
MINI REVIEW
published: 22 September 2021

doi: 10.3389/fsurg.2021.719840

Frontiers in Surgery | www.frontiersin.org 1 September 2021 | Volume 8 | Article 719840

Edited by:

Robert Jeenchen Chen,

The Ohio State University,

United States

Reviewed by:

Bleri Celmeta,

Istituto Clinico Sant’Ambrogio, Italy

Michael Hofmann,

University of Zurich, Switzerland

*Correspondence:

Zhongshi Wu

owenzswu@csu.edu.cn

orcid.org/0000-0003-2720-8381

Specialty section:

This article was submitted to

Heart Surgery,

a section of the journal

Frontiers in Surgery

Received: 03 June 2021

Accepted: 11 August 2021

Published: 22 September 2021

Citation:

Qian T, Yuan H, Chen C, Liu Y, Lu T,

Huang C and Wu Z (2021) Conduits

for Right Ventricular Outflow Tract

Reconstruction in Infants and Young

Children. Front. Surg. 8:719840.

doi: 10.3389/fsurg.2021.719840

Conduits for Right Ventricular
Outflow Tract Reconstruction in
Infants and Young Children

Tao Qian 1,2, Haoyong Yuan 1,2, Chunyang Chen 1,2, Yuhong Liu 1,2, Ting Lu 1,2, Can Huang 1,2

and Zhongshi Wu 1,2*

1Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,
2 Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China

Purpose of Review: Right ventricular outflow tract (RVOT) reconstruction remains a

challenge due to the lack of an ideal conduit. Data and experience are accumulating

with each passing day. Therefore, it is necessary to review this topic from time to time.

This is a 2021 update review focused on the history, evolution, and current situation of

small-sized conduits (≤ 16mm) for RVOT reconstruction in infants and young children.

Recent Findings: Currently, the available small-sized (≤16mm) conduits can meet

most clinical needs. Homograft is still a reliable choice for infants and young children

validated by a half-century clinical experience. As an alternative material, bovine jugular

vein conduit (BJVC) has at least comparable durability with that of homograft. The

performance of expanded polytetrafluoroethylene (ePTFE) is amazing in RVOT position

according to limited published data. The past century has witnessed much progress in

the materials for RVOT reconstruction. However, lack of growth potential is the dilemma

for small-sized conduits. Tissue-engineering based on cell-free scaffolds is the most

promising technology to obtain the ideal conduit.

Summary: No conduit has proved to have lifelong durability in RVOT position. We are

far from the ideal, but we are not in a state of emergency. In-depth clinical research as

well as innovation in material science are needed to help improve the durability of the

conduits used in infants and young children.

Keywords: right ventricular outflow react reconstruction, valved conduit, children, homograft, bovine jugular vein

conduit, expanded polytetrafluoroethylene, tissue engineering

INTRODUCTION

Despite developments in materials science, we still do not have an ideal valved conduit for right
ventricular outflow tract (RVOT) reconstruction (1). Currently, no conduit can meet the long-term
functional requirements, especially the small-sized (≤16mm) conduit used in infants and young
children. In addition, the standard surgical timing of critical congenital heart disease has shifted
to an earlier stage, with most patients having surgical treatment in the first year after birth (2).
Furthermore, the Ross operation has been widely applied in pediatric patients (3). The demand for
small-sized conduits has been ever-increasing.

Cryopreserved pulmonary homograft had been regarded as the gold standard materials for
RVOT reconstruction for a long period of time. However, in addition to its inadequate durability
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(4–6), small-sized homograft is in a severe shortage. Besides,
the second homograft usually performed much worse than
that of the first one in the same patient (7). These issues
have pushed us to explore alternative materials for RVOT
reconstruction. One way to help deal with the shortage of
small-sized conduits is the down-sized technique (8). We were
pleased to find that this technique does not affect the the
function and durability of the conduits (9, 10). There is no doubt
that the bovine jugular vein conduit (BJVC), usually known as
Contegra R© conduit (Medtronic Inc., Minneapolis, Minnesota,
USA), has achieved great success. It showed comparable (11, 12)
or even better (13–15) performance than homograft. Still, the
durability of BJVC is very poor in infants (16). To make matters
worse, the Contegra conduit had not been authorized for profit
upon sale until 2013 and is still not available in China and
other countries. Recently, the Japanese approach of hand-sewn
expanded polytetrafluoroethylene (ePTFE) valved conduit has
attracted much attention, with excellent long-term outcomes
demonstrated in multi-center studies where more than 90%
small-sized conduits were free from explantation at 5 years (17–
19). However, very limited numbers of heart centers outside of
Japan reported the application of this conduit, perhaps due to the
inconsistent quality control of a hand-sewn valve.

