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ABSTRACT: Quantitative structure−activity relationship (QSAR) analysis, an in
silico methodology, offers enhanced efficiency and cost effectiveness in
investigating anti-inflammatory activity. In this study, a comprehensive
comparative analysis employing four machine learning algorithms (random forest
(RF), gradient boosting regression (GBR), support vector regression (SVR), and
artificial neural networks (ANNs)) was conducted to elucidate the activities of
naturally derived compounds from durian extraction. The analysis was grounded in
the exploration of structural attributes encompassing steric and electrostatic
properties. Notably, the nonlinear SVR model, utilizing five key features, exhibited
superior performance compared to the other models. It demonstrated exceptional
predictive accuracy for both the training and external test datasets, yielding R2

values of 0.907 and 0.812, respectively; in addition, their RMSE resulted in 0.123
and 0.097, respectively. The study outcomes underscore the significance of specific
structural factors (denoted as shadow ratio, dipole z, methyl, ellipsoidal volume, and methoxy) in determining anti-inflammatory
efficacy. Thus, the findings highlight the potential of molecular simulations and machine learning as alternative avenues for the
rational design of novel anti-inflammatory agents.

1. INTRODUCTION
Polyphenols, found abundantly in durian extracts, have gained
significant attention and have been extensively studied for their
diverse medicinal properties.1,2 These compounds possess a
wide range of therapeutic potentials, including strong
anticancer effects by inhibiting the growth and spread of
various cancer cell types.3 Additionally, they play a key role in
regulating insulin secretion and utilization, leading to improved
blood glucose levels.4,5 Moreover, polyphenols contribute to
the modulation of intestinal microbiota, thereby reducing
intestinal inflammation and enhancing the integrity of the
intestinal barrier, an important strategy for addressing
gastrointestinal inflammation.6 Among their therapeutic
attributes, the antioxidant and anti-inflammatory abilities of
polyphenols are particularly noteworthy.7,8

Focusing specifically on durian peel, previous studies have
highlighted its exceptional nutritional composition and rich
content of bioactive compounds. Feng et al. noted the
presence of triterpenoids and glycosides in durian peel,
which have demonstrated anti-inflammatory effects via the
inhibition of lipopolysaccharide-induced nitric oxide produc-
tion in the RAW 264.7 cell line.9 Furthermore, extracts from
different durian cultivars, such as Monthong and Chanee, have
shown varying degrees of antioxidant and anti-inflammatory
activities.10 The antioxidant effects of durian peel are attributed
to flavonoids and phenolic compounds, with the coumarin

derivative propacin exerting significant inhibitory effects on
lipopolysaccharide-induced nitric oxide and prostaglandin E2
(PGE2) release in RAW 264.7 cells.1

However, the complex structural arrangements of these
natural constituents and their multifaceted anti-inflammatory
mechanisms make the elucidation of specific biochemical
targets and reaction pathways challenging.11,12 In response to
this complexity, quantitative structure−activity relationship
(QSAR) analysis proves to be a valuable in silico strategy.
Through the development of accurate predictive models, this
approach enables the exploration of the intricate relationship
between the molecular structure and activity in natural
products.13,14

Several QSAR models have been proposed to investigate the
antioxidant activity of flavonoids.15−18 Although linear models
have offered useful insights, they face difficulties in explaining
the complex relationship between structural factors and
antioxidant activity.19,20 In this regard, machine learning
algorithms, such as random forests (RFs), support vector
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regression (SVR),21 and artificial neural networks (ANNs), will
be introduced to offer enhanced predictive capabilities;
additionally, the QSAR with machine learning models can
help over new information from the existing data.22−24 For
instance, in a study conducted by Li et al., they attained an
impressive coefficient of determination (R2) of 0.807 by
employing four significant descriptors and the multiple linear
regression (MLR) method to forecast the antioxidant activity
of polysaccharides. Furthermore, a comparative analysis of
results from the multilayer perceptron artificial neural network
(MLP-ANN) model revealed even more precise predictions,
showcasing an exceptional R2 value of 0.944.25

To shed light on the molecular structure−activity relation-
ship, a dataset comprising bioactive chemicals extracted from

durian peel was utilized for machine learning-based QSAR
analysis in this work. The robustness of these models bodes
well for guiding future compound design and predicting the
antioxidant activity. The investigations can reveal key structural
characteristics impacting the anti-inflammatory activity of these
compounds, offering both theoretical directions and the
potential to molecularly fine-tune newly designed anti-
inflammatory chemicals inspired by nature.

