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Growing evidence links impairment of brain functions in Alzheimer’s disease (AD) with

disruptions of brain functional connectivity. However, whether the AD brain shows similar

changes from a dynamic or cross-frequency view remains poorly explored. This paper

provides an effective framework to investigate the properties of multiplex brain networks

in AD considering inter-frequency and temporal dynamics. Using resting-state EEG

signals, two types of multiplex networks were reconstructed separately considering

the network interactions between different frequency bands or time points. We further

applied multiplex network features to characterize functional integration and segregation

of the cross-frequency or time-varying networks. Finally, machine learning methods were

employed to evaluate the performance of multiplex-network-based indexes for detection

of AD. Results revealed that the brain networks of AD patients are disrupted with reduced

segregation particularly in the left occipital area for both cross-frequency and time-varying

networks. However, the alteration of integration differs among brain regions and may

show an increasing trend in the frontal area of AD brain. By combining the features of

integration and segregation in time-varying networks, the best classification performance

was achieved with an accuracy of 92.5%. These findings suggest that our multiplex

framework can be applied to explore functional integration and segregation of brain

networks and characterize the abnormalities of brain function. This may shed new light

on the brain network analysis and extend our understanding of brain function in patients

with neurological diseases.

Keywords: integration and segregation, brain network, inter-frequency and temporal dynamics, EEG,

Alzheimer’s Disease

INTRODUCTION

As the most common cause of dementia, Alzheimer’s disease (AD) is a disabling neurodegenerative
disorder characterized by progressive impairment of learning, memory, and other cognitive
functions. Earlier studies have suggested that the impairment could arise from focal abnormalities
in one or more isolated brain regions such as the entorhinal region or posterior associative
cortices (Koenig et al., 2005; Salmon et al., 2005, 2008; He et al., 2009). In contrast, recent
neuroimaging studies have shown that the cognitive deficits in AD is related to pathological changes
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in large-scale functional or structural networks (Dickerson and
Sperling, 2005; Greicius, 2008; Sperling et al., 2009; Pievani et al.,
2011). Therefore, the investigation of brain networks seems a
promising method to study AD pathology. In the past few years,
growing attention has been paid to the building of connectivity
“neuromarkers” for AD (Toussaint et al., 2012; Franzmeier et al.,
2016; Song et al., 2019).

Recent years have also witnessed great advances
in neuroimaging modalities such as magneto- and
electroencephalography (MEG/EEG), functional magnetic
resonance imaging (fMRI), and diffusion tensor imaging (DTI),
which provide valuable tools for the identification of networks
(Teipel et al., 2009 Ciuciu et al., 2014; Bönstrup et al., 2015; Wu
et al., 2017; Dimitriadis et al., 2018). Among the multimodal
neuroimaging techniques, EEGmay have somemajor assets from
a clinical perspective since it is non-invasive, inexpensive, and
easy to use (Fan and Chou, 2018; Jacobs et al., 2018). Compared
to most fMRI techniques, the high temporal resolution of
EEG also enables the detection of fast neural oscillations
that are related to the perception and information exchange
between cortical areas (Babiloni et al., 2014; Sigala et al., 2014).
Conventionally, EEG connectivity analyses are conducted in
different frequency bands separately in AD research, as different
EEG rhythms are likely to be involved in different cognitive
processes and may be associated with different brain states like
waking or sleep (Siegel et al., 2012; Fries, 2015; Wang et al.,
2015). Previous studies have reached a consensus with decreased
functional connectivity of EEG in alpha band (Yao et al., 2010;
Wang et al., 2014; Babiloni et al., 2018). However, EEG network
studies may show inconsistent results for other frequency
bands (Stam et al., 2006; Chan et al., 2013; Hata et al., 2016).
Some researchers reported that AD patients showed higher
functional connectivity over centro-parietal regions in the theta
band and over occipito-parietal regions in the beta and gamma
band (Stam et al., 2006), whereas remarkable reduction of beta
connectivity in right frontal region can also be found (Chan et al.,
2013). These studies confirmed that the functional networks
provide frequency-specific information about the brain function
disruptions in AD. In contrast, the diversity in these works
also led to a problem whether the frequency-specific functional
networks should be analyzed in isolation. Several studies have
reported that cross frequency coupling in neural systems support
cognitive functions such as memory formation (Tort et al., 2009;
Canolty and Knight, 2010; Jirsa and Müller, 2013; Guillon et al.,
2017). Therefore, the investigation of the topology by integrating
different frequency bands may be a good choice for the network
study in AD.