An ideal conduit should be one with permanent physiological
functions and with growth potential adapting to the patient’s
somatic growth. That is, the conduit should be “alive” in the
host. The development of tissue engineering technology provides
us with the opportunity to realize the ideal. In this review, we
focus on the history evolution and current situation of small-
sized conduits (≤16mm) for RVOT reconstruction in infants and
young children. The difficulties as well as the future direction
will be discussed to provide assistance for the development of
pulmonary valved conduits.

HISTORY

The history timeline of available small-sized conduits is shown
in Figure 1. In the development of conduit materials for RVOT
reconstruction, the valveless conduit was the first attempt and
is worthy of being mentioned. It was reported as serving as
the RVOT material in REV (Réparation à l’Etage Ventriculaire)
operations and truncus arteriosus repair (20, 21). However, most
centers now prefer a valved conduit due to the undoubted
importance of functional pulmonary valve.

The homograft conduit constitutes a crucial part in the history
of pulmonary conduits (22). It is the first and most widely
used valved conduit for ROVT reconstruction. During the past
half-century, the improvement of processing and preserving
technology has facilitated superior durability for homograft (8,
23, 24). Down-sized technique makes up for the shortage of
homograft for young children and has achieved satisfactory
durability. But none of them can achieve lifelong durability and
therefore serve as a palliative treatment for young children. Later
on, many xenografts were introduced for RVOT reconstruction,
but only a few of them are suitable for infants and young
children. The Hancock R© conduit (Medtronic Inc., Minneapolis,

Minnesota, USA) is the first commercial xenograft which
consisted of porcine valve sutured into a Dacron conduit. The
Contegra conduit (Medtronic Inc.) is one of the most successful
xenografts which was mainly treated with glutaraldehyde. The
xenografts were easier to obtain with much lower cost than
homografts, but still, without much improvement in durability,
particularly for young children. The Japanese approach of hand-
sewn ePTFE valves is a great event in the history of conduits (25).
Japanese researchers have established a mature system for the
construction of hand-made ePTFE valved conduits and achieved
amazing clinical outcomes.

Throughout history, we have achieved great success in
conduit materials’ evolution for RVOT reconstruction in young
children. Currently, the available conduits (Table 1) can meet the
clinical needs in most countries, and re-thoracotomy for conduit
replacement is no longer a high-risk operation for cardiac
surgeons. Moreover, trans-catheter pulmonary valve replacement
(TPVR) has been proven to be a safe and effective therapeutic for
failed pulmonary conduits (34). Therefore, our current task is to
improve the durability and prolong the life of the valved conduit
for RVOT reconstruction. We are far from the ideal, but we are
not in a state of emergency.

CLINICAL OUTCOMES OF AVAILABLE
CONDUITS

Homograft
Generally, cryopreserved homograft conduits perform much
better in adults than in childrens, as well as in Ross operations
than in non-Ross operations (35, 36). As detailed in Table 1,
only a few studies analyzed the durability in infant or young
children subgroups.

