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1  |  INTRODUC TION

Phenotypic plasticity, the ability of a given genotype to produce al-
ternative phenotypes in response to its environment of development, 

can evolve as an adaptation to a variable environment that is suf-
ficiently predictable (de Jong,  1999; Gavrilets & Scheiner,  1993; 
Levins,  1963; Tufto,  2015; Via & Lande,  1985), but it may also re-
flect non- or maladaptive phenotypic responses to the environment, 
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Abstract
Phenotypic plasticity, the ability of a given genotype to produce alternative pheno-
types in response to its environment of development, is an important mechanism for 
coping with variable environments. While the mechanisms underlying phenotypic 
plasticity are diverse, their relative contributions need to be investigated quantita-
tively to better understand the evolvability of plasticity across biological levels. This 
requires relating plastic responses of the epigenome, transcriptome, and organismal 
phenotype, and investigating how they vary with the genotype. Here we carried out 
this approach for responses to osmotic stress in Dunaliella salina, a green microalga 
that is a model organism for salinity tolerance. We compared two strains that show 
markedly different demographic responses to osmotic stress, and showed that these 
phenotypic responses involve strain- and environment-specific variation in gene ex-
pression levels, but a relative low—albeit significant—effect of strain × environment 
interaction. We also found an important genotype effect on the genome-wide meth-
ylation pattern, but little contribution from environmental conditions to the latter. 
However, we did detect a significant marginal effect of epigenetic variation on gene 
expression, beyond the influence of genetic differences on epigenetic state, and we 
showed that hypomethylated regions are correlated with higher gene expression. Our 
results indicate that epigenetic mechanisms are either not involved in the rapid plastic 
response to environmental change in this species, or involve only few changes in trans 
that are sufficient to trigger concerted changes in the expression of many genes, and 
phenotypic responses by multiple traits.

K E Y W O R D S
DNA methylation, gene expression, phenotypic plasticity, population dynamics, programmed 
cell death, RNA-sequencing, whole-genome bisulphite sequencing

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

mailto:﻿￼
https://orcid.org/0000-0002-7242-3075
https://orcid.org/0000-0002-3054-1364
https://orcid.org/0000-0003-4188-4618
mailto:christelle.leung@umontreal.ca
http://creativecommons.org/licenses/by/4.0/


    |  4673LEUNG et al.

caused by various constraints (Ghalambor et al., 2007, 2015). To ad-
vance our understanding of the mechanisms and evolution of plas-
ticity, we can rely on organisms that are able to tolerate a particularly 
broad range of a challenging environment, because phenotypic re-
sponses to these environments are likely to have played a prominent 
role in their evolutionary history.

An interesting example is provided by halotolerant organisms, 
such as the microalgae Dunaliella salina. This unicellular organism 
has the broadest salinity tolerance of all known eukaryotes, ranging 
in the laboratory from near freshwater to salt saturation (Ben-Amotz 
et al.,  2009). This huge salinity range is afforded notably by out-
standing physiological mechanisms of osmotic regulation (primarily 
through glycerol metabolism), great morphological flexibility, and 
unique specificities of its cell membrane (Ben-Amotz et al.,  2009; 
Ginzburg, 1988; Pick, 2002). For these reasons, Dunaliella has been 
proposed as a model organism for investigating salinity tolerance 
in plants (Cowan et al., 1992). More generally, this also makes it a 
good model for studying the mechanisms of adaptive phenotypic 
plasticity, as its phenotypic responses to salt have played a key eco-
logical role in its evolutionary history, and were even shown recently 
to evolve in the laboratory in response to the predictability of envi-
ronmental fluctuations, as predicted by theory (Leung et al., 2020).

Most existing theoretical predictions about the evolution of plas-
ticity come from theoretical models that rely on simplifying assumptions 
about the mechanisms and inheritance of plasticity, often assuming 
quantitative genetic inheritance without explicit loci (de Jong, 1990; 
Gavrilets & Scheiner,  1993; Via & Lande,  1985). These assumptions 
were made for mathematical convenience, but also out of lack of empir-
ical evidence on the mechanisms of plasticity. For instance, the classic 
debate of the 1990s about the putative existence of plasticity genes, 
and the relative importance of allelic sensitivity versus gene regulation 
in plasticity (Scheiner, 1993; Schlichting & Pigliucci, 1993; Via, 1993a, 
1993b), was eventually settled because these alternatives were essen-
tially undistinguishable based on standard quantitative genetics (both 
theoretical and empirical), which only rests on analysis of phenotype 
distributions (de Jong, 1995; Via et al., 1995). However, when explicitly 
considering the loci that contribute to the evolution of plasticity, the 
details of its genetic architecture do matter. For instance, the outcome 
of evolution may differ depending on whether the genes that influence 
variation in plasticity also cause variation in the “nonplastic component 
of the trait”, or more precisely the phenotypic value in a reference en-
vironment (de Jong & Gavrilets, 2000; Scheiner & Holt, 2012). More 
generally, the way molecular mechanisms influence the expression and 
inheritance of plasticity at different levels of the organism are probably 
key to how plasticity can evolve at these levels, and should thus be 
investigated more systematically.

Recent advances have demonstrated that the molecular mecha-
nisms contributing to phenotypic plasticity are diverse, but that many 
of them rely on variation in gene expression with the environment 
(Beldade et al., 2011; Gibert et al., 2016; Monteiro et al., 2015). Such 
variation in gene expression may in turn be regulated by hormones 
and/or epigenetic processes, that is, a set of enzyme-mediated mod-
ifications resulting in the alteration of gene expression without any 
change in DNA sequences. Environmentally induced epigenetic 

variation has been proposed as a molecular mechanism underlying 
phenotypic plasticity (Angers et al., 2010; Beldade et al., 2011; Bollati 
& Baccarelli, 2010). However, epigenetic variation can also result from 
other sources, most importantly genetic variation (Angers et al., 2020; 
Leung et al., 2016), and it is unclear to what extent plasticity in gene 
expression results from environmentally induced epigenetic variation.

