using com-
mercial methods (QIAGEN DNA Midi blood kit®). Samples from all index cases were
sequenced using the TruSight Cardio® Sequencing Panel on a Mi-Seq device (Illumina,
San Diego, CA, USA). Post-run sequencing quality was assessed with FastQC (Babraham
Bioninformatics, UK), reads were aligned with Burrows-Wheeler v2.0 (Broad Institute,
Cambridge, MA, USA) [20]; variant calling was performed with the Genome Analysis
Tool Kit (GATK v4.0; https://gatk.broadinstitute.org; accessed on 8 September 2021), and
all variants were annotated with ANNOVAR (http://annovar.openbioinformatics.org;
accessed on 8 September 2021).

All novel or very low frequency variants (minor allele frequency <0.0005) affecting
the amino acid sequence of arrhythmogenic channelopathy-related genes were classi-
fied according to the American College of Medical Genetics and Genomics criteria as
benign, likely benign, of unknown clinical significance (VUS), likely pathogenic (LP) or
pathogenic. Patients with at least one pathogenic or likely pathogenic SCN5A variant and
their available relatives were included in the analysis. Amino acid numbering was made
according to transcription variant NM_198056 (http://www.ncbi.nlm.nih.gov/, accessed
on 8 September 2021).

2.3. Statistical Analysis

The numerical variables are expressed as mean ± SD or median and interquartile
range (IQR) as appropriate, and categorical variables as percentages. Overall penetrance
for arrhythmogenic syndromes was estimated including all available individuals from
families in which at least one first-degree relative was screened, as the ratio between
number of SCN5A mutation carriers with arrhythmogenic phenotypes (affected) and the
total number of carriers (affected and non-affected). Missense variants found in compound
heterozygosity in probands, with no symptomatic heterozygous carriers in the family,
were excluded from the overall penetrance estimation. Differences in SCN5A mutation
penetrance between males and females were compared using the Chi-squared test.

3. Results
3.1. SCN5A Mutations

A total of 17 apparently unrelated patients with at least one pathogenic or likely
pathogenic SCN5A variant were included in the study, along with a total of 42 first-
and second-degree relatives. Table 1 summarizes the characteristics of all pathogenic
or likely pathogenic SCN5A variants identified in the probands [21–29]. A total of six-
teen independent variants were identified, twelve were missense, while four were in-
ferred as null (three truncating frameshift and one a complex inframe multiple amino acid
(aa) deletion/insertion occurring in a non-repetitive aa sequence in DIII/S5 (p.Trp1345-
Ser1349delinsPhe). All but three of the missense variants (p.Arg811Cys, p.Pro1730Leu
and p.Ala1778Asp) had at least one functional study reporting loss and/or gain of func-
tion. Thirteen patients were heterozygous for missense, and one was heterozygous for
a frameshift truncating mutation. Notably, three patients (17.6%) were compound het-
erozygous for an inferred null mutation and a missense SCN5A variant. Most missense
mutations were located within the DIV domain (6/12, 50%), four (33.3%) affected the pore
forming region (three in DIV and one in DII), while two affected voltage sensor domains
(S4) in DII and DIV. No other pathogenic or likely pathogenic variants were found among
174 cardiogenes in this group of patients.

https://gatk.broadinstitute.org
http://annovar.openbioinformatics.org
http://www.ncbi.nlm.nih.gov/
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Table 1. SCN5A variants identified in children with arrhythmogenic syndromes.

Variant Variant
Type dbSNP gnomAD

Global MAF
Domain
Location Site Functional

Interpretation * Reference

p.Arg34fs * 60 Frameshift - 0 N-Terminus - LOF [27]

p.Val240Met Missense rs199473076 1.4 × 10−5 DI Cytoplasmic
S4-S5 GOF [22]

p.Arg811Cys Missense rs794728864 0 DII S4 - -

p.Arg893His Missense rs199473172 4.0 × 10−6 DII Pore LOF [25]

p.Arg1195His Missense rs199473596 2.5 × 10−5 Interdomain
DII-DIII Cytoplasmic LOF/GOF [27]

p.Asp1275Asn Missense rs137854618 8.0 × 10−6 DIII S3 LOF [24]

p.Trp1345_Ser1349delinsPhe Inframe
del/ins 0 DIII S5 - -

p.Arg1632Cys Missense rs878855292 4.0 × 10−6 DIV S4 LOF/GOF [28]

