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Abstract
Background  Transplant nephropathology is a highly specialized field of pathology comprising both the evaluation of organ 
donor biopsy for organ allocation and post-transplant graft biopsy for assessment of rejection or graft damage. The introduc-
tion of digital pathology with whole-slide imaging (WSI) in clinical research, trials and practice has catalyzed the applica-
tion of artificial intelligence (AI) for histopathology, with development of novel machine-learning models for tissue inter-
rogation and discovery. We aimed to review the literature for studies specifically applying AI algorithms to WSI-digitized 
pre-implantation kidney biopsy.
Methods  A systematic search was carried out in the electronic databases PubMed-MEDLINE and Embase until 25th Sep-
tember, 2021 with a combination of the key terms “kidney”, “biopsy”, “transplantation” and “artificial intelligence” and their 
aliases. Studies dealing with the application of AI algorithms coupled with WSI in pre-implantation kidney biopsies were 
included. The main theme addressed was detection and quantification of tissue components. Extracted data were: author, 
year and country of the study, type of biopsy features investigated, number of cases, type of algorithm deployed, main results 
of the study in terms of diagnostic outcome, and the main limitations of the study.
Results  Of 5761 retrieved articles, 7 met our inclusion criteria. All studies focused largely on AI-based detection and clas-
sification of glomerular structures and to a lesser extent on tubular and vascular structures. Performance of AI algorithms 
was excellent and promising.
Conclusion  All studies highlighted the importance of expert pathologist annotation to reliably train models and the need to 
acknowledge clinical nuances of the pre-implantation setting. Close cooperation between computer scientists and practicing as 
well as expert renal pathologists is needed, helping to refine the performance of AI-based models for routine pre-implantation 
kidney biopsy clinical practice.
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Introduction

Transplant nephropathology is a highly specialized field 
of pathology comprising both the evaluation of organ 
donor biopsy for organ allocation and post-transplant graft 
biopsy for assessment of rejection or graft damage. Recog-
nizing and quantifying various organ structures and subtle 
histopathological features, and correlating these findings 
with clinical parameters are required to be of use for donor 

or recipient management in the current era of precision 
medicine [1]. Added challenges in this field include the 
increasing demand to render complex diagnoses in kidney 
biopsy samples, pressure of time constraints in the case 
of pre-implantation biopsy for organ allocation, and the 
lack of specifically trained nephropathologists. Moreover, 
when dealing with kidney transplant pathology, a distinc-
tion should be made between pre-transplant or time-zero 
donor biopsy and protocol biopsy on a graft kidney as the 
clinical setting and related challenges of these two sce-
narios are quite different. In a graft biopsy, simultaneous 
assessment of rejection and/or chronic organ damage is 
made by means of a multiplicity of ancillary techniques 
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(e.g., immunohistochemistry for C4d, special stains for 
fibrosis or deposits, immunofluorescence or molecular 
investigations) on a biopsy specimen collected in optimal 
conditions with an expected turn-around-time (TAT) for 
results of days to weeks, usually assessed by reference 
pathologists with expertise in the field. On the other hand, 
pre-implantation biopsy for organ suitability to trans-
plantation is usually assessed via frozen section (FS) or 
microwave rapid processing protocols of slides with no 
aid of ancillary techniques or only very few, with a time-
critical diagnostic TAT diagnosis rendered by a general 
pathologist with relatively little specific expertise in this 
field. The Banff group developed definitions for features 
to be evaluated in kidney biopsy and scoring systems, but 
reproducibility even among experts remains an issue [2], 
and studies on correlation of pre-implantation biopsy and 
graft outcome have highlighted that expertise is crucial 
in predicting the true state of an organ and subsequent 
outcome [3, 4].