To address these questions, we here investigated rapid responses 
to osmotic stress of two closely related strains of the microalga 
Dunaliella salina, at three biological levels: the epigenome, the tran-
scriptome, and macroscopic phenotypes. Not only does the out-
standing ecology of this species make it ideal for studying plasticity, 
but it also has a reference genome since 2017 (Polle et al., 2017). This 
has recently led to work in comparative genomics aiming at identify-
ing gene families involved in adaptation to salt (Polle et al., 2020), as 
well as investigations of plastic transcriptomic responses to salinity 
(Fang et al., 2017; He et al., 2020; Zhao et al., 2013), and specific epi-
genetic mechanisms such as small RNA (Lou et al., 2020). However, 
there has been no attempt to connect plastic responses to salinity at 
different levels (epigenome, transcriptome, and macroscopic pheno-
types) across different genotypes, to decipher the underlying mech-
anisms of plasticity and their putative genetic variation. Our goal 
is thus two-fold: (1) to further our understanding of the molecular 
mechanisms of plasticity in a model organism for salinity tolerance, 
including by shedding light on the (yet little investigated) contribution 
of DNA methylation; and (2) to more generally investigate how plastic 
and genetic variation are related at multiple levels of the organisms.

Our approach rests on comparing DNA methylation levels, gene 
expression levels, and demographic phenotypes, across environments 
and genotypes. Detecting a marginal effect of the environment on 
methylation patterns would confirm the environment as a source of 
epigenetic variation. Furthermore, considering epigenetic processes 
as an intermediate step between the genotype and the phenotype, 
we expected to detect a substantial contribution of the genotype to 
both epigenetic and phenotypic variation. And under the hypothesis 
that epigenetic processes play a role in fine-tuning gene expression, 
we expected to detect a correlation between the DNA methylation 
level and gene expression level. If epigenetic states and gene expres-
sion levels jointly change in response to environment, then this implies 
a role of epigenetics in gene-expression plasticity, which is thought to 
underlie the plasticity of most higher-level organismal traits (Beldade 
et al., 2011; Gibert et al., 2016; Monteiro et al., 2015). Finally, a sig-
nificant genotype × environment interaction on gene expression and 
epigenetics would indicate an evolutionary potential for plasticity at 
these basal phenotypic levels of the organism.

2  |  MATERIAL S AND METHODS

2.1  |  Study strains and culture conditions

We compared two genetically related strains of Dunaliella salina 
(CCAP 19/12 and CCAP 19/15) originating from the Culture 
Collection of Algae and Protozoan (UK). For each of these strains, 
we obtained 10 different lines that were propagated independently 
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in our laboratory for over two years (Leung et al.,  2020; Rescan 
et al., 2020). Our standard growth conditions are 50 ml suspension 
flasks (CELLSTAR; VWR 392–0016) containing artificial seawater 
with additional NaCl, complemented with 2% Guillard's F/2 marine 
water enrichment solution (Sigma; G0154–500 ml), for a total 25 ml 
(including the inoculate), incubated at a constant temperature 24°C, 
and a 12:12 h light/dark cycle with a 200 μmol.m−2.s−1 light inten-
sity. Target salinity was achieved by mixing the required volumes of 
hypo- ([NaCl] = 0 M) and hyper- ([NaCl] = 4.8 M) saline media, ac-
counting for the salinity of the inoculate.

2.2  |  Population dynamics under osmotic stresses

To quantify salinity tolerance, we assessed the demographic re-
sponses of Dunaliella salina to three levels of salinity. To ensure simi-
lar physiological states and densities among all populations at the 
beginning of the population dynamics assays, we first performed an 
acclimation step during 10 days, by diluting all populations at 1:125 
in fresh medium at intermediate salinity ([NaCl] = 2.4 M; note that 
this corresponds in absolute to a high salinity of c. 140 g/L, but is 
considered as intermediate for our model species). We then inocu-
lated c. 2 × 104 cells/ml of each populations into low (0.8 M), interme-
diate (2.4 M) or high (4.0 M) salinity, and tracked population density 
for the next 10 days under our standard growth conditions. We also 
followed the population dynamics of six randomly chosen popula-
tions of CCAP 19/15 strain starting at a lower density of 5 × 103 
cells/ml, to assess the effect of initial density on population growth 
rate in hyperosmotic condition ([NaCl] = 4.0 M).

To measure population growth rates under the different salt 
concentrations, we assessed population densities by passing a sub-
sample of 150 μl of each populations through a Guava EasyCyte HT 
flow cytometer (Luminex Corporation), following the protocol de-
scribed in Leung et al. (2020). Discrimination between alive and dead 
algae was possible thanks to chlorophyll auto-fluorescence detected 
through a cytogram of emissions at Red-B (695/50 nm) and Yellow-B 
(583/26 nm) band pass filters (Papageorgiou, 2004), and the particle 
size was assessed through the forward scatter (FSC) and side scatter 
(SSC) parameters (Adan et al., 2017). Note that, even though osmotic 
stress causes immediate changes in cell volume in D. salina, live cell 
size could still be discriminated from other particles unambiguously 
(Leung et al., 2020), and population density could thus be assessed in 
all conditions as the number of cells per volume of assayed medium. 
To estimate population dynamics, cell counts were performed for 
live algae at 11 time points: end of the acclimation step, 4 h after the 
transfer to fresh media, and once per day for the following nine days.

2.3  |  Sample preparation, sequencing, and 
bioinformatic preprocessing

To investigate the molecular mechanisms involved in osmotic stress 
responses, we performed whole-transcriptome shotgun sequencing 

(RNA-seq) for the comparison of gene expression levels, and whole-
genome bisulphite sequencing (WGB-seq) for the comparison of DNA 
methylation variation among the two strains (CCAP 19/12 and CCAP 
19/15), in two environmental conditions (hypo- and hyperosmotic). 
At the end of an acclimation step as described above, we transferred 
two biological replicates per strain to low ([NaCl] = 0.8 M) and high 
([NaCl] = 4.0 M) salinities, in a greater volume (250 ml) than for the 
demographic assays, and at a density of c. 1 × 105 cells/ml so as to 
ensure enough material for high-throughput sequencing. After 24 h 
following the salinity changes, the microalgae cells were harvested 
by centrifugation at 5000 rpm for 15 min at room temperature, and 
cell pellets were stored at −80°C until nucleic acid extraction. As it 
has been shown that physiological regulations involving changes in 
gene expression usually start within 12–24 h for D. salina exposed 
to salinity change (Chen & Jiang, 2009; Fang et al., 2017), we have 
chosen 24 h as the time point for nucleic acid extraction.

Total RNA extraction and purification of the eight samples (2 
strains × 2 salinities × 2 replicates) was carried out using Nucleozol 
following Macherey Nagel's protocol, and whole genomic DNA was 
isolated according to the phenol-chloroform purification and etha-
nol precipitation method of Sambrook et al. (1989). Library construc-
tion (TruSeq RNA Library Preparation kit for RNA-seq and Swift 
Bioscience Accel-NGS Methyl-Seq DNA library Kit for WGB-seq) 
and high-throughput sequencing steps (paired-end [PE] 2 × 150 bp, 
Illumina HiSeq) were performed by Genewiz. We then performed 
all the bioinformatic preprocessing analyses with publicly available 
software implemented in the European UseGalaxy server (Afgan 
et al., 2018).