2. METHODS
2.1. Data Sources and Collection. The NO inhibitory

activity of 45 natural bioactive chemicals extracted from durian
shells (depicted in Figure 1) was assessed, as documented by
Feng et al.9,26 and presented in Table 1. It is worth noting that

Figure 1. Two-dimensional structures of molecules extracted from durian.
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the dataset in this work covered the main natural bioactive
chemicals found in the durian shell extraction, including
phenols, glycosides, and pentacyclic triterpenoids. Notably,
compounds 21−30 fall within the pentacyclic triterpenoid
classification; the remaining substances are classified as
phenolic compounds and glycosides, with some overlap due
to the presence of phenolic hydroxyl groups in certain
glycoside aglycones. To facilitate QSAR model manipulation,
the NO inhibitory data, initially presented as IC50 values, were
transformed into pIC50 ones.

Based on the QSAR analysis, the Kennard-Stone algorithm
was applied to select the external set. There were five
compounds (compounds 4, 18, 23, 28, and 37) that served
as an external set for the model evaluations, which are shown
in Table 1.

2.2. Structural Optimization and Feature Generation.
The three-dimensional (3D) structures of the investigated
molecules were constructed, and their geometry was
subsequently optimized at the B3LYP/6-31G(d,p) level of
theory using the Gaussian 16 package.27 The QSAR module in
Materials Studio (MS) 8.031 was utilized to calculate the
structural descriptors (features) based on the optimized
structures. 96 valid features, including spatial, electronic,
thermodynamic, topological, E-state, fragment, and molecular
geometry descriptors, were generated as seen details in Tables
S1 and S2.

2.3. Multicollinearity of Features. The challenge of a
limited dataset coupled with an extensive feature set (45
structures, each with 96 distinct attributes) and the
redundancy of the descriptors can be mitigated by selecting
descriptors that are the most relevant to the response variable.
Multicollinearity describes the state where the independent
variables used in a study exhibit a strong relationship with each
other; this might pose a problem since the independent
variables in a desired model should preferably be independent.
Herein, variance inflation factor (VIF) analysis, as one
evaluation metric,28 was conducted to tackle this issue. The
VIF represents the ratio of the variance in the presence of
multicollinearity between explanatory variables to that in its
absence and is calculated as in eq 2.1

R
i kVIF

1
1

1, 2, ,i
i
2= = ···

(2.1)

where Ri
2 refers to the coefficient of determination when the

ith explanatory variable acts as the explanatory one while the
remaining k − 1 variables are used to perform linear regression.
A large Ri

2 value implies that the remaining variables have a
high explanatory property along with the ith variable. The
larger the Ri

2 value, the larger the VIFi value; for example,
when Ri

2 equals 0.9, VIFi equals 10. It is generally believed that
strong multicollinearity exists when VIF > 10, in which case
some variables need to be eliminated.

VIF analysis was conducted on all 96 descriptors utilizing
the statsmodels29 toolkit, an open-source Python statistical
package. The descriptors were ranked based on computed VIF
values, with those above a VIF threshold of 10 being
progressively removed. This iterative process was continued
until all retained descriptors exhibited VIF values below 10.
Additionally, a correlation coefficient analysis was performed
among the selected descriptors. The details of VIF analysis
codes are shared in Code S1 of the Supporting Information.