The introduction of digital pathology with whole-slide 
imaging (WSI) in clinical research, trials and practice has 
catalyzed the application of artificial intelligence (AI) in 
histopathology, with the development of novel machine-
learning models for tissue interrogation and discovery. 
Such advances in technology offer the potential to improve 
our ability to classify disease, quantify morphological 
alterations more accurately, discover correlations with 
pathogenesis and clinical data, and predict disease out-
come with new prediction models [5]. As reported in a 
recent review by Farris et al., interest in the application 
of AI algorithms towards the topic of kidney transplant 
has grown, as demonstrated by the increasing number of 
publications retrieved from PubMed with the keywords 
“computer & pathology & image & analysis” [6]. As high-
lighted from previous work [7], most efforts have been 
devoted to the post-transplant graft biopsy with algorithms 
aiming to quantify and describe features of rejection such 
as immune infiltrate, or to quantify chronic organ damage 
in terms of interstitial fibrosis with special stains. By com-
parison, studies regarding the application of AI algorithms 
to the pre-implantation biopsy are scarce and more focused 
on fewer simpler tasks, such as counting glomeruli, scle-
rotic glomeruli, vascular structures, and quantification of 
interstitial fibrosis. Nevertheless, digital pathology with 
WSI has already been deployed in the pre-implantation 
setting for consultation and training [8–11].

In this work we systematically reviewed the literature 
searching for all studies applying AI algorithms to digitized 
slides of pre-implantation kidney biopsy. The various AI-
based algorithms developed and deployed for this purpose 
are discussed, as are the potential benefits and main chal-
lenges encountered.

Methods

Search strategy

A systematic search was carried out in the electronic data-
bases PubMed-MEDLINE and Embase until 25th Septem-
ber, 2021 with a combination of the key terms “kidney”, 
“biopsy”, “transplantation” and “artificial intelligence” and 
their aliases (see complete search strategy in the Supplemen-
tary Table 1). No language filters were applied. Two authors 
screened all retrieved items after removal of duplicates with 
the aid of the web-app Rayyan QRCI [12]. Briefly, the two 
authors screened abstracts blinded to each other’s decision 
and after finishing they compared the results of the screen-
ing. Disagreement was resolved by consensus. Then authors 
read the full text and decided on final inclusion, with consul-
tation of a third author in case of disagreement.

PICOS analysis

Pre-implantation kidney biopsy (P) employing AI algo-
rithms coupled with WSI (I) were compared to conventional 
assessment (C) to determine potential concordance rates and 
performance of algorithms (O). Studies concerning protocol 
graft biopsy for rejection, not dealing with AI algorithms 
or not deploying WSI, together with studies represented 
only by abstracts were excluded. Disagreement on article 
screening and final inclusion was resolved with the partici-
pation of a third reviewer. References listed in the excluded 
but relevant articles, as well as recent reviews on the topic 
were checked for additional studies that might be potentially 
included. Full-texts of relevant studies were acquired and 
checked, and data from included studies were extracted and 
summarized. Extracted data were: author, year and country 
of the study, type of biopsy features investigated, number of 
cases, type of algorithm deployed, main results of the study 
in terms of diagnostic outcome, and the main limitations of 
the study.

Results

After removal of duplicates, a total of 5761 publications 
were screened. Of these, 184 were selected as potentially 
relevant, and only seven were finally included [13–19]. 
Reasons for exclusion included: 23 with only an abstract 
available, 115 not using WSI, 11 not specifically con-
cerned with the transplant setting, and 28 not dealing with 
pre-implantation biopsy. Only a few studies we identified 
regarding AI algorithms coupled with WSI were dedicated 
to pre-implantation biopsies, and they mainly focused on the 
detection and classification of glomerular structures and to a 
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lesser extent tubular and vascular structures. Included stud-
ies reported the performance of the algorithms in terms of 
sensitivity and specificity or correlation with pathologists’ 
assessment as outcome measures. The included studies are 
summarized in Table 1. 