Over the past decade, the graph theory has been widely
applied to characterize the network architecture of human brain
(Bullmore and Sporns, 2009; Stam, 2014; Storti et al., 2016; Yu
et al., 2018). It provides quantitative measurements for each
node to depict integrated nature of local brain activity, such as
node efficiency and vulnerability. On the other hand, it offers
a general language to describe the global properties of brain
networks (e.g., modularity). For these reasons, graph theory can
provide a promising framework to characterize the pathological
processes in AD brain (Tijms et al., 2013; Cai et al., 2018). Recent

functional network studies have reported that AD is associated
with decreased nodal centrality in higher-order association areas
and selective impairment of hippocampus and posterior hub
areas (Crossley et al., 2014; Yu et al., 2017). At larger topological
scales, the brain networks of AD patients showed increased
randomness with a loss of small-world features as the disease
progresses (Stam et al., 2007; Sanz-Arigita et al., 2010; Vecchio
et al., 2016).

Growing evidence frommultimodal neuroimaging techniques
have shown abnormalities in functional integration and
segregation for AD (Palesi et al., 2016; Kabbara et al., 2018). As
two basic properties in human connectome, brain integration,
and segregation enable flexible and efficient flow of information
within local regions and across the whole brain. Relationships
between these properties and the cognitive decline progression
were also observed (Kabbara et al., 2018). In addition to the
observations in static networks within frequency bands, recent
studies have also revealed that the multilayer (cross-frequency)
network analysis can provide additional information (i.e., hub)
compared to single-layer (frequency-specific) networks (Guillon
et al., 2017; Yu et al., 2017). However, most of these studies
are focused on the global information processing (integration)
but neglected the local information processing (segregation)
across frequency bands. Moreover, all these investigations were
performed in a static view and the temporal dynamics were
not considered in AD. We hypothesized that in AD brain,
altered integration and segregation can be found not only across
frequency bands but also over time, and such information
can be applied to detect AD. Therefore, we construct both
cross-frequency and time-dependent networks using multilayer
network theory. We provided a common framework to
investigate integration and segregation properties in these
networks using two multiplex graph metrics. These measures can
provide rich information about how information was processed
or transferred across frequency bands (time) in global brain or
local brain regions. Finally, we tested the diagnostic power of the
multiplex network dynamics to discriminate AD patients and
healthy controls.

MATERIALS AND METHODS

Participants
Forty subjects are recruited in this study from the neurology
department in Tangshan Gongren hospital and divided into
two groups: (a) 20 right-handed AD patients (8 males and
12 females, age: 74–78 years) that fulfilled the criteria of
probable AD, and (b) 20 age-matched healthy controls (10 males
and 10 females, age: 70–76 years). All patients experienced
clinical neuroimaging and neurological examination, including
structural brain imaging, cerebellar testing, and cranial nerve
examination. Exclusion criteria for the patients include use of
neuroleptic drugs or antidepressants within 3 weeks before EEG
recording and the presence of other neurological or psychiatric
conditions and any other severe illness. Similarly, the controls
are free from neurological or psychological disorders, alcohol
abuse, or any other factor that may affect EEG activity. Mini-
Mental State Examination (MMSE) was also implemented to
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evaluate the cognitive function for both groups. The MMSE
scores for the AD patients ranged from 12 to 15, while the
scores of healthy controls were distributed between 28 and
30. To avoid interference with the resting-state condition, the
cognitive examinations of healthy controls were conducted after
the EEG recording. Our study was approved by the local Ethics
Committee and the experiments were conducted in accordance
with the Declaration of Helsinki. In addition, all the subjects
or their legal representatives had been provided with informed
consent with the adequate understanding of the purpose and
procedure of the study.

EEG Recordings and Preprocessing
More than 10min EEG was collected for each subject by a 16-
channel Symtop amplifier at a sampling rate of 1024Hz. Sixteen
Ag-AgCl scalp electrodes, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1,
O2, F7, F8, T3, T4, T5, and T6, were set on the scalp according
to the international 10–20 system, and the linked earlobe A1 and
A2 are used as a reference. During the acquisition, the subject
was seated in a semi-dark quiet room and stayed awake with eyes
closed. Moreover, they were told in advance to avoid unnecessary
body movements or eye blinks. The artifacts were labeled by
an experienced researcher and the epochs containing amplitude
>80 µV were rejected. In addition, the identification of artifacts
was also confirmed by the power spectral density analysis (i.e.,
the topography of power spectral density). Consequently, four
epochs of EEG (50 s long for each) were chosen for each
subject. The selected EEG epochs were distributed throughout
the whole data except the first 2min of recordings. Finally,
each channel of EEG recordings was decomposed into four
sub-bands: delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), and
beta (12–30Hz) via the finite impulse response (FIR) filter.
All procedures were implemented in a MATLAB environment
(version 9.1.0.441655, R2016b).