2.4. QSAR Modeling Algorithms. The QSAR approach
was employed to develop a mathematical model, with
descriptors as the independent variables (X) and pIC50 values
as the response variable (Y), to elucidate the complicated
connection between the physicochemical properties (descrip-
tors) and the anti-inflammatory activities of the studied durian
compounds. All descriptors’ values of Y and X1, X2, X3, ···, X96
are listed in Table S3. In this work, four different machine
learning techniques were applied to generate QSAR models for
a comparative study: RFs, gradient boosting regression (GBR),
ANNs, and SVR. The Python package Scikit-learn30 was used
to complete the entire modeling procedure. Each of the QSAR
models, based on the four algorithms, was subjected to grid
search cross-validation hyperparameter fine tuning during the
model training procedure. An exhaustive search over the
parameter values for every model was conducted using
GridSearchCV, which means that the accuracy score metric
was employed along with fivefold cross-validation. The best
parameter values that maximized the accuracy score on the
validation set were selected for further modeling. The details of
RF, GBR, SVR, and ANN Python codes of parameter

Table 1. Anti-Inflammatory Activity Data of Compounds Extracted from Durian

NO inhibition NO inhibition NO inhibition

cpd. pIC50 IC50 cpd. pIC50 IC50 cpd. pIC50 IC50

1 4.441 36.220 16 5.137 7.290 31 4.000 >100.000
2 4.419 38.070 17 4.795 16.030 32 4.000 >100.000
3 4.384 41.260 18a 4.301 50.000 33 4.000 >100.000

4a 4.453 35.230 19 4.483 32.910 34 4.000 >100.000
5 4.301 50.000 20 4.511 30.820 35 4.000 >100.000
6 4.664 21.700 21 5.184 6.550 36 5.082 8.280
7 4.539 28.880 22 4.610 24.560 37a 4.680 20.900
8 5.449 3.560 23a 4.576 26.570 38 4.000 >100.000
9 4.301 50.000 24 4.519 30.280 39 4.000 >100.000

10 4.519 30.280 25 4.766 17.130 40 4.547 28.380
11 4.585 26.010 26 5.023 9.480 41 4.000 >100.000
12 4.551 28.150 27 4.801 15.820 42 4.498 31.750
13 5.432 3.700 28a 4.967 10.800 43 4.498 31.750
14 4.748 17.870 29 5.470 3.390 44 4.634 23.230
15 4.501 31.530 30 4.527 29.720 45 4.634 23.230

aSamples serving as the external validation test set in building the QSAR model.
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optimizations are shared in Code S1 of the Supporting
Information.

2.5. QSAR Model Evaluation Methods. Prior to
modeling, a subset of five compounds was manually selected
as a test set based on the distribution of pIC50 values. The
remaining compounds constituted the training dataset for
QSAR model development and internal validation, while the
test set was reserved for external validation. The quality of the
fit between the model-predicted and experimental values and
the suitability of the regression models in terms of their ability
to describe the data were measured by using the R2 value of the
training set. This value ranges from 0 to 1 (with negative values
also possible for poorly fit models); the closer R2 is to 1, the
higher the accuracy of the model’s predictions.

The cross-validation metric assists in evaluating a model’s
performance by dividing the data into multiple subsets, training
the model on some of these subsets, and evaluating it on the
remaining ones. With 10-fold cross-validation, the data will be
divided into 10 subsets, with training the model on 9 of them
and testing it on the remaining one. An estimate of the model’s
performance that is more stable could be obtained by
averaging over these 10 partitions. This is particularly crucial
when data availability is limited.

In this work, the stability of the QSAR models was assessed
using the 10-fold cross-validation R2(CV) and R2 values of the
test dataset. The models’ accuracy was evaluated using the
root-mean-square error (RMSE), that is, the square root of the
mean absolute error (MAE); the smaller the RMSE, the
smaller the prediction error of the model and the better the
model’s performance. R2 and the RMSE were calculated as in
eqs 2.2 and 2.3, respectively

R
y y

y y
1

( )

( )
i
n

i

i
n

i

2 1 1
2

1
2= =

= (2.2)

N
y yRMSE

1
( )

i

n

i i
1

2=
= (2.3)

where n represents the number of molecules used in the model
prediction; yi and yí represent the true and predicted pIC50
values of the ith molecule, respectively; and y̅ represents the
average of the true pIC50 values of the n predicted molecules.