p.Arg1644His Missense rs199473282 4.0 × 10−6 DIV Cytoplasmic
S4-S5 GOF [26]

p.Gly1661Arg Missense rs199473292 0 DIV S5 LOF [23]

p.Thr1708Asn Missense - 0 DIV Pore LOF/GOF [25]

p.Ser1710Leu Missense rs137854604 1.6 × 10−5 DIV Pore LOF/GOF [21]

p.Pro1730Leu Missense rs1060501142 8 × 10−6 DIV Extracellular
pore - -

p.Asp1741Glyfs * 48 Frameshift rs1251085820 0 DIV S5/S6 - - -

p.Ala1778Asp Missense - 0 C-Terminus Cytoplasmic - -

p.Leu1821fs * 10 Frameshift rs794728924 0 C-Terminus Cytoplasmic LOF/GOF [29]

* Functional interpretation according to functional studies expressing the variants in different heterologous
systems. MAF: minor allele frequency; LOF: loss of function; GOF: gain of function.

3.2. Clinical Characteristics of Pediatric Arrhythmogenic Channelopathy Patients Bearing
SCN5A Mutations

Demographic and clinical characteristics of all index cases are described in Table 2.
Fifteen of these patients (88.2%) were male, and only two were female. Median age of
symptoms onset was 6 years (IQR = 12 years). Onset of symptoms occurred in the early
childhood range (<6 years) in eight patients (47.1%), during school age (6–12 years) in
three patients (17.6%), and during teenage years in six patients (35.3%). Overall, the most
prevalent arrhythmogenic syndrome was SSS (13/17, 76.5%), followed by VT (64.7%),
PCCD (47.1%), type 1 BrS (35.3%) and LQTS (11.8%). Notably, twelve patients (70.6%) had
overlap syndrome, two (11.8%) had isolated SSS, two more had isolated BrS, one (5.9%)
had isolated type 3 LQTS. Considering only patients with overlap syndrome, the most
prevalent phenotypes were SSS and VT (11/12, 91.7% each), followed by PCCD (66.7%),
type 1 BrS (33.3%) and LQTS (8.3%). Pacemakers were implanted in all patients with SSS,
and an implantable cardioverter defibrillator was implanted in the only patient who had
suffered a ventricular fibrillation event. Figure 1 depicts mutation sites and ECGs from
all probands.

Three apparently unrelated patients were heterozygous for the p.Ser1710Leu mutation,
each with a different phenotype: overlap syndrome (SSS and PCCD), isolated SSS and
isolated BrS. Two apparently unrelated patients were p.Arg893His heterozygous, one with
overlap and the other with isolated BrS. In addition, two apparently unrelated children
were heterozygous for the p.Thr1708Asn mutation, both with overlap syndrome and school-
aged at the onset of symptoms. On further interrogation, family members were able to
identify that both index cases were in fact second cousins once removed.
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A)

C)

B)

Figure 1. Molecular mapping of the SCN5A mutations. (A) Cartoon representation of the over-
all structure of NaV1.5: DI, DII, DIII and DIV domains are colored yellow, green, blue and
red, respectively. (B) Upper view of the cryo-EM reconstruction of NaV1.5 using the UniProt
(https://www.uniprot.org/uniprot/Q14524, accessed on 28 October 2021) and α Fold templates.
SCN5A mutations are indicated as balls and sticks. (C) Representative ECGs of probands are pre-
sented. The case number is indicated on the ECG image. Cases are ordered according to arrhyth-
mogenic phenotypes, SSS: sick sinus syndrome; PCCD: progressive cardiac conduction disease; VT:
ventricular tachycardia; BrS: Brugada syndrome; LQTS: long QT syndrome. ECG from Case 2: atrial
standstill; Case 4: atrial flutter with VVI pacemaker escape; Case 3: atrial flutter; Case 12: coved type
ST elevation and sinus bradycardia; Case 14: sinus bradycardia with prolonged QTc interval (537 ms);
Case 1: sinus bradycardia; Case 5: sinus standstill with monomorphic ventricular tachycardia; Case
16: sinus standstill with ventricular fibrillation; Case 10: monomorphic ventricular tachycardia;
Case 7: sustained monomorphic ventricular tachycardia; Case 9: severe intraventricular conduction
disease, monomorphic ventricular tachycardia, sinus standstill and atrial flutter; Case 13: sustained
monomorphic ventricular tachycardia and sinus standstill; Case 17: monomorphic ventricular tachy-
cardia and atrial standstill; Case 11: sinus bradycardia, ventricular fibrillation and sinus standstill;
Case 6: sinus standstill, prolonged QTc interval (507ms) and sustained monomorphic ventricular
tachycardia; Case 8: severe cardiac intraventricular conduction disease, sustained monomorphic
ventricular tachycardia and sinus standstill; Case 15: sinus standstill and VVI pacemaker.

https://www.uniprot.org/uniprot/Q14524
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Table 2. Clinical characteristics of SCN5A-channelopathy pediatric patients.