2.3.1  |  Gene expression analyses

The RNA-seq raw reads were checked for quality using FastQC ver-
sion 0.72 (Andrews, 2010) and subjected to adapter trimming and 
quality filtering using Trim Galore! version 0.4.3.1 (Krueger, 2015). 
Additional 12 bp and 3 bp were also removed at the 5′ and 3′ ex-
tremity, respectively, to avoid bias not directly related to adapter 
sequences or basecall quality according to FastQC outputs, and 
only reads with a minimum length of 50  bp were retained. We 
aligned the trimmed reads on the D. salina CCAP 19/18 reference 
nuclear (Dunsal1 v. 2, GenBank accession: GCA_002284615.2), 
chloroplastic (GenBank accession: GQ250046) and mitochondrial 
(GenBank accession: GQ250045) genomes, using HISAT2 version 
2.1.0 (Kim, Langmead, et al.,  2015) with default parameters for 
PE reads and spliced alignment option. We used Stringtie version 
2.1.1 (Pertea et al., 2015) to predict transcript structures of each 
library based on the aligned reads, and performed de novo tran-
scriptome assembly using the Stringtie merge tool, thus generating 
a unified and nonredundant set of transcripts across the differ-
ent RNA-seq samples. We finally quantified the number of reads 
per transcript with FeatureCounts version 2.0.1 (Liao et al., 2014) 
using the alignment files from HISAT2 and the transcript annota-
tion file from Stringtie.
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2.3.2  |  Genetic variant calling and genetic 
diversity analysis

We assessed the genetic differences between strains based on the 
sequences from the transcriptomic data. We first calculated the 
genomic range from which variant calling was performed as the 
number of bases in all exons, after merging any overlapping exons 
from different transcripts. BAM files from previous read align-
ment analyses with HISAT2 were submitted to freebayes (Garrison 
& Marth,  2012) for variant identification, with the following pa-
rameters: joint variant calling of the eight samples simultaneously, 
minimum alignment quality of three, ploidy set to one, and samples 
assumed to result from pooled sequencing. After left-alignment and 
normalization of indels using bcftools (Li et al., 2009), we filtered the 
obtained freebayes multisample VCF file for strand bias (SPR and 
SAP > 20), placement bias (EPP > 20), variant quality (QUAL > 30), 
and depth of coverage (DP > 20). To assess genetic diversity within 
and differentiation between strains, we calculated the gene diver-
sity for each library (HE), mean gene diversity for each strain (HS), 
total gene diversity (HT), and genetic differentiations (GST) among 
samples within each strain, and also between the two strains for 
all variants. We then represented the Euclidean genetic distances 
among samples with a dendrogram computed with ape R package 
(Paradis & Schliep, 2019).

Finally, for each locus that diverged between the strains (i.e., 
with alleles nearly fixed within strain but different between strains, 
HS ≤0.1 and GST ≥0.9), we assessed the synonymous versus nonsyn-
onymous status of the substitution relative to the reference genome 
by using SnpEff version 4.3 (Cingolani et al., 2012). Sites where one 
of the focal strains had the reference allele while the other strain 
exhibited a synonymous mutation relative to the reference genome 
represented synonymous substitutions between our focal strains. 
As we detected only a single locus displaying a nonsynonymous mu-
tation in both strains relative to the references, we did not consider 
it in the synonymous versus nonsynonymous mutation comparison 
between the strains.

2.3.3  |  Methylation calling

The WGB-seq raw reads were also checked for quality using FastQC. 
Adapter and low-quality sequences were then trimmed using Trim 
Galore! Version 0.4.3.1. As specified by the Accel-NGS Methyl-seq 
kit manual, additional 15 and 5 bp were trimmed at the 5′ and 3′ ex-
tremity, respectively, to remove the tail added during library prepara-
tion, thus avoiding nonquality-related bias. Mapping was performed 
on the same references genomes as in RNA-seq analyses, using 
Bismark Mapper version 0.22.1 (Krueger & Andrews,  2011). Only 
uniquely mapping reads were retained, using Bismark Deduplicate 
tool. We then extracted the methylation status from the resulting 
alignment files using MethylDackel (Galaxy Version 0.3.0.1), where 
only cytosines covered by a minimum of 10 reads in each library 
were considered, and with the option of excluding likely variant sites 

(i.e., minimum depth for variant avoidance of 10×, and maximum 
tolerated variant fraction of 0.95). Cytosine methylation levels were 
determined for each CpG, CHG and CHH context. The high bisul-
phite conversion rate (>99%) was assessed by Genewiz by spiking in 
unmethylated lambda DNA in three randomly chosen libraries, and 
it was also confirmed by our analyses by estimating the number of 
methylated cytosine calls in the organelle genomes.

2.4  |  Statistical analysis

2.4.1  |  Population dynamics

To investigate how the population dynamics of our strains varied 
in response to salinity, we performed general linear models (GLMs) 
using cells count data as responses variables, with a negative bino-
mial distribution and logarithm link function. We performed GLMs 
on population size using strain, salinity (treated as categorical vari-
ables), day (as continuous variable), and their interactions as fixed 
effect. In such models with logarithmic link functions, any effect 
of time (here day) translates into a rate of exponential growth (or 
decline if negative) per unit time (here per day), and interactions 
of time with other factors estimate effects on population growth, 
which are our main interest. We performed such models on initial 
growth rate (Day 0 to Day 1: GLM no. 1) and growth rate in the ex-
ponential phase (Day 1 to Day 4: GLM no. 2). We also investigated 
whether difference in growth rates could be explained by a release 
of density-dependent competition. To do so, we tested the effect of 
initial density on population growth rate of one of the strains in hy-
perosmotic condition, using populations starting at 20,000 or 5000 
cells/ml (Day 1 to Day 4 at [NaCl] = 4.0 M: GLM no. 3 in Table S2). 
Statistical analyses were conducted using the statistical environ-
ment R version 4.0.3 (R Core Team, 2020) with the MASS package 
(Venables & Ripley, 2002) for the GLMs.