Kaza et al. found only 6.7% of pulmonary homograft conduits
were free from reintervention at 14 years in newborns who
underwent surgical repair of tetralogy of Fallot and truncus
arteriosus. On the other hand, all aortic homograft conduits
were replaced within 10 years (37). Brown et al. reported their
experience of homograft in 117 non-Ross operations, in which
nearly half of the patients were infants (n = 57, 49%) (5). The
freedom from homograft failure (defined as reintervention or
patient death) was 42% at 5 years and 34% at 15 years. Another
study focused on the fate of small-sized homograft in non-Ross
operations revealed that almost all homograft conduits smaller
than 12mm had to be replaced within 3 years (26). The 5-
year freedom from replacement was approximately 10% and
30% respectively for conduits with diameters of 12–14 and 15–
17mm (26). The long-term results of cryopreserved homograft
implanted in Ross operations in infants were reported by Nelson
et al. (27). The freedom from homograft reintervention for 44
infants in this cohort was 52% at 5 years and 19% at 15 years.

The down-sized technique was first described by Michler
et al. in 1994, obtaining a bicuspid valved conduit by removing
one of the three valve leaflets and the attached wall (8). The
largest study cohort of down-sized homograft conduits came
from the German Heart Centre, Munich (9). Eighty-two patients
receiving a down-sized homograft were compared to 70 patients
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FIGURE 1 | Development of small-sized conduits for RVOT reconstruction. The commonly used conduit materials for RVOT reconstruction were listed in the figure in

chronological order with the founder(s) (if any). Tissue engineered vascular graft has the potential to achieve an ideal conduit, but it is still in development.

receiving normal small-sized homograft. Both the mean conduit
diameter and the freedom from replacement were comparable
in the two groups (14.8 vs. 14.6mm; 69 vs. 61% at 10 years).
Romeo et al. reported similar results in patients under 2-years-
old (10). More recently, Francois et al. finished another study
focused on the comparison between down-sized homograft and
other conduits in patients under 3-years-old (28). The freedom
from structural valve degeneration (SVD, defined as conduit
dysfunction or replacement) at 10 years was 68, 42, and 31%
for pulmonary homograft, down-sized homograft, and aortic
homograft, respectively. Multivariable analysis confirmed the
down-sized technique did not increase the risk of SVD.

There is no doubt that the cryopreserved homograft is
immunogenic as the cryopreserved technology retained lots of
allogeneic cells (29). The graft-related immune response plays
an important role in the failure of cryopreserved homograft in
young children (38). A response to the immunogenicity was
decellularized technology (SynerGraft, CryoLife, Kennesaw,
GA) proposed by O’Brien in 1999 (24). Decellularization
preserves the extracellular matrix scaffold while greatly
eliminating the immunogenicity from allogeneic cells, resulting
in a milder immune reaction in the host. Ruzmetov et al.
compared decellularized and standard cryopreserved homograft
inserted primarily in patients <1 year old, as part of their
single-institution study (39). Both the 10-year freedom from
replacement and reintervention of the decellularized homograft
trended better. A multicenter study demonstrated significantly
higher durability of the SynerGraft homograft conduit compared
with that of standard cryopreserved homograft (40). The
decellularized fresh homografts developed by the Hannover
group were first applied after pre-seeding of endothelial
progenitor cells for two pediatric patients in 2002 (41). The
conduits have been widely used in Europe (the ESPOIR Trial)
without pre-seeding of stem cells (30, 33, 42). The latest long-
term follow-up results showed significantly better freedom
from explantation and less structural valve degeneration when
matched to cryopreserved homograft and BJVC (42). The

decellularized homograft is expected to be a better choice for
infants and young children, but needs more evidence from large
samples with longer follow-ups.

Bovine Jugular Vein Conduit
The BJVC, usually known as Contegra R© conduit, was introduced
as a substitute to homograft. Patel and Brown et al. reported the
freedom from BJVC explantation was 53% at 5 years and 15%
at 10 years for infants (16). The mean time to conduit failure
was 5.2 years in the infants subgroup and 5.8 years in the small-
sized conduits (12–14mm) subgroup (16). Germany took the
lead in clinical use of BJVC. Later on, a series of multicenter
studies were carried out. The latest multicenter study revealed
that the BJVC performed much better than homograft in infants.
In fact, about 90% of the BJVC became dysfunctional 10 years
after implantation, while a similar outcome only took 4 years
in homograft recipients (43). The Congenital Heart Surgeons
Society reported a series of high-impact multicenter studies
on the conduits for RVOT reconstruction in young children
(13, 31, 44). Their recommendation of oversizing conduits
with z-scores between +1 and +3 is still widely acknowledged
today (31). Two other studies also demonstrated that BJVC
has better performance than homograft in infants and young
children (13, 44).