Multiplex Functional Network Construction
In the construction of multiplex networks, two major factors
should be considered: the definition of network edges and layers.
In this study, the functional connectivity was estimated by the
normalized imaginary part of phase locking values for each layer,
which could be denoted by the brain network in a well-known
frequency band or a certain time point.

Phase synchrony between two time series within a
particular frequency band was assessed by the estimates of
the instantaneous phase of the signal φ(t), which is derived
via the Hilbert transform. According to the widely held
view, two signals are connected if they have a stable phase
difference. Hence, Lachaux et al. defined the phase locking
values (PLV) as a time-dependent connectivity measure
(Lachaux et al., 1999):
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1
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where T is the data length. Correspondingly, the imaginary part
of PLV, termed imaginary PLV (iPLV), is defined as follows:
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where Im(x) denotes the imaginary part of x. The iPLV is only
sensitive to the non-zero phase lags and is thus less susceptible
to the volume conduction effects. However, this measure is not
normalized as its upper bound is
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where Re(x) denotes the real part of x. When two signals
are completely connected with a stable phase difference, niPLV
reaches the upper bound 1. Therefore, it is a symmetrical measure
and ranges between 0 and 1, with higher values indicating
stronger functional interactions.

The frequency-based multiplex (cross-frequency) networks
were reconstructed by integrating the four frequency-specific
networks, where each layer shared the same set of nodes, but
the edges in each layer were defined by the niPLV-weighted
functional connections within each frequency band (i.e., delta
band). Only the interactions between the same set of nodes across
layers are allowed, so the cross-frequency couplings between
different brain regions were not considered. In addition to
the four-layer networks including all frequency bands, we also
considered the interrelationship of two frequency components
to reconstruct two-layer networks (i.e., δ-θ network). For each
single-layer network, a data-driven thresholding method was
employed by maximizing the global cost efficiency vs. the cost
of the surviving functional connections (Bassett et al., 2009).

As the static network analysis reflects the average behavior
of the complete EEG recordings, we miss moment-to moment
fluctuations in functional connectivity that might be informative
about the brain states. Therefore, the connectivity matrices
of time-dependent multiplex network were computed using a
sliding time window technique. As illustrated in Figure 1A, the
time series of EEG are segmented into non-overlapping time
windows of width 4 s, functional connectivity is assessed in each
window and thus we can generate a multilayer network, where
each layer denotes a certain time point. In this study, the time-
dependent networks were reconstructed in each frequency band.

Multiplex Network Analysis
Multiplex Metrics of Functional Segregation
The functional segregation of a network reflects local information
processing and is usually characterized by a measure named
clustering coefficient (Battiston et al., 2014). In a single-layer
network, the clustering coefficient of a node is the proportion of
connections among a node’s neighbors and describe how close
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FIGURE 1 | Reconstruction and analysis of cross-frequency or time-varying networks. (A) Reconstruction of multiplex networks. The frequency-based multiplex

network (cross-frequency network) were constructed by integrating the four frequency-specific networks, while the time-dependent multiplex network (time-varying

network) was constructed by integrating the time-specific networks within frequency bands. Each layer shared the same set of nodes and only the interactions

between same nodes across layers were allowed. (B) Multiplex metrics of functional segregation. Multiplex clustering coefficient (MCC) was applied to assess local

information processing in the multiplex networks. The green and orange nodes indicate MCC = 0 and MCC = 1, respectively. (C) Multiplex metrics of functional

integration. Multiplex participation coefficient (MPC) was employed to assess global information processing in the multiplex networks. The green and orange nodes

indicate MPC = 0 and MPC = 1, respectively.

a node’s neighbors tend to cluster together. For the weighted
network, it can be defined as:

Ci =
1

ki(ki − 1)

∑

j,k

(wijwjkwki)
1/3

(4)

where ki is the degree of node i in the corresponding binary
network and wij is the link weight between nodes i and j. In fact,
Equation (6) contains information about the fraction of triads
centered in i that close into triangles and the weight of edges
in the triangles. Averaging the measure over all nodes, one can
obtain the network clustering coefficient.