2.4.2  |  Differential gene expression and DNA 
methylation analyses

The differential expression analyses were performed with the 
Bioconductor's package DESeq2 version 1.30.1 (Love et al., 2014). 
We first normalized the count matrix using DESeq2 regularized 
log transformed (rlog). We applied a redundancy analyses (RDA: 
Borcard et al., 1992), computed with the function rda() available in 
the vegan R package (Oksanen et al., 2020), to quantify the propor-
tions of the total gene expression variation that are significantly 
explained by strain, salinity or the strain × salinity interaction, 
with population identity as covariates to account for paired sam-
ples between salinities. We also identified differentially expressed 
transcripts among the same three factors, by building a general lin-
ear model as implemented in DESeq2 and using Wald significance 
tests (Love et al.,  2014). Transcripts with FDR < 0.05 (p-values 
after Benjamini-Hochberg [BH] adjustment) and |log2FC| > 1 were 
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considered as differentially expressed. Significance of the strain × 
salinity interaction term was assessed using likelihood ratio tests 
(LRT) comparing models with and without the interaction term 
(Love et al., 2014).

Similarly, we performed a RDA to quantify the proportions of 
the total variation in DNA methylation level that are significantly 
explained by strain, salinity or strain × salinity interaction. We then 
used Bioconductor's methylKit package (Akalin et al., 2012) to iden-
tify differentially methylated regions (DMRs), corresponding to non-
overlapping 100 bp windows between strains, or between salinities 
for each strain. The significance of calculated differences was deter-
mined using Fisher's exact tests. We used the Benjamini-Hochberg 
(BH) adjustment of p-values (FDR < 0.05) and methylation difference 
cutoffs of 20%.

For both RNA-seq and WGB-seq data, we performed principal 
component analyses (PCA) to represent the total variation among 
samples along its major axes. We also illustrated the expression level 
of DE transcripts and methylation levels of identified DMRs of all 
samples with heat-maps.

2.4.3  |  Correlation between DNA methylation and 
gene expression

Since gene expression is a crucial step in the mapping from geno-
types to phenotypes, and is thought to be a key mechanism under-
lying phenotypic plasticity, we wished to quantify to what extent 
gene expression levels can be predicted by key covariates in our 
data set. We first evaluated the different sources of variation in 
gene expression by achieving a global partitioning of variation, 
assessing the influence of (i) the genotype, (ii) the environment, 
and (iii) epigenetic variation on the total gene expression. We per-
formed a RDA using the rlog transformed transcript count table as 
the response variable, and strain identity, salinity and epigenetic 
variation as explanatory variables. To account for paired samples 
among salinities, partial RDA was performed by removing the ef-
fect of population identity prior to assessing the effect of the en-
vironment or epigenetic variation on gene expression variation. 
Prior to RDA, we performed a PCA on DNA methylation levels and 
used the principal component (PCs) factors explaining at least 10% 
of the variation as a multivariate summary of epigenetic variation. 
We quantified the contributions to the total gene expression vari-
ation using the adjusted R2, and tested the significance of each R2 
by ANOVA-like permutation tests using 999 randomization of the 
data (Legendre & Legendre, 1998).

To further quantify the role of DNA methylation in gene ex-
pression, we correlated differences in local DNA methylation to 
fold-changes in expression of the corresponding transcript. In the 
absence of well-annotated D. salina genome, we associated each 
cytosine to a given transcript based on its distance to the near-
est transcription start site (TSS). Using the genomation package 
(Akalin et al., 2015), we first calculated TSS coordinates using the 

gene structure file from the de novo transcriptome assembly of the 
RNA-seq preprocessing analyses. We then obtained the distance 
to nearest TSS and associated transcript identity for each cyto-
sine. All cytosines associated to the same transcript were merged 
into a common gene-associated methylation region. We identified 
methylation differences between strains, and between salinities 
for each strain, using the same criterion for these gene-associated 
methylation regions as for DMRs from sliding windows above (i.e., 
FDR <0.05 and |ΔmCG| > 20%). We finally compared the mean ex-
pression fold change associated to hypo- (<−20%) or hyper- (>20%) 
methylated DMRs for a given comparison. We restricted our cor-
relation analysis to genomic regions that were both detected as sig-
nificantly methylated between strains or salinities, and associated 
to transcripts that also showed significant differential expression 
between strains or salinities.

3  |  RESULTS

3.1  |  Genetic differences between strains

RNA-sequencing generated 1.92 × 108 150 bp paired-end raw reads 
from eight samples (Table S1). The genomic range from which vari-
ant calling were processed represented a total of 4.043 × 107 nu-
cleotides. Across these loci, we identified a total of 6201 (0.015%) 
variants among all samples. Among these polymorphic loci, 5500 
loci displayed synonymous substitutions between the strains. This 
represents a moderate synonymous divergence of c. 10−4 per base 
pair between the two strains, consistent with previous observations 
from ITS sequences that led to placing these strains closeby in the 
Dunaliella phylogeny (Assunção et al.,  2012; Emami et al.,  2015). 
Where this has been investigated (in animals), such a level of syn-
onymous divergence is consistent with within- rather than between-
species variation (Roux et al.,  2016), even though this notion 
becomes less clear for highly clonal micro-organisms.

Despite this low divergence, genetic variation was highly struc-
tured between the strains. Across the 6201 variants, 6170 (99.50%) 
displayed only two alleles across all the populations, and we mea-
sured a very low mean genetic diversity for these variants within 
each sample of a given strain (HS  =  0.03, sd  =  0.097 and 0.039, 
sd = 0.102 for CCAP 19/12 and 19/15, respectively, Figures S1–a,b), 
but a very high total genetic diversity across all samples (HT = 0.439, 
sd = 0.313, Figures S1–c), indicating highly structured genetic vari-
ation across strains (Figure 1). Specifically, 5589 (89.97%) variants 
displayed a fixed allele within a given strain, but distinct alleles be-
tween the strains (HS ≤0.1 and GST ≥0.9). While we confirmed the 
genetic differences between the two strains, we also observed that 
samples of the same strain are quite genetically similar (Figure  1 
and Figures S1–d,e). As a consequence, in subsequent analyses we 
used strain identity as a qualitative explanatory factor for genetic 
effects, instead of quantitative values based on genetic distances 
among samples.
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F I G U R E  1  Genetic differences 
between the strains. Genetic distance 
refers to proportion of genetic differences 
among samples, across all 6201 variants 
detected in the transcriptome. Low and 
High refer to salinity and numbers to 
samples
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Genetic distance (proportion of variants that are different)

F I G U R E  2  Population dynamics of two Duniella salina strains under different osmotic stresses. (a) Mean population growth curve in 
three different salinities. For each strain (CCAP 19/12 and CCAP 19/15 in red and black, respectively), mean cell density and standard error 
were calculated for the experiments starting with an initial density of 20,000 cells × ml−1 (circle) for both strains (10 distinct populations for 
each), or 5000 cells × ml−1 (cross) for CCAP 19/15 only (6 populations). Densities of individual populations also appear as smaller and lighter 
symbols. (b) Relationship between the initial and exponential growth rates following different osmotic stresses. Rug plots illustrate the 
distribution of the initial (days 0 to 1) and exponential (days 1 to 4) growth rates on their respective axes
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3.2  |  Strains had markedly different demographic 
responses to osmotic stress