Case Variant Sex Age of
Onset Syncope Seizures Device NFCA SCD Arrhythmogenic

Phenotype SVT VA AVB RBBB,
LBBB AS MaxQTc

(ms)

1 p.Ser1710Leu M 14 - - PM - - SSS, PCCD aFL,
CTI-D - 3rd D - - 488 *

2 p.Ser1710Leu M 2 Yes - PM - - SSS - - - RBBB - 682 *

3 p.Ser1710Leu M 15 - - - - - BrS AF, aFL,
CTI-D - 1st D - - 413

4 p.Asp1275Asn M 17 - - PM - - SSS - - 3rd D RBBB,
LBBB Yes 476 *

5 p.Arg893His M 15 Yes - PM - - SSS, VT aFL,
CTI-D SMVT 3rd D RBBB Yes 542 *

6 p.Thr1708Asn M 6 Yes - PM - - SSS, PCCD, VT,
BrS

AF, aFL,
AT SMVT - RBBB,

LBBB - 503 *

7 p.Thr1708Asn M 10 - - PM - Yes SSS, PCCD, VT aFL SMVT 1st D RBBB,
LBBB - 481 *

8
p.Trp1345_Ser

1349delinsPhe/
p.Pro1730Leu

F 3 Yes - PM Yes - SSS, PCCD, VT,
BrS AF, aFL SMVT,

PVT 3rd D RBBB,
LBBB Yes 495 *

9 p.Leu1821fs *10 M 12 - - PM Yes Yes SSS, PCCD, VT aFL SMVT 2nd D RBBB - 550 *

10 p.Arg34fs *60/
p.Arg1195His M 22mo Yes Yes -. Yes Yes VT, LQTS - SMVT,

VF - - - 519

11 p.Gly1661Arg M 2 Yes Yes ICD Yes - SSS, VT, BrS - SMVT,
VF - RBBB - 500 *

12 p.Arg893His M 17 Yes - - Yes Yes BrS - VF - - - 402

13
p.Asp1741Glyfs

*48/
p.Val240Met

M 4 Yes - PM - - SSS, PCCD, VT AF SMVT 1st D RBBB - 630 *

14 p.Arg1644His F 16 Yes - - - - LQTS AT - - - - 520

15 p.Arg811Cys M 4 - - PM - - SSS, PCCD, VT,
BrS aFL SMVT 3rd D RBBB,

LBBB Yes 519 *

16 p.Ala1778Asp M 4 Yes Yes - - - SSS, VT AF PVT,
TdP 1st D RBBB Yes 529 *

17 p.Arg1632Cys M 3 - Yes PM - Yes SSS, PCCD, VT AF SMVT - RBBB,
LBBB - 462 *

NFCA: Non-fatal cardiac arrest; SCD: Sudden cardiac death; SVT: Supraventricular tachycardia; VA: Ventricular
arrhythmia; AVB: Atrioventricular block; RBBB: Right bundle branch block; LBBB: Left bundle branch block;
AS: Atrial standstill; MaxQTc: maximum corrected QT interval; SSS: Sick sinus syndrome; PCCD: Progressive
cardiac conduction disease; VT: idiopathic ventricular tachycardia; BrS: Brugada syndrome; LQTS: long QT
syndrome; PM: pacemaker; ICD: Implantable cardioverter defibrillator; AF: Atrial fibrillation; aFL: Atrial flutter;
CTI-D: cavotricuspid isthmus-dependent atrial flutter. AT: atrial tachycardia; SMVT: Sustained monomorphic
ventricular tachycardia; PVT: polymorphic ventricular tachycardia; FV: ventricular fibrillation; TdP: Torsade de
points. * Prolonged QTc interval secondary to intraventricular conduction defect or AV block. Cases 9 and 10
were previously published [27,29].