In the multiplex networks, many nodes may display
different clustering coefficient values across the layers. However,
calculating the measure for each layer tells us little about the
interplay between layers. Therefore, we need a multiplex measure
to explore the formation of triangles by edges in different layers.
Similar to the definition of clustering coefficients for node-
aligned multiplex binary networks in the study performed by
Battiston et al. (2014), we can express the multiplex clustering
coefficient (MCC) for each node as:

Ci,1 =

∑
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∑
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i6=m,j (w
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ijw

κ
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α
mi)

1/3
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α
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where M is the number of layers and wα
ij is the link weight

between node i and j in layer α. It quantifies the fraction of
triangles where edge j − m belongs to layer α when the other
two edges i − j and i − m belong to a second layer in terms of
link weights. Similarly, a second weighted clustering coefficient
for multiplex networks could be defined as a fraction of triangles
where the three edges belong to different layers when the edges

i− j and i−m belong to layers α and κ , respectively:
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Notably, Ci,1 is a suitable definition in the cases M ≥ 2, while
the second definition requires that the network is composed of
at least three layers. Hence, only Ci,1 is considered in this study
as a direct measure of network segregation, which may reflect
local information processing in the multiple brain networks. If
a triangle can be formed with any edges centered in node i and
the edges belong to two layers, Ci,1 is equal to 1. Conversely, if
no triangle can be formed with edges centered in node i or the
triangle can be formed only by the edges in one layer, Ci,1 is
equal to 0 (Figure 1B). Correspondingly, the multiplex clustering
coefficient of the network can be formed as:

C =
1

N

N
∑

i = 1

Ci,1 (7)

Similar to the clustering coefficient in the single-layer network
that describes the tendency to form locally dense clusters or
modules, MCC can be applied to characterize the tendency
of network nodes to form locally connected triangles across
different layers. Therefore, higher MCC values may indicate
increased efficiency of information flow in corresponding clusters
(local brain regions) across frequency bands or time.

Multiplex Metrics of Functional Integration
In a multiplex network, though two nodes have the same value
of overlapping degree, they may play different roles considering
degree distribution across layers. To characterize the functional
integration of connections in different layers, we employed
a measure named multiplex participation coefficient, which
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quantifies the participation of a node to different layers. It can
be expressed as:

pi =
M

M − 1



1−
M

∑

L = 1
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kLi
oi
)

2


=
M

M − 1
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M
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L = 1
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2


 (8)

where oi is the overlapping degree of node i (oi = k1i + k2i +

... + kMi ) and NLP is the node-degree layer proportion, which
measures whether the links of node i are uniformly distributed
in different layers. If the node has the same degree in all layers,
Pi is equal to 1. On the contrary, if the links of node i are
concentrated in one layer, Pi is equal to 0 (Figure 1C). For the
frequency-based multiplex networks, this measure describes the
link distribution in different frequency bands.While for the time-
dependent networks, it depicts the fluctuation of node degree
over time. From a statistical perspective, nodes with high Pi
are considered central hubs as they allow better information
exchange across different frequency bands or time points. The
multiplex participation coefficient (MPC) of the whole network
is the mean value of Pi over all nodes:

P =
1

N

N
∑

i = 1

Pi (9)

Different from the participation coefficient describing
integration of different modules or communities, MPC
denotes the heterogeneity of connectivity patterns (nodal degree
distribution) in each layer. From a statistical view, a random
walker reaching nodes with high MPC values will jump to any
other layers with similar properties. Hence, higher MPC values
may facilitate the global information processing across layers
with increased efficiency.

Statistical Analysis
We first analyzed the multiplex network features on global
scales (network level) to detect statistical differences between
AD patients and healthy controls. Then, we assessed possible
group difference in single nodes (local scale). We applied Mann–
WhitneyU-test to assess statistical differences of networkmetrics
between groups with a significance level of 0.05. Before this
analysis, the multiplex graph features were averaged over the
epochs for each subject. As the analysis was conducted in
different bands or nodes, we computed an adjusted version of
the false discovery rate (FDR) for multiple comparisons as a post
correction. The statistical significance level was set at p < 0.05.

Classification Analysis
To further assess the possible application of multiplex network
metrics in detecting AD, we implemented classification
analysis based on the multiplex graph features on local
scales. Considering the fact that high-dimensional input may
increase the computational cost and lead to overfitting in
the classification, we applied feature extraction and selection
techniques to improve the classification performance. Only the
features with significant group difference were considered in
the classification process. After that, the least absolute shrinkage

and selection operator (LASSO) logistic regression algorithm
was applied to select the most significant predictive features
and remove redundant features. By combining LASSO and
multifactor logistic regression, the regression coefficients of
most features were set to zero and the features with non-zero
coefficients were preserved. Therefore, LASSO is suitable for
reduction and selection of high-dimension features.