The two strains displayed very different population dynamics in 
response to osmotic stress. On the first day following transfer to 
a new salinity, both strains showed significantly positive growth in 
[NaCl] = 0.8 M and 2.4 M, but significant decline at [NaCl] = 4.0 M 
(Figure 2, GLMs no. 1_19/12 and no. 1_19/15 in Table S2). However, 
this decline in hyperosmotic conditions was much more pro-
nounced for CCAP 19/12 compared to CCAP 19/15, as evidenced 
by the highly significant positive Day:Salinity_4.0  M:Strain_19/15 
term (Table 1, GLM no. 1). While CCAP 19/12 declined by almost 
80% (exp[−1.537] = 0.215 in GLM no. 1_19/12 in Table S2), CCAP 
19/15 declined only by about 35% (exp[−0.435]  =  0.647 in GLM 
no. 1_19/15 in Table S2). Strikingly, both strains then recovered 
from this initial decline at high salinity, and started growing again 
after Day 1, reaching a phase of exponential growth until c. Day 4 
(Figure  2). But in this phase also, the dynamics markedly differed 
between the strains. Notably, CCAP 19/15 grew significantly slower 
than CCAP 19/12 at [NaCl]  =  4.0  M (highly significant negative 
Day:Salinity_4.0 M:Strain_19/15 term in Table 1, GLM no. 2). In fact, 
the exponential growth rate of CCAP 19/12 did not significantly dif-
fer among salinities (GLM no. 2_19/12, Table S2), while that of CCAP 

19/15 was significantly lower in [NaCl] = 2.4 M and 4.0 M as com-
pared to 0.8 M (GLM no. 2_19/15, Table S2). These dynamics led to 
a negative relationship between initial growth rate and later expo-
nential growth rate at high salinity, with the two strains occupying 
different regions along this relationship (rapid decline and growth 
for CCAP 19/12, slow decline and growth for CCAP 19/15), while no 
such pattern was observed at lower salinities (Figure 2b). We further 
showed that the faster growth rate of CCAP 19/12 during the ex-
ponential phase was not explained by released density-dependent 
competition as a result of its drastic initial decline (from GLM no. 
2_19/12 and GLM no. 2_19/15, and GLM no. 3, Table S2), and that 
the dynamics of decline and rebound was not compatible with evolu-
tionary rescue (Bell & Gonzalez, 2009; Gomulkiewicz & Holt, 1995), 
as it also occurred in isogenic populations (Figure S2 and Table S3).

3.3  |  Gene expression responses to 
osmotic stresses

Structural gene annotation resulted in 31,926 putative transcripts 
present across the eight samples. PCA on the total gene expression 
variation revealed that samples first clustered according to the strain 
of origin (first PC axis, 61% of variance, Figure 3a), and then according 

Estimate SE z value Pr(>|z|)

GLM #1: Initial population response (days 0 to 1), starting from same initial density

Intercept (Strain_19/12 at Salinity 
0.8 M and Day 0)

9.925 0.022 458.649 <0.001 ***

Day 0.197 0.072 2.723 0.006 **

Day:Salinity_2.4 M −0.024 0.096 −0.254 0.800

Day:Salinity_4.0 M −1.797 0.096 −18.673 <0.001 ***

Day:Strain_19/15 0.096 0.096 0.994 0.320

Day:Salinity_2.4 M:Strain_19/15 −0.048 0.136 −0.349 0.727

Day:Salinity_4.0 M:Strain_19/15 1.135 0.136 8.340 <0.001 ***

GLM #2: Population growth in exponential phase (days 1 to 4)

Intercept (Strain_19/12 at Salinity 
0.8 M and Day 1)

10.317 0.071 145.898 <0.001 ***

Day 0.541 0.038 14.305 <0.001 ***

Salinity_2.4 M −0.134 0.100 −1.337 0.181

Salinity_4.0 M −1.904 0.100 −19.032 <0.001 ***

Strain_19/15 0.056 0.100 0.565 0.572

Day:Salinity_2.4 M 0.018 0.053 0.340 0.734

Day:Salinity_4.0 M 0.095 0.053 1.784 0.075

Day:Strain_19/15 0.056 0.053 1.043 0.297

Salinity_2.4 M:Strain_19/15 −0.021 0.141 −0.151 0.880

Salinity_4.0 M:Strain_19/15 1.095 0.141 7.741 <0.001 ***

Day:Salinity_2.4 M:Strain_19/15 −0.118 0.076 −1.566 0.117

Day:Salinity_4.0 M:Strain_19/15 −0.411 0.076 −5.436 <0.001 ***

Notes: General linear models (GLMs) with a negative binomial distribution were performed on cells 
count data, where the interaction of time (Day) with salinity or strain estimates effects of the latter 
on population exponential growth (or decline) rates. ** p < .01 and *** p < .001.

TA B L E  1  Strain and salinity effects on 
population growth
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to the salinity treatment (second PC axis, 17% of variance, Figure 3a). 
This result was confirmed by the detection of almost twice as many 
differentially expressed (DE) transcripts between strains (n = 3122, 
Figure 3b,c) as between salinities (n = 1659, Figure 3b,d). In addition, 
both strains also displayed strain-specific DE transcripts between 
salinities (Figure 3b), confirmed by a significant strain × salinity inter-
action (n = 2199, Figure 3e) on gene expression.

The proportions of up- and downregulated transcripts were sim-
ilar for strain CCAP 19/12 and CCAP 19/15 (Figure 3c). For salinity-
specific DE transcripts, we observed slightly more transcripts with 
higher expression in low salinity than in high salinity (Figure 3d). The 
strain × salinity interaction is characterized by greater gene expres-
sion differences between salinities for CCAP 19/15 than for CCAP 
19/12 (Figure  3e). For instance, we detected higher expression at 
low salinity for a group of transcripts, but only for CCAP 19/15 
(Figure 3e, top-left of the heat-map).