Assessment and concordance rates

Marsh et al. in 2018 trained a deep-learning model based 
on a convolutional neural network (CNN) utilizing 48 WSI 
cases of kidney biopsy processed by FS. These authors 
tested the performance of their model to detect and clas-
sify normal and sclerosed glomeruli, demonstrating per-
formance comparable to that of expert pathologists and 
reported robustness of their algorithm against slide prepa-
ration artifacts. In the training phase, normal and sclerosed 
glomeruli were annotated in the test set of biopsies obtained 
from 20 kidneys of 17 donors, with a range of glomeru-
losclerosis 1–72%. Annotation was undertaken by a senior 
resident and amended by a specialist nephropathologist, thus 
underscoring the importance of expert annotation in training 
AI algorithms. Two different CNN models were tested, an 
image patch-based and full WSI convolutional model. The 
fully convolutional model showed the best performance by 
more accurately measuring the proportion of correctly clas-
sified sclerosed glomeruli. The fully convolutional model 
also showed greater correlation with the percent global glo-
merulosclerosis evaluated (R2 = 0.828) compared with the 
patch-based model (R2 =  − 0.491)[13]. Moreover, as these 
authors stressed, the model was not only robust to slide prep-
aration artifacts such as tissue folds, but it was also capable 
of running the analysis within a time-span satisfactory for 
a FS request. Additional data reported by the same group 
of investigators in 2021 [14], where a deep-learning model 
was based on the model of their previous study, were chal-
lenged on a larger population of mixed wedge and core kid-
ney biopsy cases (98 FS and 51 permanent sections). Again, 
the training set of biopsies was annotated by three certified 
pathologists with expertise in renal transplant pathology. 
Glomeruli counts were compared against annotation ground 
truth, with accuracy assessed by Pearson correlation coef-
ficient r and root-mean-square error (RMSE). Corresponding 
quantities for percent global glomerulosclerosis were com-
puted for on-call pathologists’ estimates, and those values 
were compared with the model’s performance [14]. Moreo-
ver, the authors used Cohen’s Kappa to test the concordance 
of the model with the ground truth derived from patholo-
gists at the cut-off of 20% glomerulosclerosis for organ dis-
card. The model correlated very well with the pathologists’ 
annotations, with a correlation coefficient higher than 0.900. 
Interestingly, when the pathologists were asked to check and 
correct the classification of glomeruli after the model had 
been run on a subset of 25 cases with different grades of 

glomerulosclerosis by visualizing the histology images with 
overlaid model-generated glomeruli classifications, the cor-
relation with ground truth improved with respect to both the 
original on-call pathologists’ reports and to the model alone. 
This was underscored by the authors as indirect proof that 
their model could potentially be incorporated into routine 
clinical practice [14].

A group of Italian researchers shared slightly different 
semantic segmentation CNN models that were trained on 
small datasets of pre-implantation kidney biopsies stained 
with Periodic acid-Schiff (PAS) to detect vessel and tubu-
lar structures, starting with a lumen as an object and then 
extracting nuclei and membranes to classify the structure 
[16], or detect healthy and sclerosed glomeruli [15, 17]. 
Early work of this group utilized a binary classifier (ves-
sel vs tubule) classification that was performed with Back 
Propagation Neural Network (BPNN) and Haralick texture 
features [16]. The classification provided by the algorithm in 
terms of counting vascular and tubular structures was com-
pared to manual counting provided by an expert nephro-
pathologist. They tested four different approaches to reduce 
false positives detected by the algorithm. The model always 
detected more vessels and tubules than the human expert, 
with a final precision in the test set of 0.91. These authors 
concluded that such an algorithm could be of aid to a pathol-
ogist assessing these structures, given that their task would 
be simplified and limited to a final check on the output of 
the algorithm [16]. Subsequent research by this Italian group 
focused on glomerular structure detection and classification 
as sclerosed or normal. The detection of glomeruli and their 
classification was based on the evaluation of several features, 
such as the sum of the area related to Bowman’s capsule, 
blood vessel area and the inter-capillary space, diameter, 
and texture features, with the use of two well-known texture 
analysis algorithms; namely, Local Binary Pattern (LBP) 
and Haralick features. A total of 150 features were extracted 
and reduced to 95 by a principal component analysis, and 
a shallow CNN final model was applied. The best perfor-
mance achieved an accuracy and precision of 0.98, and the 
authors reported that the cases of misclassified glomeruli 
were reviewed by an expert pathologist who acknowledged 
the challenge of classifying such images and indicated that 
in routine practice such image fields would not be considered 
for evaluation [17]. In their subsequent work, the authors 
replaced the last layer of both SegNet [20] and DeepLab 
v3 +  [21] networks with a pixel-wise classification layer 
with three output classes (background, sclerotic glomeruli 
and non-sclerotic glomeruli) to accomplish the same task. 
Both models worked better in the detection of non-sclero-
sed glomeruli and background tissue, i.e., the SegNet-based 
model yielded a better F-score for both classes of glomeruli 
, while the DeepLab v3 + -based model had a better F-score 
for non-sclerotic glomeruli and a slightly worse F-score for 
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sclerotic glomeruli [15]. In both studies the authors stressed 
the importance of expert human annotation for reliably train-
ing models and the potential application of such computer-
aided diagnosis tools for practicing pathologists. They also 
acknowledged that non-expert pathologists tend to overscore 
glomerulosclerosis, which may lead to excessive discarding 
of kidneys [3, 4].