We used a classification approach to evaluate the performance
of local network features in discriminating AD patients from
healthy controls. In this study, the non-linear support vector
machine (SVM) with a radial basis function kernel was employed
as a classifier. Before the training process, the dimension
reduction was done by the feature selection technique. Then, the
10-fold cross validation was performed to obtain more robust
classification rates. To assess the classification performance, we
computed the classification accuracy, sensitivity, and specificity.
Receiver operating characteristic (ROC) curve was used to test
the diagnostic ability of the classifier with varying thresholds,
and the corresponding area under the curve (AUC) was also
calculated. Since the multiplex networks may consist of different
number of layers, we test different combinations of features in the
classification process.

RESULTS

Integration and Segregation of
Cross-Frequency Network
To explore the integration of all frequency components, we first
computed the weighted clustering coefficients of the four-layer
multiplex networks at both global and local scales. In Figure 2A,
the clustering coefficient of each node in frequency-specific
networks was presented for an AD patient together with MCC
of the four-layer networks. As shown, many nodes display quite
different values of clustering coefficient across the frequency
bands. We also computed the Pearson correlation coefficient
of clustering coefficient between each single-layer network
and between single-layer and multi-layer networks shown in
Figure 2B. Notice that the sequences of clustering coefficient in
different layers (band) are uncorrected or weakly anti-corrected,
while MCC may show no correlation or weak correlation with
clustering coefficient in frequency-specific networks. This result
confirms thatMCCmay provide important information different
from those obtained within frequency bands.

Compared with the controls, the patients show significantly
decreased MCC in the left occipital and temporal regions
compared to the controls (pFDR < 0.05 with Mann–Whitney
U-test). Most of these regions had relatively high clustering
coefficient in the controls. We further computed the clustering
coefficients of two-layer (i.e., δ-θ) networks to investigate the
local information processing between two frequency bands
(Figure 3). For the two-layer networks, the clustering coefficients
in AD are significantly declined in the δ-β network in the central,
parietal, and occipital areas (pFDR < 0.05 with Mann–Whitney
U-test). At the local scale, it is noteworthy that most of these
networks show declined clustering coefficients in the occipital
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FIGURE 2 | (A) The node clustering coefficient of the frequency-specific networks and cross-frequency networks for a representative patient. (B) The heat map

represents the correlation of node clustering coefficient sequence between frequency-specific networks or between frequency-specific and cross-frequency networks.

“M” denotes frequency-based multiplex network. Notice that the node clustering coefficient in multiplex network may be uncorrected or weakly correlated with that in

frequency-specific networks.

area, which may be a critical node responsible for the impaired
local information processing across frequency bands in AD.

Figure 4A illustrates multiplex participation coefficient in
different brain areas averaged over AD patients and healthy
controls separately. Both groups exhibited high multiplex
participation coefficients (MPC > 0.88) in most brain regions,
suggesting a general propensity of human brain to promote
information exchange across different rhythms. Interestingly,
such tendency may vary among different regions and between
groups. In comparison with the controls, AD patients show
reduced MPC in the left posterior areas but increased MPC in
the right frontal areas (pFDR < 0.05with Mann–Whitney U-test),
where relatively high MPC values can be found in the patients.
This implies that the brain regions may play different roles in the
information passing across frequency bands. In AD, the increase
of MPC in the frontal areas may compensate for the decreased
MPC in the posterior areas to maintain essential information
communication in the multiplex networks.

We also compared the node degree proportion (NLP) in
all bands, which describes the within-frequency information
exchange in the brain (Figure 4B). Notably, both groups show
heterogeneous distribution of node degree among different brain
regions and frequency bands, leading to the distinct spatial
distribution of MPC between groups. For instance, in the delta
band, the patients exhibit higher NLP in the frontal but lower
NLP in the posterior areas (similar to the difference of MPC),
suggesting that global information processing within bands also
differs among different brain regions for both groups. Moreover,
significant group difference is found in partial brain regions with
decreased or increased NLP in delta and beta bands (pFDR <

0.05 with Mann–Whitney U test). However, the regions with
remarkable group difference of MPC may show no difference
of NLP in any band. This confirms that the global information
exchange across bands are determined by the integration of
frequency-based multiplex networks rather than the network in a
certain band.