3.4  |  DNA methylation variation is structured by 
genomic contexts

WGB-sequencing generated a total of 4.05 × 108 150 bp paired-end 
raw reads from eight samples. Considering D. salina's genome size 
of c. 350 Mbp (Polle et al., 2017), this resulted in an estimated aver-
age depth of coverage of 43.43× (s.d. 3.63×) per sample (Table S1). 
After the data filtering, we performed our methylation analyses 
on an average of 5.19 × 108 (s.d. 1.08 × 108) cytosines per samples, 
and observed that DNA methylation is not randomly distributed 
along the genome (Figure  4a). Cytosine in CpG context displayed 
the highest methylation level, as compared to CHG and CHH con-
texts. Furthermore, the nuclear genome had the most methylated 
cytosine, as compared to the mitochondria and chloroplast genomes 
(Figure 4b). Because the highest and most variable methylation level 
was found at CpG methylation in our data set, and because of their 
suggested role in gene regulation, while non-CpG methylation have 
been described mostly as silencers for transposable elements (Chen 
et al., 2018; de Mendoza et al., 2020; Law & Jacobsen, 2010; Zhang 
et al., 2018), we investigated the genomic DNA methylation patterns 
in response to salinity across the two strains only for cytosines at the 
CpG context.

Redundancy analyses revealed a significant effect of strain 
(R2 = 58.69%; p = .005) on total DNA methylation at the CpG con-
text. However, contrary to gene expression, we did not detect any 
significant marginal effect of salinity (R2 = 6.47%; p = .602) on epi-
genetic state at the genomic level, as also observed on the PCA plot 
(Figure 5a). On a finer scale, considering non-overlapping 100 bp 
windows instead of the overall methylation profile, we detected 
932 DMRs between the two strains, but only 27 DMR between 
salinities when all strains were pooled together, and no significant 
strain × salinity interaction (R2 = 5.83%; p =  .566). Nevertheless, 
we did detect a few strain-specific DMRs between salinities for 
each strain (n  =  40 and 54, for CCAP 19/12 and 19/15, respec-
tively; Figure 5b–e).

3.5  |  Gene expression depends on both the 
genotype and the environment

The genotype, the environment, and the CpG methylation level 
jointly significantly explained an important part of total transcrip-
tomic variation (adjusted R2 = 88.11%; p =  .005; Figure 6a). More 
precisely, the strong correlation between the genotype and DNA 
methylation reported above (R2 = 58.69%; p =  .005) resulted in a 
great confounding effect (R2 = 62.73%), whereby the relative contri-
butions of genotype and epigenetic state on gene expression could 
not be disentangled. Nevertheless, we still detected significant 
marginal effects of both the environment (adjusted R2  =  17.43%; 
p =  .022) and CpG methylation (adjusted R2 = 9.51%; p =  .043) on 
transcriptomic variation (Figure 6a). These results indicated a larger 
role of the genotype on gene expression, but also underlined that 
epigenetic state and the environment are additional sources of vari-
ation in gene expression.

Finally, we assessed whether DNA methylation in cis could influ-
ence gene expression. By grouping cytosines according to the nearest 
TSS, we obtained 3064 methylated regions, among which we detected 
250 DMRs: 223 DMRs between the two strains, and 10 and 21 DMRs 
between salinities for CCAP 19/12 and 19/15, respectively, with four 
common DMRs between strain and salinity comparisons. We ob-
served the same proportion of DE transcripts in the methylated and 
differentially methylated regions (χ2 = 0.420, df = 1, p = .517): among 
the 3058 methylated regions, 419 were associated to DE transcripts, 
while among the 250 DMRs, 30 were associated to significant DE tran-
scripts for the same comparisons (i.e., between strains, or between 
salinities for both strain). Comparison of the relative expression level 
against the relative DNA methylation level revealed that hypomethyl-
ated DMRs (ΔmCG < −20%) were associated to overexpressed tran-
scripts (Log2FC > 0), and conversely, hypermethylated (ΔmCG > 20%) 
DMRS showed a lower transcript expression level (Figure 6b).

4  |  DISCUSSION

We investigated how genetic variation relates to plastic responses at 
multiple biological levels, by comparing DNA methylation patterns, 
gene expression levels, and demographic phenotypes across salini-
ties, in two strains of a halotolerant eukaryote microbe known to 
be predominantly under selection for salinity tolerance in its natural 
habitat (Ben-Amotz et al., 2009; Kirst, 1990; Oren, 2005). Our re-
sults shed light on the role of DNA methylation in the rapid response 
to osmotic shock in Dunaliella salina, and the importance of the gen-
otype in such response.

4.1  |  Variation of reaction norms 
between genotypes

We first showed that the two strains used in our study displayed 
distinct phenotypic response to environmental change, both in 
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term of population dynamics and gene expression level. We ob-
served strain-specific growth rates within the first 24 h following 
an osmotic stress, and later during exponential growth. Specifically, 
strain CCAP 19/12 displayed a greater initial population decline as 
compared to CCAP 19/15 under hyperosmotic stress. This is pos-
sibly caused by a variable intensity of programmed cell death, a 
phenomenon that is widely present in unicellular microalgae, and 
can be triggered by a variety of environmental stresses, includ-
ing an increase in salinity (Bidle, 2016; Durand & Ramsey, 2019; 
Zuppini et al.,  2010). Interestingly, the exponential growth rate 
following initial decline was also strain-specific, rather than only 
resulting from variable competition levels following different ini-
tial declines among strains. Indeed at high salinity, CCAP 19/12 
experienced faster growth than CCAP 19/15, even when the latter 
strain started at low density.

At the cellular level, the response of D. salina to osmotic stress is 
characterized by immediate changes in cell volume and intracellular 
ions, followed by slower changes in gene expression, starting within 

4 to 24 h under the osmotic stress (Chen & Jiang, 2009), and regu-
lating notably glycerol metabolism (Zhao et al., 2013). In this study, 
we detected differentially expressed transcripts between salinities 
24 h after the osmotic stress, confirming gene-expression plasticity 
in response to salinity in D. salina. As we measured a very low within-
strain genetic variation, we are confident that observed phenotypic 
differences among salinities, both in term of population dynamics 
and gene expression, resulted from phenotypic plasticity, rather 
than from selection in a heterogeneous cell population. This conclu-
sion was also confirmed by the observation of the same population 
dynamics in isogenic populations.