Recently, the durability of BJVC and homograft have been
further compared in strictly matched newborns (12, 14, 44, 45).
One multicenter study included three groups using different
conduits (83 pulmonary homograft conduits, 53 aortic homograft
conduits, and 55 BJVCs) in truncus arteriosus repair (45).
The study found that, although the three groups showed
similar portions of replacement, the reintervention of BJVC was
significantly less than homograft conduit. A similar conclusion
was reported in another long-term longitudinal study of patients
with truncus arteriosus (14). More than 20% of BJVC was free
from reoperation at 10 years, while less than 10% of pulmonary
homograft conduits and no aortic homograft conduit were free
from reintervention (14).
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TABLE 1 | Clinical results of small-sized valved conduits for right ventricular outflow tract reconstruction in infants and young children.

Authors Conduit No. of

patients

Age/Weight/Conduit

sizea

Durability

Kaza et al. (Children’s Hospital

Boston, 2009). (26)

Pul. homograft

(non-Ross)

38 <30 d./NA/NA FF reintervention:

∼25% at 5 yr., 6.7% at 14 yr.b

Aortic homograft

(non-ross)

34 <30 d./NA/NA FF reintervention:

∼10% at 5 yr., 0 at 10 yr.

Brown et al. (Indiana University

School of Medicine, 2005). (5)

Homograft

(non-Ross)

57 <1 yr./NA/NA FF failure:

42% at 5 yr., 34% at 15 yr.

Mainwaring et al. (Lucile Packard

Children’s Hospital. 2015). (27)

Aortic homograft

(non-Ross)

25 <1 yr./NA/

8–11mm

MTR: 1.3 yr.

45 <1 yr./NA/

12–14mm

MTR: 3.3 yr.

33 <1 yr./NA/

15–17mm

MTR: 4.2 yr.

Nelson et al. (University of Michigan

Medical School. 2015). (28)

Homograft

(ross)

44 <1 yr./NA/14.0mm FF reintervention:

52% at 5 yr., 19% at 15 yr.

Cleuziout et al. (German Heart Centre

Munich. 2016). (9)

Homograft 70 17.7 mo./

<14 kg/14.8mm

FF reintervention: 79% at 5 yr.,

61% at 10 yr.

Down-sized

homograft

82 16.2 mo./

<14 kg/14.6mm

FF reintervention:

87% at 5 yr., 69% at 10 yr.

Romeo et al. (Erasmus University

Medical Center. 2018). (10)

Homograft 28 <2 yr./6.1 kg/

16.1mm

FF replacement:

94% at 5 yr., 71% at 10 yr.

Down-sized

homograft

19 <2 yr./6.0 kg/

14.7mm

FF replacement:

95% at 5 yr., 82% at 10 yr.

Francois et al. (University Hospital

Ghent. 2018). (29)

Pul. homograft 40 <3 yr./11.9

kg/17.2mm

FF SVD: 68% at 10 yr. MTR: 7.6

yr.

Down-sized

homograft

17 <3 yr./7.4 kg/

16.3mm

FF SVD: 42% at 10 yr. MTR: 8.3

yr.

BJVC 24 <3 yr./8.0 kg/15.8mm FF SVD: 20% at 10 yr. MTR: 5.6

yr.

Poynter et al. (CHSS member

institutions, 2013). (13)

BJVC and homograft 429 <2 yr./

4.9 kg/NA

FF replacement:

53% at 8 yr.

Sandica et al. (Two centers in

German. 2016). (30)

BJVC 97 <1 yr./NA/NA FF replacement: ∼20% at 5 yr.,

∼5% at 10 yr.

Homograft 25 <1 yr./NA/NA FF replacement:

∼0 at 5 yr.

