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ABSTRACT We present the annotated genome sequence of Escherichia coli bacte-
riophage U115, a T4-like bacteriophage. Phage U115 has a genome length of
166,986 bp and has 286 predicted genes.

Previously described Escherichia coli phage U115 is of interest to the study of evolu-
tionary trade-ups (1). The phage relies on the Tsx receptor, an outer membrane

protein that also imports the antibiotic albicidin (1, 2). Consequently, an evolutionary
trade-up can occur when phage resistance evolves through changes to Tsx that also
block albicidin entry (1, 3). Phage U115 was isolated from wastewater influent in New
Haven, CT, and characterized previously (1). A sample of phage U115 used in the cur-
rent study was provided by Ben Chan (Yale University). We propagated the phage in
Luria-Bertani broth at 37°C on E. coli K-12 strain BW25113.

DNA was isolated using a phage DNA isolation kit (Norgen Biotek). The sequencing
library was prepared using the Illumina Nextera sequencing kit and sequenced on a
Nextseq 2000 machine with a 300-cycle cartridge to give 150-bp reads. Genome as-
sembly and annotation were conducted through the Center for Phage Technology
(CPT) instances of Galaxy (4) and Web Apollo (5). Default parameters were used for all
software unless otherwise specified. Sequences were rarified to a target coverage of
250� to improve assembly (6) using FASTQ Subset (7, 8). Sequence quality was
assessed with FastQC v.0.721galaxy1 (9). Low-quality sequence ends were trimmed
with Trim Sequences v.1.0.21galaxy0 (10) to reach a mean quality score above 30
across all bases and a 10th percentile quality score above 25 across all bases; this pro-
cess involved trimming the first 18 bases and the last 1 base of each sequence. We also
qualitatively confirmed that the per base sequence content of the trimmed sequences
was consistent across the trimmed read lengths. The trimmed sequences were
assembled using SPAdes v.3.12.0 (11) resulting in a circular contig of 166,986 bp and
119� coverage containing 55 bp of terminal overlapping sequence, which was
removed manually before further analysis.

Using NCBI BLASTn (12), phage U115 was determined to be a tequatrovirus with a
94.63% identity and an 89% query coverage to phage T4 (GenBank accession number
MT984581). The genome was reopened to be syntenic with phage T4.

The assembled sequence was run through the Galaxy phage annotation pipeline
(PAP) structural workflow v.2021.02 (7) and imported into Apollo for structural annota-
tion. Gene locations were predicted using GLIMMER3 v.0.2 (13), MetaGeneAnnotator
v.1.0.0 (14), and Sixpack v.5.0.01galaxy2 (15). tRNA gene calls were made with
tRNAscan-SE v.2.0.5 (16) and ARAGORN v.0.6 (17). Finalized gene calls were confirmed
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by manual assessment of Shine-Dalgarno sequences, start and stop sequences, and
distance between genes (18).

Functional annotation was initiated using the CPT PAP functional workflow v.2021.01
(7). Putative gene functions were assigned by manual assessment of BLASTp (19) results to
the curated databases Canonical Phages, Swiss-Prot, and nonredundant (NR; NR phages
only) along with InterProScan v.5.48-83.0 (20). Annotations were further verified separately
using NCBI BLASTx (12) and InterPro (21).

Of the 286 predicted genes of phage U115, 144 were annotated as hypothetical
genes, 131 were annotated with putative functions, and 11 were annotated as tRNA
genes. EDGE bioinformatics (22) determined that the GC content of this genome was
35.42%, and there were no hits for virulence factors and deleterious genetic markers.
PHACTS (23) predicted phage U115 to be “confidently lytic.”

This study uniquely represents a collaborative effort by 12 undergraduate research-
ers enrolled at 4 institutions, as follows: The University of New Haven (A.J., and K.R.,
and S.S.), Quinnipiac University (J.C.S., M.P., N.L., and E.F.), Southern Connecticut State
University (L.D.V. and V.H.), and Yale University (A.T., W.A., and C.E.). All of the structural
and functional annotations were completed during a 5-week, fully online summer
research experience led by A.R.B.

Data availability. The annotated genome of phage U115 has been added to
NCBI GenBank under accession number MZ753803. The BioProject accession num-
ber is PRJNA753771, and the Sequence Read Archive (SRA) number is SRR15420633.
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