3.3. Syncope, Seizures, Non-Fatal Cardiac Arrest (NFCA) and Sudden Cardiac Death (SCD)

Syncope was reported in ten (58.8%) patients, and seizures in four (23.5%). The fre-
quency of non-fatal cardiac arrest was 29.4% (5/17), and three of these five patients suffered
SCD afterwards. The overall frequency of sudden cardiac death was also 29.4%, occurring
before age 12 in 4 patients with overlap syndrome, and at age 17 in an isolated BrS patient.

3.4. ECG and Holter Findings

Twelve patients had at least one type of supraventricular tachycardia (SVT). The most
prevalent was atrial flutter (8/17, 47.1%), followed by atrial fibrillation (35.3%), cavotri-
cuspid isthmus-dependent atrial flutter (17.6%) and atrial tachycardia (11.8%). Moreover,
twelve patients had one or more documented ventricular tachycardia events; the most
prevalent was sustained monomorphic ventricular tachycardia (58.8%), followed by ven-
tricular fibrillation (17.6%), polymorphic ventricular tachycardia (11.8%); and torsade de
points (5.9%); ten had atrio-ventricular block (58.8%) and five had documented atrial stand-
still (29.4%). Finally, 15/17 patients (76.5%) showed a prolonged QTc interval (QTc max
>460 ms), which was likely secondary to intraventricular conduction defect or AV block in
13, and only two patients had a normal maximum QTc interval (<440 ms).

3.5. Incomplete Penetrance and Variable Expressivity

Figures 2 and 3 show family pedigrees of index cases with autosomal dominant
inheritance (heterozygous mutations), where at least one parent was available for clini-
cal assessment and DNA analysis (all except cases 4, 5, 11 and 17), showing incomplete
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penetrance and variable expressivity. Different phenotypes were observed both for the
same mutation in different cases (cases 1, 2 and 3 for p.Ser1710Leu; cases 6 and 7 for
p.Thr1708Asn), and within the same family (pedigrees for cases 6, 7 and 9). Case 14 was
the only isolated LQTS case, she and her father were heterozygous for the p.Arg1644His
mutation; however, her father’s ECG showed a normal QTc interval (432 ms) with brady-
cardia (49 bpm). From a total of 45 SCN5A mutation carriers, 24 were affected with an
arrhythmogenic phenotype (overall penetrance 53.3%), and penetrance was higher in males
(63.3%, 19 affected/30 carriers) than in females (33.3%, five affected/15 carriers; p = 0.057).
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Figure 3. Pedigree of the family bearing the p.Thr1708Asn mutation. Circles indicate females,
squares, males. Symbols with diagonal lines represent deceased individuals. Open symbols represent
asymptomatic individuals, filled symbols are affected by arrhythmogenic syndromes according to the
color code. Case 6 (V-3) and case 7 (IV-13) were initially thought to be unrelated, but after thorough
interrogation were found to be first cousins once removed. Individual III-4 suffered sudden cardiac
death at age 39 years, III-5 at age 56 years; and IV-15 at age 6 years. p.Thr1708Asn heterozygous
individuals III-6, IV-6, IV-8, and V-5 had minor ECG manifestations, including prolonged PR and/or
prolonged QTc intervals. SSS: sick sinus syndrome; PCCD: progressive cardiac conduction disease;
VT: ventricular tachycardia; BrS: Brugada syndrome; LQTS: long QT syndrome; SCD: sudden
cardiac death.

Penetrance of individual mutations was estimated when five or more heterozygous
carriers were found. A total of 14 individuals of a single kindred carried the p.Thr1708Asn
mutation (eight male and six female); penetrance for arrhythmogenic phenotypes was
6/8 (75.0%) in males (three with overlap syndrome, two with BrS and one with sudden
cardiac death at age 6). No arrhythmic phenotypes were observed in available female
carriers, but 3/4 (75%) showed minor ECG abnormalities such as AV block (PR < 200 ms)
and/or prolonged QTc interval (>470 ms, range 478–488 ms). Moreover, a total of seven
individuals from a single kindred carried the p.Leu1821fs*10 mutation. Four were female
(two with PCCD and two asymptomatic) and three were male (one with PCCD, one with
overlap syndrome and one asymptomatic). Finally, five individuals from three different
kindreds were heterozygous for the p.Ser1710Leu mutation, an asymptomatic female and
four males (one asymptomatic, one each with overlap syndrome, PCCD and BrS).