Patel et al. (Indiana University School

of Medicine, 2018). (16)

BJVC 65 <1 yr./5.1 kg/13.1mm FF replacement: 53% at 5 yr.,

15% at 10 yr.

Falchetti et al. (Queen Fabiola

Children’s University Hospital, 2019).

(12)

BJVC 30 <30 d./3.3 kg/12mm FF reoperation: ∼60% at 5 yr.,

∼20% at 10 yr.

Homograft 23 <30 d./2.8

kg/9–14mm

FF reoperation:

∼70% at 5 yr., ∼30% at 10 yr.

Buckley et al. (Multicenters in the

United States, 2019). (31)

BJVC (TA) 55 NA/NA/12 mm MTR: 20 mo

Pul. homograft

(TA)

83 NA/NA/9–11 mm MTR: 23 mo

Aortic homograft

(TA)

53 NA/NA/9–11 mm MTR: 26 mo

Herrmann et al. (Indiana University

School of Medicine, 2020). (14)

BJVC (TA) 36 33 d./3.2 kg/12 mm FF reoperation:

∼65% at 5 yr., ∼25% at 10 yr.

Pul. homograft

(TA)

41 33 d./3.2 kg/12 mm FF reoperation:

< 50% at 5 yr., <10% at 10 yr.

Aortic homograft

(TA)

14 33 d./3.2 kg/12 mm FF reoperation:

∼35% at 3 yr., ∼0 at 7 yr.

Yamashita et al. (Multicenters in

Japan, 2016). (18)

ePTFE valved conduit 303 18 mo./8.4 kg/≤16

mm

FF replacement:

90% at 5 yr.

(Continued)
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TABLE 1 | Continued

Authors Conduit No. of

patients

Age/Weight/Conduit

size a

Durability

Miyazaki et al. (Multicenters in Japan,

2018). (19)

ePTFE valved conduit 292 <2 yr./12.6kg/NA FF replacement: 90% at 5 yr.,

74% at 10 yr.

ePTFE valved conduit 400 NA/NA/≤16 mm FF replacement:

92% at 5 yr., 76% at 10 yr.

Mercer et al. (Children’s Hospital of

Pittsburgh, 2018). (32)

Bicuspid ePTFE valved

conduit

39 <2 yr./5.7 kg/11.8mm Incidence of replacement:

17% at 1 yr., 55% at 5 yr.

Homograft 26 <2 yr./5.6 kg/11.2mm Incidence of replacement:

23% at 1 yr., 56% at 5 yr.

Seese et al. (Children’s Hospital of

Pittsburgh, 2020). (1)

Bicuspid ePTFE valved

conduit (TA)

18 <30 d./NA/11mm FF replacement:

82% at 5 yr., 27% at 10 yr.

Homograft

(TA)

7 <30 d./NA/10mm FF replacement:

71% at 5 yr., 29% at 10 yr.

Vitanova et al. (German Heart Centre

Munich, 2014). (11)

Hancock conduit 48 <1 yr./4.3 kg/≤ 14mm FF replacement:

54% at 5 yr., 20% at 10 yr.

Homograft 62 <1 yr./4.6 kg/≤ 16mm FF replacement:

69% at 5 yr., 38% at 10 yr.

BJVC 35 <1 yr./4.2 kg/≤ 16mm FF replacement:

59% at 5 yr., 38% at 10 yr.

Ruzmetov et al. (Children’s Hospital of

Illinois, 2012). (33)

Decellularized

homograft

6 <1 yr./NA/NA FF replacement: 67% at 10 yr.

Homograft 17 <1 yr./NA/NA FF replacement:

25% at 10 yr.

aValues of age/weight/conduit size are mean or median or range. The bold words indicate the main characteristics of the study cohort.
b“∼” indicates the value was obtained according to the survival curve in the literature.

BJVC, bovine jugular vein conduit; CHSS, the Congenital Heart Surgeons Society; ePTFE, expanded polytetrafluoroethylene; FF, freedom from; MTR, mean/median time to replace;

NA, not available; Pul., pulmonary; SVD, structural valve degeneration; TA, truncus arteriosus.