2.6. Feature Importance. Permutation importance and
SHAP (Shapley additive explanations) are two commonly used
methods for feature importance analysis and can explain the
outputs of any machine learning model. Permutation
importance is based on model performance and evaluates the
importance of a feature by randomly shuffling its values and
observing the changes in the model’s prediction accuracy or
loss function. The advantages of this approach lie in its
simplicity, generality, and model-agnostic nature. However, it
does present some drawbacks; it is unable to reveal the nature
of the relationship (positive or negative) between features and
prediction outcomes and ignores the interactions between
features. SHAP, on the other hand, is rooted in game theory,
quantifying the importance of a feature by calculating its
contribution to the prediction outcome. Its strengths include
its ability to reflect the impact and polarity of all features within
each sample and to consider the interactions between features.
Its drawbacks, however, include higher computational
complexity and a reliance on specialized toolkits for

implementation. In this work, SHAP values were computed
by using the SHAP interpretability model Python package.

3. RESULTS AND DISCUSSION
3.1. Feature Analysis. The stepwise VIF selection

method, outlined in Table 2, identified 11 descriptors that

persisted within the dataset. Notably, the methyl and
ellipsoidal volume descriptors exhibit comparably high VIF
values, suggesting a potential correlation between these
features and necessitating further investigation. Among the
11 descriptors, the five exhibiting the strongest correlation with
the predictive variable (pIC50 value) are shadow ratio, dipole z,
methyl, and E-state keys (sums): S_dssC, and Methoxy.
Importantly, their respective correlation coefficients (r) with
the pIC50 values exceed 0.1, indicating significant contributions
to predicting the NO inhibitory activity. Conversely, the r
value characterizing the relationship between the ellipsoidal
volume and pIC50 is −0.057. Figure 2 depicts the correlation
matrix of the 11 molecular descriptors.

It is worth noting that Pearson correlation analysis primarily
captures linear associations between variables and may not
fully elucidate nonlinear relationships. The specific role of the
ellipsoidal volume in explaining molecular activity remains
uncertain. Thus, the subsequent section delves into a
comprehensive analysis and discussion of the QSAR model,
drawing insights from the four investigated machine learning
algorithms and the permutation importance of the featured
attributes within the models.

3.2. Regression Models Based on 11 Selected
Features. Among the four algorithms, the SVR model
demonstrates the most promising overall performance,
achieving a significantly high R2 value of 0.975 in the training
set, with R2(CV) and external validation R2 values of 0.851 and
0.862, respectively (Table 3). In contrast, while the ANN
model exhibits exceptional performance in the training set (R2

= 0.995), it displays overfitting issues, with an R2(CV) of 0.724
and an external validation R2 of 0.450.

Among the ensemble learning algorithms, the GBR model
displays an enhanced training performance compared to the
RF model. However, the latter exhibits higher prediction
accuracy in the external validation set, with an R2 of 0.854,
while the former yields an R2 of 0.734. Notably, the minimal
disparity between the R2(CV) values of the GBR and RF
models relative to their respective training set R2 values
indicates the robustness of the ensemble learning models.

Table 2. Eleven Selected Descriptors with Calculated VIF
Values

no. descriptors VIF

1 E-state keys (sums): S_dssC 2.017
2 E-state keys (sums): S_aasC 2.295
3 E-state keys (sums): S_aaaC 2.024
4 E-state keys (sums): S_ssssC 1.877
5 methoxy 2.949
6 methyl 9.028
7 ellipsoidal volume 9.991
8 shadow ratio 4.147
9 dipole x 1.130

10 dipole y 1.130
11 dipole z 1.303
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Moreover, for a comprehensive exploration of the
significance of the 11 molecular features regarding anti-
inflammatory activity, a detailed permutation feature impor-
tance analysis was conducted across the four models. The
outcomes are visually represented in Figures 3(a−d), which
indicate a trend of consistently high rankings for the shadow
ratio and methyl molecular attributes across all models. In
particular, within the RF model, the top three features
comprise shadow ratio, methyl, and dipole z, while the
remaining eight exhibit importance values below 0.1.