3.6. Compound Heterozygosity for SCN5A Mutations

Figure 4 shows the pedigrees of the three index cases (17.6%) found to be com-
pound heterozygous for SCN5A mutations, with an onset of symptoms in early child-
hood (younger than age 4 years), overlap syndrome and prolonged QTc intervals. Case 8
(p.Trp1345_Ser1349delinsPhe/ p.Pro1730Leu) was a severely affected six year-old girl who
showed episodes of palpitations, fatigue and documented bradycardia since age three
years, and was diagnosed with SSS, PCCD, VT, type 1 BrS and showed a prolonged QTc
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interval (495ms). During hospital stay she suffered various arrhythmic events including
atrial flutter, atrial standstill, sustained ventricular tachycardia, ventricular fibrillation, and
notably, bidirectional ventricular tachycardia and two cardiac arrest episodes with success-
ful reanimation after cardio-pulmonary resuscitation. Both parents were asymptomatic,
however a p.Trp1345_Ser1349delinsPhe heterozygous paternal first cousin showed a type 1
BrS ECG pattern. In addition, four asymptomatic relatives (II-7, III-5, III-6 and IV-3) carried
the p.Pro1730Leu variant.
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Figure 4. Pedigree of 3 overlap syndrome cases who were compound heterozygous for SCN5A
mutations. Circles indicate females, squares, males; symbols with diagonal lines represent deceased
individuals. Open symbols represent asymptomatic individuals, filled symbols were affected by
arrhythmogenic syndromes according to the color code. SSS: sick sinus syndrome; PCCD: progressive
cardiac conduction disease; VT: ventricular tachycardia; BrS: Brugada syndrome; LQTS: long QT
syndrome; SCD: sudden cardiac death.
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Case 10 (p.Arg34fs*60/p.Arg1195His) was a 22 month-old male toddler [27], who was
admitted to the emergency room with febrile seizures and syncope and was diagnosed
with SSS and VT, and a prolonged QTc interval (maximum QTc = 519 ms) with no apparent
intraventricular conduction defect. The boy showed signs of severe neurological injury
and died shortly after being admitted. He inherited the p.Arg1195His variant from his
father, the p.Arg34fs*60 variant from his mother, and both parents were asymptomatic.
Finally, case 13 (p.Asp1741Glyfs*48/p.Val240Met) presented with syncope at age 4 years,
and was diagnosed with SSS, PCCD and recurrent monomorphic VT. The QT interval on
ECG was prolonged (QTc = 630 ms). The mother (II-9) and two siblings (III-1 and III-2) had
the Val240Met variant and were asymptomatic, while the father was p.Asp1741Glyfs*48
heterozygous and was also asymptomatic.

4. Discussion

The field of cardiovascular genetics is rapidly evolving and has greatly contributed
to the understanding of primary electrical heart disease. However, this field faces an
enormous challenge when it comes to the integration of genetics, functional studies, diag-
nosis, prognosis, and management [30]. The growing list of SCN5A channelopathy and
overlap syndrome reports in the medical literature confirms that incomplete penetrance,
male predominance and variable expressivity are characteristic of the disease, attributed
to both genetic and non-genetic factors [7]. In the present study, all families with more
than one SCN5A mutation carrier showed this variable expressivity, involving differences
in age of onset (childhood–adulthood), arrhythmogenic phenotypes and disease severity.
Similarly, apparently unrelated patients sharing the same mutation (Cases 1, 2 and 3 for
p.Ser1710Leu) also showed variable expressivity regarding arrhythmogenic phenotypes.
As expected, overall penetrance and penetrance of individual mutations was higher in
male than in female individuals.

To our knowledge only one prospective study of children with SCN5A mutations
included 442 neonates, where most showed no ECG alterations at birth (44.3%) and the
most frequent arrhythmogenic phenotype was isolated PCCD (25.6%), followed by overlap
syndrome (15%), LQTS (10.6%) and BrS (1.8%) [15]. The present study includes only
pediatric patients who were symptomatic and required specialized medical assistance
at the Ignacio Chávez National Institute of Cardiology. In agreement with the study
in neonates, isolated LQTS and isolated BrS were the least frequent phenotypes (5.9%
each), however among the symptomatic children of the present study, the most frequent
phenotype was overlap syndrome (70.6%).