As detailed in Table 1, the highest rate of 10-year freedom
from BJVC replacement was approximately 25% in young
children (12, 14). Although the results from different studies were
not consistent, the BJVC showed similar or even better durability
than that of cryopreserved homograft for RVOT reconstruction.
However, the BJVC has greater incidence of late endocarditis
after being implanted, with a rate of 4.7% to 9.9% reported in
previous studies (16, 46–48). The endocarditis seems to be a
unique situation that occurs in glutaraldehyde-treated bovine
jugular vein products (49). The reasons are still unclear, but the
infection will definitely exacerbate the failure of the conduit.

The Hand-Made ePTFE Valved Conduit
The 0.1mm thick ePTFE has been employed as the pulmonary
valve material since the 1990s (50, 51). Yamagishi, Miyazaki,
and colleagues carried out a series of impressive technological
innovations in Japan, contributing to the hand-made ePTFE
valved conduit which consisted of three bulging sinuses and
tricuspid fan-shaped valve (17, 52).

In Japan, the ePTFE valve is preferred in the form of a
conduit instead of the originally designed valved patch (53),
as they found that even the small-sized (≤ 16mm) conduits
had satisfactory durability (18). A nationwide multicenter study
revealed that 90.1% small-sized ePTFE valved conduits were
free from replacement at 5 years (18). More recently, another
nationwide multicenter study in Japan incorporated 292 patients
of <2 years of age and found that the freedom from replacement

was 90% at 5 years, 74% at 10 years, and 67 % at 12 years
(19). When examined by conduit diameter, the freedom from
small-sized conduit replacement was 76% at 10 years (19).

The clinical results from Japan were excellent. However, this
artificial conduit was only used in a handful of heart centers
outside of Japan (54, 55). In the last decade, the application
of 0.1mm thick ePTFE for RVOT reconstruction has gradually
increased in the form of bicuspid valves directly sutured into
RVOT (56, 57), or bicuspid/tricuspid valved conduits without
bulging sinuses (32, 58). Mercer et al. reported a similar
performance for bicuspid ePTFE valved conduits with homograft
conduits in patients<2 years of age (59). Another study from this
team focusing on neonatal truncus arteriosus repair also showed
similar durability, with 10-year freedom from replacement of
27.3 and 28.5% respectively for ePTFE valved conduit and
homograft conduit (60).

Despite remaining controversial, the introduction of hand-
sewn ePTFE valved conduits for RVOT reconstruction is a great
innovation. Current data show that it has a high tendency to
become another successful substitute for pulmonary conduit.

Other Conduits
The Hancock R© conduit (Medtronic Inc.) is the oldest xenogeneic
valved conduit which is still in use. Vitanova et al. reported the
freedom from Hancock conduit replacement of 53.8% at 5 years
and 20.3% at 10 years, which was similar to that of homograft and
BJVC in young children (11). To the best of our knowledge, other
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xenografts, including the Carpentier-Edwards conduit (Edwards
Lifesciences, Irvine, California, USA), Freestyle porcine aortic
root (Medtronic Inc.), and stented bioprosthetic valves, were
rarely reported as being used in infants and young children. In
the past 10 years, TPVR has emerged as an alternative to open-
heart surgery in selected patients (61). This technology has not
been applied in infants or young children. However, conduits
like Hancock have been identified to be more favorable for future
TPVR and thus have been more used.

Another alternative allograft for RVOT reconstruction in
infants is valved femoral vein homograft (FVH). Sinha et al.
reported the first case of a 2-month-old girl diagnosed with
Fallot with pulmonary atresia in 2008 (62). By the end of
2012, they had implanted a total of 20 FVHs in neonates and
infants and found a lower rate of both reintervention and
reoperation compared with homograft in the short- to mid-term
(63). Theoretically, FVH has thinner walls and fewer donor cell
components, which is beneficial to the infiltration and growth
of host cells after implantation. Carreon et al. found that 1 year
after being implanted as a pulmonary conduit, the venous walls
underwent remodeling with only minimal inflammation and
calcification, and the venous valve leaflets were relatively spared
from hyperplasia with preserved function (64). However, more
studies are required to explore the fate of FVH in RVOT position.