Algorithms

Salvi et al. also designed algorithms to classify glomeruli, 
quantify tubular atrophy, detect blood vessels and quantify 
interstitial fibrosis on PAS-stained slides [18, 19]. Their 
algorithm, called RENFAST (Rapid Evaluation of Fibrosis 
And vessels Thickness), deals with semantic segmentation 
using CNN and employs U-Net architecture with a ResNet34 
backbone [22]. A dataset of 65 kidney biopsies stained with 
PAS and a trichrome stain for fibrosis were manually anno-
tated by an expert renal pathologist. The RENFAST algo-
rithm yielded a balanced accuracy of 0.89 and a precision 
of 0.92 utilizing the test set for blood vessel detection and 
of 0.92 and 0.91, respectively, for fibrosis quantification; of 
note, average absolute errors between manual and compu-
tational assessment were lower than 2.5%. Moreover, these 
authors reported that their computational time was around 
2 min, significantly less than the 20 min required by the 
pathologist to manually evaluate arterial and interstitial 
fibrosis [18]. The algorithm, named RENTAG (Robust Eval-
uation of Tubular Atrophy & Glomerulosclerosis), deployed 
by another study group [19], consisted of three modules: 
PAS normalization, glomerulosclerosis assessment, and 
tubular atrophy quantification. This algorithm was based on 
a deep convolutional network, with pixels labeled into three 
different classes depending on whether they belonged to 
healthy glomeruli/tubuli, sclerotic glomeruli/atrophic tubuli 
or other components of renal tissue and then subjected to a 
post-processing procedure. A total of 83 needle-core biopsy 
cases stained with PAS were used and annotated by two 
trained pathologists. The algorithm achieved high sensitiv-
ity and positive predictive value concerning correct classi-
fication of normal and sclerosed glomeruli and normal and 
atrophic tubuli, with a reported total time needed to run the 
analysis of around 3 min.

Discussion

As expected, we retrieved very few papers concerning AI 
and WSI slides of pre-implantation biopsy, as anticipated 
in previous reviews [7]. This is not surprising, consider-
ing that in many settings pre-implantation biopsies are 
evaluated with rapid protocols that are more prone to arti-
facts and pose challenges in standardization. Moreover, in 

the pre-implantation setting, the features of interest to be 
assessed are almost exclusively based upon morphology, 
given that any sort of score (Karpinski-Remuzzi [23, 24], 
donor score [4], Banff [2]) is based on relatively simple tasks 
such as counting and classifying glomeruli and quantifying 
interstitial fibrosis, tubular atrophy and vascular narrowing, 
usually with no availability of ancillary techniques such 
as special stains and immunohistochemistry. On the other 
hand, the development and testing of AI algorithms offers an 
opportunity for standardization. Indeed, many of the studies 
encountered in this review were about “narrow AI” because 
they dealt only with these elementary tasks (e.g. enumerat-
ing and classifying glomeruli and quantifying fibrosis). A 
brief overview of these studies is provided in Supplementary 
Table 2.