In the GBR model, ellipsoidal volume assumes a higher
position relative to dipole z, indicating its relevance. In
contrast, within the SVR and ANN models, methoxy exhibits
more prominence than E-state keys (sums): S_dssC. This
distinction suggests the varying roles of the methoxy descriptor
in different algorithm types, with the SVR and ANN models
attributing greater importance to it due to their ability to
capture complex functional mappings.

3.3. Simplified Model with Five Key Features. To
enhance clarity and conciseness, a streamlined model

incorporating only five essential molecular attributes (shadow
ratio, dipole z, methyl, E-state keys (sums): S_dssC, and
methoxy) was developed (Table 4). The initial selection of
these attributes was based on their high correlation coefficients
with anti-inflammatory activity. However, given the signifi-
cance of ellipsoidal volume in the ensemble learning models,
an alternative configuration was explored as well, replacing E-
state keys (sums): S_dssC with an ellipsoidal volume (Table
4).

The outcomes, as provided in Table 4, indicate that
although the models using a reduced feature set exhibit
slightly diminished predictive performance, they maintain
commendable accuracy. For instance, the RF and GBR models
utilizing five attributes display minimal alterations in their
evaluation coefficients for the training set with deviations
below 0.05. This resilience can be attributed to the relatively
lower scores assigned to the discarded molecular features, as
highlighted by the permutation importance analysis conducted
on the ensemble learning tree models.

The SVR and ANN models, however, demonstrate
significantly greater declines in predictive capacity, indicating
a sensitivity to feature reduction. Notably, the reduction in the
degree of overfitting is evident in the ANN model after
including a reduced number of molecular features, as shown in
Table 4. Furthermore, from the eight distinct QSAR models in
Table 4, the SVR model incorporating the shadow ratio, dipole
z, methyl, ellipsoidal volume, and methoxy descriptors
showcases superior performance, maintaining high prediction
accuracy and demonstrating robust generalization capability.
The evaluation metrics for this model are as follows: a training
set R2 of 0.907 and RMSE of 0.123; an R2(CV) of 0.770 and
RMSE(CV) of 0.191; and an external validation R2 of 0.812
and RMSE of 0.097.

Figure 2. Correlation matrix of 11 molecular descriptors.

Table 3. Statistical Parameters for the Four Developed
Models Are Based on 11 Selected Features

methods evaluation RF11 GBR11 SVR11 ANN11

full train RMSE 0.195 0.157 0.063 0.028
R2 0.766 0.849 0.975 0.995

10-fold CV RMSE(CV) 0.227 0.197 0.148 0.199
R2(CV) 0.680 0.757 0.851 0.724

external RMSE 0.086 0.116 0.083 0.167
R2 0.854 0.734 0.862 0.450

Note: The models are based on 11 molecular features selected from
the VIF analytical results.
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3.4. Structural Characteristics of Anti-inflammatory
Compounds. The SHAP interpretability model was applied
to analyze the relationship between individual molecular
features and anti-inflammatory activity within the top-perform-
ing SVR model (SVR5b) discussed in Section 3.3. The analysis
combined feature implications with Shapley values, which
quantify each feature’s contribution to the model’s output.

The SHAP summary graph in Figure 4 offers a
comprehensive overview by combining feature importance
and positive or negative correlation effects. Each data point
corresponds to a sample instance, with the x-coordinates
determined by Shapley values and the y-coordinates influenced
by the average of the Shapley absolute values for a given

feature across all samples. The color of each point represents
the significance of the associated Shapley value, conveying the
importance of the features in a broader context. The methyl
descriptor is the most significant feature, with the SHAP values
indicating a negative relationship between the presence of
methyl groups in the molecular structure and anti-inflamma-
tory activity. However, seven significant anomalous samples
deviate from this trend, showing a more positive SHAP value
contribution. Table 5 presents the definitions of the five
molecular features included in Figure 4.