Tissue engineering valved conduits is a perfect technology
assumption, which is supposed to achieve lifelong functional
requirements through in-vitro cell seeding and culturing, bio-
printing, or in-vivo regeneration approaches (65). It seems to be
more feasible to induce remodeling in vivo based on the cell-
free natural scaffolds or synthetic biodegradable materials, other
than in-vitro cell culturing (66). Significant efforts have been put
into the synthetic biodegradable valved conduit scaffolds (67, 68).
Bennink et al. recently reported the outcomes of an animal
experiment of a synthetic biodegradable conduit processed
by electrospinning (69). Over a 1 year follow-up period, the
pulmonary conduits were progressively remolded and degraded
with stable functionality in the sheep model. The CorMatrix R©

conduit (CorMatrix Cardiovascular, Inc., Roswell, USA) is
a biodegradable natural scaffold composed of porcine small
intestinal submucosa extracellular matrix (70). Unfortunately,
it failed to remodel as a pulmonary conduit before the valve
degeneration in both porcine model and xenogeneic animal
model (71, 72). Ghorbel et al. seeded the mesenchymal stem cell-
derived vascular smooth muscle cells in vitro into the CorMatrix
conduit (73). Six months after being implanted to reconstruct
the left pulmonary artery in piglets, the cellularized-CorMatrix
grafts were remoldedwith homogeneous endothelium covered by
multi-layered muscular media (73).

In our institution, we have been devoted to research on BJVC
since 2002. During this time, we successfully developed a novel
decellularized and photo-oxidatively crosslinked BJVC (74–76).
This conduit is a cell-free xenogeneic scaffold conducive to
host cells’ attachment and growth. After a series of strict large
animal experiments, it has been put into clinical application in
several centers in China. The 10-year freedom from conduit
replacement and catheter-based reintervention were 94.7% and
52.9%, respectively, for children≤3 years old (77).

FUTURE DIRECTION

An ideal pulmonary conduit for reconstruction of RVOT should
be “alive”: composed of viable host cells, equipped with stable
functionality, and able to grow with the patient’s somatic
growth synchronously. Tissue-engineered conduits are expected
to meet all of the requirements to make it an ideal conduit.
After decades of exploration, however, this technology is still in
its infancy.

It seems that we have not made a substantial breakthrough
in conduit materials for RVOT reconstruction, especially in
conduits for infants and young children. Lacking in growth
potential is an issue that seems insurmountable at present. For
adults, we actually do not need an “alive” conduit due to the
non-obvious somatic alterations, as long as one conduit can
maintain long-term structure stability and functionality. The
ePTFE valved conduit therefore may provide greater durability
than biological grafts in adults, as it is biologically inert and
resistant to immunological degeneration. For children, several
studies concluded that somatic outgrowth is not the core reason
for the failure of pulmonary conduit (6, 7), that is, the conduit has
failed even before its mismatch. Children may also benefit from
biologically inert conduits.

The development of novel pulmonary valved conduits based
on tissue engineering technology is the most promising way
to tackle the dilemma. In addition, modification based on the
currently available conduits, such as the preservation technique
for homograft, anti-calcification, and anti-infection modification
of glutaraldehyde-treated BJVC, may help to achieve better
durability. In addition, large multicenter studies, rigorous
meta-analysis focused on specific concerns, and comparisons
between different conduits in certain conditions might be
helpful to establish unified standards for pulmonary valved
conduit implantation.

CONCLUSION

We still do not have an ideal valved conduit for RVOT
reconstruction in infants and young children. But fortunately,
the available small-sized conduits can meet most of the clinical
demand. Homograft and BJVC are still reliable choices for
young children. Hand-made ePTFE valved conduits have very
satisfactory performance based on currently limited reported
data. Innovation in material science and more in-depth clinical
studies in this special field are required to get better durability.
Tissue engineering technology based on cell-free scaffolds is still
the most promising way to obtain an ideal “alive” valved conduit,
but there is still a long way to go.
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