Integration and Segregation of
Time-Varying Network
In a multiplex framework, we also investigate the temporal
dynamics of brain networks via the multiplex network metrics
within different frequency bands. For instance, the multiplex
clustering coefficients can be considered as a dynamic character
of tendency of nodes to form triangles between two time
points. In the multilayer network framework, the performance
of these measures are mainly influenced by number of layers
(NL) especially in the time-varying networks. To illustrate this
effect, we calculated the measures in time-varying networks with
different layers shown in Figure 5. Results showed that number
of layers (time length) has little influence on MCC, but the
MPC values are dramatically elevated first (NL< 6) and then
slightly increased to 1. This indicates that the MPC measure is
suitable for the analysis within short time ranges (small number
of layers) but unable to detect the changes in long ranges.
Therefore, the number of layers is set to 5 for the analysis of
time-varying networks.

Both groups show uniformly distributed MCC values among
brain regions. In comparison with the control subjects, AD
patients exhibit remarkably decreased MCC in the beta band,
particularly in the frontal and occipital areas (pFDR < 0.05 with
Mann–Whitney U-test), indicating that the local information
processing is also disrupted from a dynamic perspective
(Figures 6A,B). We also computed the MCC values of the beta
network with different window sizes, which may influence the
results of statistical analysis, as shown in Figure 6C. Results show
that both groups show similar spatial distribution of MCC when
window size changes from 0.3 to 2 s and the statistical analysis
results also reached a consensus with different window lengths.

Moreover, we computed the multiplex participation
coefficient for the time-dependent networks (Figure 7).
Since the MPC in frequency-integrated networks depicts the
information exchange across frequency bands, the MPC in
time-dependent networks can be regarded as an indicator of
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FIGURE 3 | Functional segregation of the cross-frequency networks. (A) Topological distribution of MCC (averaged over the subjects) for both groups and their

difference in the four-layer networks. (B) Averaged MCC in the two-layer networks at global (network) level for both groups, with vertical bars indicating

group-averaged values while error bars denote standard errors. (C) Group difference of MCC in the two-layer networks at the node level denoted by z values, which

are computed by Mann–Whitney U-test. The asterisks indicate significant group difference (p < 0.05, FDR corrected).

the global information processing along time. The patients
show higher MPC values in the frontal-central area than those
in other regions, indicating that the frontal-central area may
play a major role in the global information communication
within bands over time. While for the controls, the MPC values
are distributed more irregularly among regions. Such distinct
spatial distribution between groups leads to an increased trend
of MPC in the right frontal area and decreased trend in the

left posterior area for AD in most frequency bands, though the
group difference may not be significant. These results suggest
that the node degree distribution of brain networks fluctuates
with time and such fluctuations differ among brain regions and
between groups. On the other hand, the alteration of MPC in the
time-dependent networks imply that AD brain may operate at a
less optimal point in terms of the global information processing
along time.
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FIGURE 4 | Functional integration of the cross-frequency networks. (A) Topological distribution of MPC (averaged over the subjects) for both groups and their

difference in the four-layer networks and (B) the corresponding node-degree layer proportion (NLP) in each frequency band. The asterisks indicate significant group

difference (p < 0.05, FDR corrected).

Classification Analysis Results
We compared the classification performance obtained by
different combinations of features, as shown in Figure 8A and
Table 1. Note that the feature selection procedure was conducted
separately for each combination before the classification
experiments. In the cross-frequency networks, an average
accuracy of 70.63% was achieved by the MCC (AUC =

0.78), while for the MPC, the classification performance was
much better with an accuracy of 77.5% and an AUC of 0.86.
By combining the two features, the average accuracy and
AUC improved to 82.5% and 0.90, respectively. Compared

to the classification results in terms of inter-frequency
dynamics, the classification performance was remarkably
enhanced when employing the multiplex network features
related to temporal dynamics. The combination of MCC
and MPC in the time-varying networks achieved the best
performance (accuracy = 92.5%, AUC = 0.98), which was
further confirmed by the scatterplot of the Mahalanobis distance
of each sample (epoch) from AD or control class depicted in
Figure 8B.

We further compared the classification performance with
other classifiers, including linear SVM, k-NN, naive Bayes, and
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FIGURE 5 | The averaged MCC (left panel) and MPC (right panel) in time-varying networks (in broadband) across the subjects with different number of layers (window

length is 4 s). The shaded areas denote the standard deviation of metrics.

FIGURE 6 | Functional segregation of the time-varying networks within

frequency bands. (A) Averaged MPC over the subjects in different bands for

both groups at global level. (B) Averaged MPC over the subjects in beta band

for both groups at node level. (C) Group difference of MPC in beta network at

node level (denoted by z values) with different window length. The asterisks

indicate significant group difference (p < 0.05, FDR corrected).