Animal model-derived samples were deployed in sev-
eral studies, most of which dealt with glomerular detec-
tion [25–33], or unspecified human kidney biopsies with 
no reference to the pre-implantation setting or specific 
pathology [34–38]. Only three larger-sized studies applied 
segmentation CNN models to the detection and simulta-
neous classification of multiple renal structures, not only 
glomeruli but also different kinds of tubuli and vessels 
[39–41]. In particular, Hermsen et al. [39] developed a 
multiclass segmentation CNN that achieved a high Dice 
coefficient for all of the segmentation classes (“glomeruli,” 
“sclerotic glomeruli,” “empty Bowman’s capsules,” “proxi-
mal tubuli,” “distal tubuli,” “atrophic tubuli,” “undefined 
tubuli,” “capsule,” “arteries,” and “interstitium”), with the 
best results being yielded by glomerular detection, fol-
lowed by tubules as a whole class and then the interstit-
ium. Their AI-based algorithm was validated not only in a 
single-center experimentation setting, but also on biopsy 
material from another center and on nephrectomy speci-
mens. Moreover, the study by Hermsen and colleagues is 
the only one to correlate results of the algorithm to expert 
pathologists’ assessment according to Banff categories for 
tubular damage and interstitial fibrosis. In another study by 
Jayapandian et al., albeit unrelated to the transplantation 
setting, the multicenter Nephrotic Syndrome Study Net-
work (NEPTUNE) dataset of digitized renal biopsies was 
evaluated for the feasibility of deep learning approaches 
to automatically segment utilizing four stains [40]. Five 
nephropathologists were employed for annotations and 29 
centers were enrolled to provide material whereby 20 deep-
learning models were tested, making this work one of the 
most powered to date concerning kidney histology and AI. 
PAS proved to be the most suitable stain for computer-aided 
diagnosis and produced the highest concordance with expert 
evaluation for all the investigated structures, while silver-
based stains yielded the worst results. Bouteldja et al. tested 
a CNN multiclass segmentation model on a large series of 
tissue specimens, derived from a plethora of animal models 
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of various kidney diseases and a small subset of human tis-
sue. All their preparations were PAS stained and six classes 
were tested: tubule, full glomerulus, glomerular tuft, artery 
(including intima and media, but excluding adventitia), arte-
rial lumen, and vein. The best results in terms of average 
precision in detection was achieved for glomeruli, while 
accuracy for vascular structures was the lowest; moreover, 
performance on human tissue was intermediate. The authors 
also underscored the importance of training pathologists to 
ensure high quality annotations, and highlighted that good 
algorithm performance can be achieved with database het-
erogeneity, such as utilizing a variety of animal species and 
renal diseases [41].

It is noteworthy that all the included studies stressed the 
impact of their experimental setting: i.e., pre-implantation 
kidney biopsy stained only with PAS or H&E in the case 
of frozen sections, aiming to adhere as much as possible to 
the real-life practice of pathologists, with a subset aiming 
to use AI-aided evaluation of the Karpinski score [15–17]. 
Only one study explicitly compared the performance of 
the algorithm virtually, in terms of decision to discard a 
kidney with the cutoff of 20% glomerulosclerosis with 
the results of the on-call pathologists and the annotations 
made by expert pathologists [14], thus directly translat-
ing the deployment of the algorithm in clinical practice. 
However, all the other included studies recapitulate and 
discuss briefly the importance of an accurate and reliable 
evaluation of the single features of the kidney biopsy, its 
difficulties, the need for specific expertise and the relevant 
consequences in terms of erroneous discard. Nevertheless, 
despite the fact that deep-learning models are capable of 
excellent detection and classification of renal structures, 
for such an algorithm to be approved for clinical use it 
must first be tested and validated prior to clinical deploy-
ment. AI could become extremely helpful for practicing 
pathologists, especially given the projected decrease in the 
pathology workforce and continued demand for specializa-
tion [42]. All included studies also highlighted the need 
to adjust AI models to work with WSI, in anticipation of 
more pathology laboratories ultimately transitioning to a 
fully digital workflow.

Conclusion

Within the last decade many studies have been published 
testing AI algorithms developed for the detection and clas-
sification of elementary structures in kidney biopsy material. 
However, very few of these studies specifically designed AI-
based models to optimize the evaluation of renal biopsies 
in the pre-implantation setting. It is foreseeable that in the 
near future more multicenter projects will provide additional 

contributions to the transplantation field. Closer coopera-
tion between computer scientists and practicing as well as 
expert renal pathologists is needed, helping to refine the per-
formance of AI-based models for routine pre-implantation 
kidney biopsy clinical practice.
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