The SHAP dependence graph in Figure 5 provides an
overview of each feature’s impact on the model’s interpreta-
tion, helping elucidate how changes in feature values affect
predictions and offering insights into the data. Furthermore,
Figure 6(a),(b) depict a 3D molecular structure (using
compound 8 as an example) along the coordinate axis
directions.

Figure 5(a) shows the SHAP dependence graph for the
methyl feature, indicating the Shapley contributions linked to
different values. The eight samples with the highest Shapley
values contain structures with six or seven methyl groups,
corresponding to durian-extracted pentacyclic triterpenes with
elevated pIC50 values. Some molecules with one or two methyl
groups have positive but relatively modest Shapley values
(below 0.1), suggesting a limited influence on the overall
model.

The molecular feature with the second highest average
Shapley value is the shadow ratio, as shown in Figure 5(b).
Molecules with shadow ratio values exceeding 2 have more
significant positive Shapley contributions. This pattern,
combined with insights into the molecules’ 3D structure,

Figure 3. Permutation importance of QSAR models, including (a) RF11, (b) GBR11, (c) SVR11, and (d) ANN11.

Table 4. Statistical Parameters for the Four Developed
Models Based on Five Selected Features

full train 10-fold CV external

modela RMSE R2 RMSE(CV) R2(CV) RMSE R2

RF5a 0.208 0.735 0.223 0.691 0.117 0.727
GBR5a 0.159 0.846 0.190 0.769 0.126 0.686
SVR5a 0.143 0.874 0.186 0.785 0.148 0.561
ANN5a 0.158 0.846 0.219 0.690 0.146 0.574
RF5b 0.212 0.724 0.231 0.670 0.115 0.738
GBR5b 0.178 0.806 0.209 0.730 0.138 0.622
SVR5b 0.123 0.907 0.191 0.770 0.097 0.812
ANN5b 0.153 0.857 0.214 0.711 0.295 −0.726

aModel 5a: The five molecular features used in the models are
shadow ratio, dipole z, methyl, E-state keys (sums): S_dssC, and
methoxy. Model 5b: The five molecular features used in the models
are shadow ratio, dipole z, methyl, ellipsoidal volume, and methoxy.
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suggests that a higher shadow ratio corresponds to an overall
surface contour resembling an ellipsoid.

The ellipsoidal volume of a molecule is the third pivotal
molecular feature that affects its anti-inflammatory activity.
When it exceeds 1000 Å3, a noticeable decrease in the Shapley
value is observed, indicating a negative correlation. A higher
ellipsoidal volume of drug molecules can impede their capacity
to engage in biochemical reactions or interact with target
binding sites within the cellular matrix. Thus, retaining the

ellipsoidal volume feature is valuable for assessing the impact
of molecular volume on drug bioavailability.

The presence of methoxy groups within a molecular
structure is denoted as methoxy. As portrayed in Figure
5(d), the contribution from Shapley values is more
pronounced for molecules containing one or two methoxy
groups, as opposed to none. Moreover, most of the methoxy
groups contained in structures exhibit a positive contribution
to anti-inflammatory activity, while a single group imparts a

Figure 4. SHAP summary diagram of the SVR model.

Table 5. Definitions of Five Molecular Features

feature definition

shadow
ratio

A spatial Cartesian coordinate system is established based on the moment of inertia of the molecules; generally, the x-axis lies along the direction
where the distance between molecules is the greatest, and the z-axis is in the direction where the distance between molecules is the smallest. The
shadow areas of the molecular surface projected onto three mutually perpendicular planes, XY, YZ, and XZ, are calculated, with “shadow ratio”
describing the ratio between the largest and smallest dimensions.