The high frequency of children with compound heterozygous SCN5A mutations in our
group of symptomatic children (17.6%) is noteworthy. Compound heterozygosity is infre-
quent in SCN5A channelopathies, reported only in 13/2111 (0.62%) of BrS patients [31], and
in 0.7% of neonates with SCN5A mutations [15]. Moreover, among ten individual SCN5A
compound heterozygous case reports [12,13,27,32–38], only two cases reported adult age
of onset [35,36], and 6/8 childhood onset cases had a truncating mutation combined with a
missense mutation [12,27,32–34]. All three of our compound heterozygous cases (cases 8,
10 and 13) carried an inferred null and a missense mutation, had a severe overlap syndrome
with early childhood onset (<4 years), and NFCA events occurred in two of these cases.
Notably, case 8 had documented polymorphic ventricular tachycardia and bidirectional
ventricular tachycardia, considered a calcium-handling arrhythmia. To our knowledge,
there is only one report of a SCN5A mutation (p.T1857I) in a family with multiple sudden
cardiac deaths where afflicted probands presented with atrial and ventricular arrhythmias
including bidirectional VT [39]. Functional studies in heterologous cells and the use of
O‘Hara Rudy and Grandi models [40,41] suggested the mutation caused right-shifted
voltage-dependence of both activation (gain of function, GOF) and inactivation (loss of
function, LOF), with a net gain-of-function in the NaV1.5 gating, an increased window
current and resultant ventricular tissue after depolarization.
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Among the genetic modifiers contributing to variable expressivity and incomplete
penetrance, studies in heterologous cells have shown common SCN5A polymorphisms
p.H558R and p.del1077Q not only affect electrophysiological properties of NaV1.5, but may
also modulate the effects of co-existing disease-causing mutations [42–44]. In this regard, a
functional study in HEK293 cells showed that the p.Thr1708Asn mutation decreased the
peak INa current and increased the late INaL current, decreasing the peak INa current even
further when found in cis with the p.H558R polymorphism [25]. Segregation analysis of
the p.Thr1708Asn kindred (Figure 3) showed that both variants were in fact on the same
allele, as two of the p.Thr1708Asn carriers (IV-13 and IV-14) were p.558R homozygous
(data not shown), compatible with the severe phenotype observed in several affected males.
Unfortunately, the number of individuals with SCN5A mutations was insufficient to assess
the possible association of common polymorphisms with clinical severity in our series.

The consequences of most of the mutations identified in this group of patients have
been studied in heterologous ion channel expression systems [16–24]. However, because
of the many consequences of mutations on electrophysiological phenotypes (early and
late inward Na currents, activation or inactivation properties, interactions with other pro-
teins, response to adrenergic or cholinergic stimuli, response to anti-arrhythmic drugs,
etc.), and because different functional phenotypes often coexist, labeling variants as
GOF and/or LOF may be an oversimplification. Particularly, because it has been pro-
posed that NaV1.5 channels assemble as dimers [3], compound heterozygous mutations
may require the biophysical characterization of both mutations separately and in co-
expression. In this regard, previous functional studies of the mutations of case 10 showed
the frame-shifted and prematurely truncated peptide SCN5A-Arg34fs*60 produced no
current, while SCN5A-Arg1195His had a normal peak and late current but abnormal
voltage-dependent gating parameters. Interestingly, co-expression of both variants led to a
significant increase in late INaL current [27]. Functional studies of SCN5A variants found in
case 8 (p.Trp1345_Ser1349delinsPhe/p.Pro1730Leu) and in case 13 (p.Asp1741Glyfs*48/
p.Val240Met), both individually and in co-expression, are pending, as are functional
studies of three of the missense variants here identified (p.Arg811Cys; p.Pro1730Leu,
p.Ala1778Asp). While these models have a number of shortcomings, as they do not closely
reproduce human heart physiology and clinical manifestations [45,46], functional and
pharmacological studies in induced pluripotent cell (iPSC)-derived cardiomyocytes have
overcome several of these shortcomings and have become a promising option for preci-
sion medicine [47]. These functional studies, together with careful and detailed clinical
characterization of patients and apparently asymptomatic mutation carriers, are crucial to
understand the complexities of SCN5A channelopathies.

In conclusion, SCN5A-disease associated phenotypes occurring in the pediatric age
were characterized mainly by overlap syndrome, sick sinus syndrome, cardiac conduction
disease and ventricular tachycardia. It is important to recognize these phenotypes as poten-
tial markers of sodium channel disease, and to avoid the use of sodium channel blockers
which can exacerbate the phenotype or even cause irreversible ventricular arrhythmias in
the setting of pathogenic variants affecting SCN5A.
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