Fisher discriminant analysis classifier, in which the combination
of MCC and MPC in the time-varying networks was regarded
as the input of each classifier. The classification results with

all the classifiers are listed in Table 2. It is demonstrated
that all the classifiers exhibit promising results with over
90% accuracy. In particular, the SVM and discriminant
analysis classifier show similar results with an averaged
accuracy of 92.5%.

DISCUSSION

In this study, we investigated the inter-frequency and temporal
dynamics of functional networks in patients with AD. By
integrating the frequency-specific networks or time-varying
networks with different connectivity patterns, we explored
the alteration of the local and global information processing
across frequency bands or time in AD. Compared to the
controls, the AD brain was characterized by impaired local
information processing in both frequency-based and time-
dependent multiplex networks, while for global information
processing, the alterations may differ among different brain
regions in which an opposite trend can be observed. The
classification analysis further confirmed that the multiplex
network metrics could be used to distinguish AD patients
between controls, and the best classification performance was
achieved by combining multiplex clustering coefficients and
participation coefficients of time-varying networks.

Inter-frequency Dynamics of Brain
Networks
Network integration and segregation has conventionally been
analyzed in different frequency bands, as the wide range
of frequencies are considered to be associated with different
cognitive processes. Previous studies related to AD have shown
that functional connectivity patterns in EEG networks are
frequency-specific (de Haan et al., 2012; Hillebrand et al., 2016;
Yu et al., 2016). Here, we integrate the four frequency-specific
networks in amultiplex network framework.Multiplex clustering
coefficients and participation coefficients were employed to
investigate the network integration and segregation across
frequency bands. The interaction of different rhythms has been
reported to play a critical role in the cognitive process (i.e.,
working memory) and show difference in different brain states
(Tewarie et al., 2016; Shi et al., 2019). Therefore, network study in
view of inter-frequency dynamics can offer new insight into the
local and global information communication in human brain.
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FIGURE 7 | Topological distribution of MPC averaged over the subjects for both groups and their difference in the time-varying networks within frequency bands. The

asterisks indicate significant group difference (p < 0.05, FDR corrected).

Our results showed decreased segregation in the AD group at
the global network level, particularly in the multiplex networks
integrating beta and other bands; thus, we can speculate that
the local information transformation between frequency bands
is disrupted in AD brain and the beta rhythm occupies an
important position in the modification of network segregation
by AD. We also found that left occipital area (channel O1) in AD
shows a remarkable decrease of MCC in most cross-frequency
networks (i.e., δ-θ network), suggesting that this area may play an
essential role in the local information exchange between different
frequency bands and such exchange may be selectively impaired
in AD patients.

As a metric quantifying the integration in a multiplex
network, MPC describes the global information exchange
between different frequency-specific networks. It can be applied
to evaluate the regional centrality of a cross-frequency network,

as the nodes with high MPC values allow a random walker jump
with similar probability to other layers and thus facilitate the
information transmission across frequency bands. We found that
AD brain may show decreased integration in the posterior area
resulting from altered spatial distribution of MPC. This result
is in line with a recent MEG study reporting the disruption of
specific occipital hub regions in AD. During the progression
of disease, the patients may exhibit decreased hub centrality
or number of hubs (Yu et al., 2017). Alternatively, owing to
the loss of original hubs, some non-hub areas may become
relatively more important to maintain the information flow
within or across frequency bands and even become new hubs.
This modification is also confirmed by the increased MPC in the
frontal area of AD brain.

A recent EEG network study has also investigated inter-
frequency dynamics in AD using multi-layer network metrics
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FIGURE 8 | Classification performance of the multiplex network features at

node level. (A) ROC analysis with the features of cross-frequency networks

(top) and time-varying networks (bottom). (B) Scatter plot shows the

Mahalanobis distance of each sample from AD or control class with the

combination of MCC and MPC in the time-varying networks (gray line

indicates equal distance). The best performance was achieved by the

combination of MCC and MPC in the time-varying networks.

TABLE 1 | Classification performance of multiplex networks features via the

SVM classifier.

Features Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC

Cross-

frequency

MCC 70.63 72.50 68.75 0.7884

MPC 77.50 82.50 72.50 0.8638

MCC+MPC 82.50 78.75 86.25 0.9066

Time-varying MCC 79.38 77.50 81.25 0.8669

MPC 81.25 88.75 73.75 0.9173

MCC+MPC 92.50 96.25 88.75 0.9836

TABLE 2 | Classification performance of the time-varying network features via

different classifiers.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

SVM_RBF 92.50 96.50 88.75

SVM_linear 91.87 95.00 88.75

NB 90.63 91.25 90.00

FDA 92.5 93.75 91.25

KNN 90.63 92.50 88.73

(Guillon et al., 2017). They focused on the global information
processing across all frequency bands, while in our study, we
explored the information exchange between any two bands
that may also show abnormalities in AD brain. Moreover, we
combined the segregation and integration properties in the
cross-frequency networks to get a more complete picture of the
inter-frequency dynamics for AD. Within the multiplex network
framework, we further investigated the information processing
across time (discussed in the next section) using the multiplex
graph metrics.