methyl The number of methyl groups in the molecular structure
dipole z Dipole moment (debye) of the molecule in the z-axis direction
ellipsoidal

volume
Ellipsoidal volume (Å3) of the molecule, describing the volume of an inertial spheroid derived from the inertial tensor of the system

methoxy The number of methoxy groups in the molecular structure

Figure 5. SHAP dependence graph of each feature in the SVR5b model. The x-axis represents distinct feature values for each sample, while the y-
axis indicates the Shapley contribution of the corresponding feature within the model.
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negative influence. The electronegativity of the oxygen atom in
the methoxy group results in (1) an electron-withdrawing
inductive effect when connected to a sp3-hybridized carbon
and (2) conjugation with its two lone pairs of electrons when
linked to a sp2-hybridized carbon. Considering these varied
electronic effects and the Shapley analytical results together,
one can speculate that the distinct impacts on anti-
inflammatory activity arise from diverse positional electronic
influences.

The dipole z feature quantifies a molecule’s polarity along
the z-axis and results from the magnitude and distance of
charge centers. A molecule with a zero dipole moment is
nonpolar, while a molecule with a nonzero one is polar, with
higher values indicating a higher degree of polarity. Figure 5(e)
reveals that dipole z values from −1 to 1 correspond to
significant Shapley contributions, implying that substituents in
the z-direction affect the anti-inflammatory activity. Groups
leading to charge center imbalances amplify the polarity and
influence the anti-inflammatory properties of molecules.

3.5. Activity Cliff. Analyzing the data of the top-performing
model, SVR5b, as shown in Table 4, reveals the presence of
three samples with notable discrepancies in the predictions for
the training set. Figure 7 displays the differences between the
SVR-predicted and actual anti-inflammatory values for the 45

extracts, some of which surpass 0.5, revealing significant
disparities. From a closer examination of the molecular
structures, one can attribute this phenomenon to the existence
of a molecular activity cliff within the data of the training set.

Molecular activity cliffs emerge when slight structural
changes produce large differences in biological activity
among closely related molecules. Compounds 8 and 9, which
differ only in the R1 group, exhibit significantly different anti-
inflammatory actions, with pIC50 values of 5.449 and 4.301,
respectively. Similarly, compounds 11, 12, and 13 display this
trend, with compound 13 (featuring −OH substituents at both
the R2 and R3 positions) exhibiting the highest activity (pIC50
= 5.432). This phenomenon highlights the challenge of
distinguishing between near-identical compounds due to a
lack of relevant information about molecular characteristics in
the QSAR model. Thus, forecasting the activity cliff is difficult,
even when using the best SVR model in this particular class.

4. CONCLUSIONS
The dataset in this work covered the main natural bioactive
chemicals found in the durian shell extraction, including
phenols, glycosides, and pentacyclic triterpenoids, and there
was a normal distribution of activity ranges and amounts of

Figure 6. (a) Side and (b) top views of the 3D structure of compound 8 (Cpd 8) and (c) schematic diagram of a planar projection of the molecular
surface.

Figure 7. (a) Scatter diagram of the relationship between the predicted (SVR5b model) and experimental values of the data and (b) residuals of
predicted and experimental anti-inflammatory activity values of 45 durian extracts.
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compounds. Therefore, the QSAR analysis with four machine
learning algorithms, RF, GBR, SVR, and ANN, was conducted
on natural anti-inflammatory compounds extracted from the
durian shell. Among the models, the SVR one based on the five
molecular features shadow ratio, dipole z, methyl, ellipsoidal
volume, and methoxy yielded the optimal performance.
According to the model analytical results, we speculate that
molecules with a prolate ellipsoidal shape exhibit better cell
membrane penetration, which can increase the cellular
utilization of such natural anti-inflammatory molecules and,
thereby, lead to improved anti-inflammatory effects. In
addition, the substituted methoxy group on the aromatic ring
along the shortest dimension of the molecules (z-direction) is
also an important factor in enhancing the anti-inflammatory
activity. Finally, the analysis of quantitative structure−activity
relationships in this article can provide new insights for in-
depth future research on the anti-inflammatory activity and
molecular design of new anti-inflammatory drugs.
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