We showed that responses to osmotic stress partly involved the 
regulation of strain-specific genes, which thus probably underlie the 
observed strain-specific population dynamics. We were able to suc-
cessfully assign only c. 30% of the total transcripts to at least one 
gene ontology term (Figure S3). This transcript annotation analysis 
revealed that differentially expressed genes are mostly related to 
chloroplast structure and activities (Figure S3), but located in the 

F I G U R E  3  Gene expression response to osmotic stresses of two D. salina strains. (a) Principal component analysis (PCA) of gene 
expression level for two D. salina strains (colour) facing hypo- and hyperosmotic stress (shape). (b) Venn diagram showing the numbers of 
transcript that are significantly differentially expressed (DE; FDR < 0.05 and |Log2FC| > 1) between strains (light grey), salinities for CCAP 
19/12 (red), or for CCAP 19/15 (dark grey). (c–e) Heat-maps of RNA-Seq transcriptome analyses for significant DE transcripts between 
strains (c; n = 3122), exclusively between salinities and common to the two strains (d; n = 284), and for strain × salinity interaction, 
identified by performing likelihood-ratio test (LRT, FDR < 0.05) as implemented in DESeq2 (e; n = 2199). Each row and column represent a 
transcript and a biological replicate, respectively. Relative expression intensities among replicates vary from blue (under-expressed) to red 
(overexpressed), as shown on the right-hand side of the heat-maps. Dendrograms on the top resulted from a hierarchical clustering analysis 
using the Euclidean distance of the relative transcript expression level among replicates
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nuclear genome. Interestingly, this lends support to the hypothesis 
above that the rapid decline followed by rebound that we observed 
under hyperosmotic stress may involve chloroplast-mediated pro-
grammed cell death (PCD), as studies have underlined the potential 
roles of cytochrome f, responsible for oxygenic photosynthesis, and 
thylakoid membrane complexes, in PCD for both plants and unicel-
lular photosynthetic organisms (Ambastha al.,  2015; Bidle,  2016; 
Murik et al., 2014; Thamatrakoln et al., 2013; Zuppini et al., 2009).

Our aim was to better understand how a given phenotype is 
connected to different levels of the genotype–phenotype (GP) 
map, by empirically relating gene expression to the expression of 
a higher phenotype. However, explanatory power in the GP map is 
necessarily limited by the phenotypic level with the lowest dimen-
sionality. Here, we only analysed a few higher-level phenotypes 
chosen for their ecological meaningfulness. Achieving satisfying 
resolution in the GP map would probably require characterizing the 
phenotype more finely, as well as comparing additional genotypes 
and using more environmental contrasts (Chevin et al., 2021). For 
example, quantifying different chloroplast-related phenotypes 
(e.g., reactive oxygen species production, photosystem activity, 

etc.) over a gradient of salinity would help break down correlations 
in the plastic responses, as well as elucidate the sequence of mo-
lecular events associated with chloroplasts influencing the rate of 
cellular death.

4.2  |  DNA methylation patterns and gene silencing 
in Dunaliella salina

The levels and patterns of DNA methylation are known to vary 
drastically among organisms, including within microalgae (Feng 
et al.,  2010; Zemach et al.,  2010), such that characterizing these 
epigenetic traits and their potential roles in gene regulation re-
mains an important goal, especially for organisms with special 
ecological or biological interest. Here, we present the first study 
of whole-genome DNA methylation in D. salina, a model organism 
for salinity tolerance, and a biotechnologically important species 
for carotene production (Ben-Amotz et al., 2009). We found that 
cytosine methylation is nearly absent in both the chloroplast and 
the mitochondrial genomes, and depends on the genomic context 

F I G U R E  4  Methylation level and pattern in Dunaliella salina. (a) Distribution of the methylation level according to cytosine contexts. 
Histogram (grey) and density (red line) plots were calculated for CpG (n = 46,800), CHG (n = 69,039) and CHH (n = 227,531) context. (b) 
Distribution of methylation level for the nuclear (n = 32,409, 58,391 and 173,653 for CpG, CHG and CHH, respectively), mitochondria 
(n = 963, 929 and 4381 for CpG, CHG and CHH, respectively) and chloroplast (n = 13,428, 9719 and 49,497 for CpG, CHG and CHH, 
respectively) genomes, for each cytosine context
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in the nuclear genome. More specifically, we observed the high-
est methylation levels of nuclear cytosines in the CpG context, but 
with a highly bimodal distribution, including many low methylated 
sites. We detected a lower degree of methylation (c. 10%) in the 
CHG context, and quasi-absence of methylation in the CHH con-
text. Interestingly, this general pattern of methylation variation ac-
cording to C contexts is very similar to that observed in Arabidopsis 
thaliana (Cokus et al., 2008; Feng et al., 2010; Zhang et al., 2020), 
but quite different from those in more close related green algae 
such as Chlamydomonas reinhardi or Volvox carteri, which display 
very low methylation levels, or Chlorella variabilis, where genes 
are universally methylated (Feng et al., 2010; Zemach et al., 2010). 
This confirms that the type and extent of DNA methylation varies 
at relatively low phylogenetic scales (Alonso et al., 2019; Bewick 
et al., 2017).

Beyond levels and patterns, the roles of DNA cytosine methyl-
ation in microalgae remains poorly understood, and could be very 
variable. For example, in C. variabilis methylation level in the CpG 

context in promoters was shown to be inversely correlated to gene 
expression, suggesting that promoter-proximal methylation re-
presses transcription (Zemach et al., 2010). At the opposite, only a 
weak negative correlation between promoter methylation and gene 
transcription was observed in V. carteri, while CpG methylation is 
enriched in transposons (Zemach et al., 2010). In C. reinhardtii, cy-
tosine methylation, observed in the chloroplast genome during 
gametogenesis, was suggested to be involved in the uniparental 
inheritance of mating type (Nishiyama et al., 2002, 2004; Sager & 
Grabowy, 1983; Umen & Goodenough, 2001). Here, we could asso-
ciate only few differentially methylated regions with differentially 
expressed transcripts. Nonetheless, we showed a negative correla-
tion between CpG methylation level for TSS-proximal cytosine and 
gene expression, suggesting that DNA methylation at the promot-
ers represses transcription. Methylation at CHG context remained 
however unclear, but could be involved in the silencing of repetitive 
sequences and transposon, as in land plants or C. variabilis (Saze & 
Kakutani, 2011; Kim, Ma, et al., 2015).