Temporal Dynamics of Functional
Networks Within Frequency Bands
The static graph analysis has proved to be effective in
characterizing the disturbed functional connectivity in AD.
Many studies investigating the clustering coefficient has showed
that the AD brain is characterized by a decrease of clustering
in different frequency bands, while other studies may show
an opposite trend (Tijms et al., 2013). This inconsistency
can also be found for the normalized clustering coefficient
(relative to the random networks). As a metric reflecting
global information processing, the participation coefficient is
also widely used to measure the diversity of inter-modular
connections (Kabbara et al., 2018). A reduction of gamma inter-
modular connectivity has also been found in patients with AD
(Guillon et al., 2017).

In the present study, we extended the framework of
brain network analysis by the investigation of information
communication in functional networks from a dynamic view.
Multiplex clustering coefficient was employed as a dynamic
graph metric to study the local information processing over
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time. Unlike the clustering coefficient of a static graph,
the multiplex clustering coefficient describes how likely the
nodes tend to cluster between any two time points. In fact,
for a complex system, the local information communication
between elementary entities may take a relatively long time
rather than being completed within a short time window.
Therefore, MCC can be applied to describe the properties
of local information processing across time and provide
additional information different from those obtained by looking
at the clustering in a static network. In this study, both
groups show uniform distribution of MCC among brain
regions, implying that these regions may play different roles
in the local specialized processing of information over time.
Moreover, for the patients, significant decrease of MCC was
found in the delta and beta bands, particularly in the left
occipital area. This suggests that the local communication
efficiency of the dynamic network is also selectively disrupted
in AD.

Similar to the MPC of cross-frequency networks that depicts
the heterogeneity of global information flow across frequency
bands, MPC of the dynamic network reflects the temporal
heterogeneity of network information exchange over time. The
node areas with high MPC values are more likely to allow
information flow across time. In our study, results exhibited
that the efficiency of global information communication differs
among brain regions, as both the patients and controls show
spatial heterogeneity of MPC in all frequency bands. No
significant group difference was found in the MPC at the
global level when averaging MPC over all nodes, which can be
partly attributed to the fact that the AD network may show
an increased trend similar to that in cross-frequency networks.
Therefore, the AD brain cannot be simply characterized by
declined or enhanced information processing in the dynamic
networks. Instead, the integration of information at the node
level may show more significant difference among brain
regions than that between groups. Such spatial difference
may also relate to progression of the disease and needs
further research.

Limitation
One limitation of the present study is the small sample
size of subjects. Our intent was to characterize the
abnormalities of information exchange in the multiplex
brain networks for AD patients. Nevertheless, we also
recognized the fact that AD may have different stages and
show heterogeneous characteristics among the patients.
Moreover, tracking the change of brain activities from mild
cognitive impairment (MCI) to AD is also an interesting
topic in AD research and needs future investigation. These
investigations should be performed on larger cohorts of
patients with different cognitive levels and using other
experimental paradigms.

Another limitation is that the influence of EEG reference on
our results was not discussed. Previous studies have shown that
the choice of EEG reference can affect functional connectivity

estimation and the reference electrode standardization technique
is proved to be a better choice (Yao, 2001; Lei and Liao, 2017).
Though the reference choice may not have much effect on
the group analysis results (e.g., classification performance) as
it has on the connectivity estimation for single subject, future
EEG studies should take the choice of EEG reference into
consideration to achieve a more stable and robust performance.

CONCLUSION

In this study, we provided an effective framework to study
the functional segregation and integration of brain networks
considering inter-frequency and temporal dynamics. In
this framework, the patients show decreased segregation
particularly in the occipital area, while the alteration of
integration differs among brain regions in both cross-frequency
and dynamic networks. These obtained results gave new
insights into the abnormalities of information exchange
in brain networks and may benefit our understanding
of pathology for AD. On the other hand, reconstructing
and analyzing the functional networks in a frequency-
integrated or time-varying manner may enrich the
methodologies about the deconstruction of brain activity
underlying EEG. Future studies will involve the subjects
with mild cognitive impairment and be extended to other
neurodegenerative diseases.
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