F I G U R E  5  DNA methylation response to osmotic stresses of two D. salina strains. (a) Principal component analysis (PCA) of DNA 
methylation level for two D. salina strains (colour) facing hypo- and hyperosmotic stress (shape). (b) Venn diagram showing the numbers of 
differentially methylated regions (DMR; q-value <0.05 and |diff-Methylation| >20%) between strains (light grey), salinities for CCAP 19/12 
(red), or for CCAP 19/15 (dark grey). (c–e) Heat-maps of WGB-Seq analysis for DMRs between strains (c; n = 911), or between salinities for 
CCAP 19/12 (d; n = 40) and CCAP 19/15 (e; n = 54). Each row and column represent a DMRs and a biological replicate, respectively. DNA 
methylation levels vary from blue (unmethylated) to red (methylated), as shown on the right-hand side of the heat-maps. Dendrograms on 
the top resulted from a hierarchical clustering analysis using the Euclidean distance of DNA methylation level among replicates
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4.3  |  Sources of phenotypic variation and plasticity

One of the aims of our study was to assess the role of the genotype 
and non-genetic (environmental and epigenetic) factors on gene ex-
pression, by contrasting two strains with divergent phenotypic re-
sponses to osmotic shocks. While our results are necessarily limited 
by the use of only two strains, they still allowed refining our under-
standing of the role of CpG methylation in gene expression regula-
tion for D. salina. First, we detected a substantial contribution of the 
genotype to both the epigenetic and phenotypic variation. Different 
studies have indeed suggested a genetic control of DNA methylation 
variation (Dubin et al., 2015; Hagmann et al., 2015; Richards, 2006). 
We also observed a negative correlation between levels of DMRs 
and DE transcripts, at least for few loci, suggesting that DNA meth-
ylation at CpG context is an intermediate step between the geno-
type and the gene-expression phenotype.

It has been shown through experimental evolution that reducing 
the amount of epigenetic variation, in terms of DNA methylation and 
histone acetylation, can diminish the plastic responses and reduce 
the rate of adaptation in response to some environmental stresses 
(Kronholm et al., 2017). However, the absence of a significant mar-
ginal effect of salinity or strain × salinity interaction on epigenetic 
state in our study questioned the role of overall methylation profile 
in plasticity. In plants and vertebrates, cytosine methylation respon-
sible for gene expression regulation is mostly organized in specific 
regions, such as CpG islands, frequently in the gene promoters, or 

within coding sequences (Bird, 2002; Deaton & Bird, 2011; Gallusci 
et al., 2016; Jaenisch & Bird, 2003; Law & Jacobsen, 2010; Zilberman 
et al., 2007), while the functional relevance of single CG methyla-
tions remain ambiguous (Denkena et al., 2021). Here, we detected 
strain-specific epigenetic differences between salinities, but only 
when considering 100 bp non-overlapping regions, rather than over-
all methylation profiles. This result highlighted that response to envi-
ronmental changes involve fine-tuning of the expression of specific 
genes, rather than whole-methylome reprogramming. Accordingly, 
to better ascertain the role of epigenetic processes in plasticity, an 
interesting direction for future work would be to investigate meth-
ylation profiles of genes belonging to the same module of coexpres-
sion, which are likely to underlie expression of adaptive phenotypes 
in response to specific environmental changes.

We found that DNA methylation levels vary little across sa-
linity for both strains, and also covary little with gene expression 
in cis. This result could suggest that environmentally induced 
changes in methylation are not involved in regulating gene expres-
sion's rapid responses to new environments. Alternatively, DNA 
methylation may play an important role in variation of gene ex-
pression across salinity, but mediated by cis-regulation at a small 
number of genes, such as transcription factors that cause trans-
regulation of expression of many other genes. This hypothesis is 
supported by the significant marginal environmental effect that 
we detected on gene expression levels, and is also consistent 
with observations in, for example, the easter oyster Crassostrea 

F I G U R E  6  Correlation between gene expression and epigenetic variation. (a) Transcriptomic variation partitioning, showing the 
proportions of the total transcriptomic variation explained by the genotype (strains CCAP 19/12 vs CCAP 19/15), the environment (low 
vs high salinities, controlling for paired samples) and cytosine methylation on CpG context, based on the adjusted R2 of RDA analyses. 
Bold number outside circles refer to total percentage of variation (adjusted R2) explained by the genotype, the environment and CpG 
methylation (top, full model), or by only the genotype, the environment or CpG methylation (reduced models). Percentages inside circles 
indicate pure contributions to gene expression level resulting from partial RDAs that isolate the effect of each single explanatory variable, 
but taking into account others as covariates. Percentages within intersections indicate shared contribution across different variables to gene 
expression variation. ANOVA-like permutation tests were calculated on total and pure contributions. NS, nonsignificant; *p < .05; **p < .01. 
(b) Differential transcript expression against differential DNA methylation. Boxplot showing the level of expression differentiation (Log2 fold 
change) against the difference in methylation level (ΔmCG). Boxplot and mean comparison analysis were performed for only DMRs detected 
as significantly differentially methylated between strains or salinities, and associated to a given transcript that also showed significant 
differential expression between strains or salinities. Differences between strain (n = 27), between salinities for CCAP 19/12 (n = 1), between 
salinities for CCAP 19/15 (n = 2)
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virginica (Johnson et al., 2021; Sirovy et al., 2021). Another pos-
sible explanation for the small detectable contribution of DNA 
methylation to gene expression plasticity in our experiment may 
be that the responses to osmotic stress that we observed may be 
too rapid to be explained by DNA methylation. DNA methyltrans-
ferases establish DNA methylations during cell divisions (Law & 
Jacobsen,  2010), which occur roughly once per day in D. salina 
(Ben-Amotz et al., 2009), so assessing DNA methylation 24 h after 
an osmotic stress as we did here should in theory be sufficient 
to observe epigenetic responses to salinity. However, the cell 
cycle is likely to depend on salinity and the strain, as reflected 
by their demographic dynamics (Figure 2). Other mechanisms of 
gene expression regulation are widespread in microalgae, such as 
post-translational histone modifications, and small-RNA mediated 
pathways (Kim, Ma, et al., 2015), which could also be involved the 
gene expression plasticity we observed in D. salina.

Although we detected that gene expression variation is mostly 
explained by the genotype and CpG methylation, we could not 
disentangle their influences, due to their strong correlation. 
Nevertheless, the significant genotype × environment interac-
tion on gene expression, as well as the strain-specific epigenetic 
responses to environmental conditions, highlight the evolution-
ary potential of plasticity at different levels of the genotype–
phenotype map.

In conclusion, we confirmed that the molecular mechanisms 
contributing to phenotypic plasticity in the halotolerant microalga 
Dunaliella salina involve variation in DNA methylation and gene ex-
pression with the environment, but found relatively weak contribu-
tion of DNA methylation to gene expression. Importantly, the large 
contribution of the genotype to the observed variation at multiple 
levels, including to demographic traits that are direct components 
of absolute fitness (Figure 2), highlights the evolutionary potential of 
phenotypic plasticity at multiple molecular levels. An interesting av-
enue for future research will be to use experimental evolution under 
controlled environmental conditions to investigate the evolution of 
plasticity at different levels, from DNA methylation to gene expres-
sion to higher phenotypes.
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