
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Silke Paust,
The Scripps Research Institute,
United States

REVIEWED BY

Marcus O. Muench,
Vitalant Research Institute,
United States
Thomas Tsutomu Murooka,
University of Manitoba, Canada

*CORRESPONDENCE

Hua-feng Liu
liuhf@gdmu.edu.cn
Qingjun Pan
pqj@gdmu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 23 August 2022

ACCEPTED 07 October 2022
PUBLISHED 19 October 2022

CITATION

Chen J, Liao S, Xiao Z, Pan Q, Wang X,
Shen K, Wang S, Yang L, Guo F, Liu H-f
and Pan Q (2022) The development
and improvement of immunodeficient
mice and humanized immune
system mouse models.
Front. Immunol. 13:1007579.
doi: 10.3389/fimmu.2022.1007579

COPYRIGHT

© 2022 Chen, Liao, Xiao, Pan, Wang,
Shen, Wang, Yang, Guo, Liu and Pan.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 19 October 2022

DOI 10.3389/fimmu.2022.1007579
The development and
improvement of
immunodeficient mice
and humanized immune
system mouse models

Jiaxuan Chen †, Shuzhen Liao †, Zengzhi Xiao, Quanren Pan,
Xi Wang, Kangyuan Shen, Shuting Wang, Lawei Yang,
Fengbiao Guo, Hua-feng Liu* and Qingjun Pan*

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable
Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
Animal models play an indispensable role in the study of human diseases.

However, animal models of different diseases do not fully mimic the complex

internal environment of humans. Immunodeficient mice are deficient in certain

genes and do not express these or show reduced expression in some of their

cells, facilitating the establishment of humanized mice and simulation of the

human environment in vivo. Here, we summarize the developments in

immunodeficient mice, from the initial nude mice lacking T lymphocytes to

NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe

ex is t ing humanized immune system mouse models based on

immunodeficient mice in which human cells or tissues have been

transplanted to establish a human immune system, including humanized-

peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic

stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT)

mouse models. The different methods for their development involve varying

levels of complexity and humanization. Humanized mice are widely used in the

study of various diseases to provide a transitional stage for clinical research.

However, several challenges persist, including improving the efficiency of

reconstructing the human B cell immune response, extending lifespan,

improving the survival rate of mice to extend the observation period, and

improving the development of standardized commercialized models and as

well as their use. Overall, there are many opportunities and challenges in the

development of humanized immune systemmouse models which can provide

novel strategies for understanding the mechanisms and treatments of

human disease.

KEYWORDS
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Immunodeficient mice

The development of immunodeficient mice occurred in four

main stages. The first stage included nude mice that are simply

deficient in T lymphocytes owing to abnormal thymus

development (1). However, the application of nude mice in

many diseases remains limited because of their low relative

degree of immunodeficiency. The second stage included mice

with severe combined immunodeficiency (SCID), carrying a

mutation of the Prkdc gene (2, 3). SCID mice are deficient in

T and B lymphocytes, but retain natural killer (NK) cells and

show “leakage” (4). The SCID mutation was then introduced

into non-obese diabetic (NOD) mice with NK cell defects to

obtain NOD/SCID mice (5), forming the third stage of

immunodeficient mice. However, these mice exhibit a high

frequency of spontaneous thymic lymphoma and short life

cycles, as well as partial NK cell activity. Therefore, their

application as a humanized animal model has remained

limited (5). To improve this situation, the fourth stage of

immunodeficient mice, NOD/SCID rgnull mice, was developed

by knocking out the IL-2 receptor gamma chain (IL-2 rg); these

knock-out mice had a higher rate of human-cell implantation

without leakage or spontaneous thymomas, and are currently the

gold standard immunodeficient mouse model (6). The

characteristics of different immunodeficient mice are

summarized in Figure 1.
Nude mice

Nude mice are the earliest immunodeficient mouse model,

first reported by Flanagan in 1966 (1). Owing to an allele

mutation on chromosome 11, a resultant defect in the Foxn1

gene prevents normal thymus development (7), thereby leading

to a mature T lymphocyte deficiency. The main immunoglobulin

in these mice is IgM (8), with little or no IgA. As such, they do

not show a rejection reaction to allogeneic tissue (9). The

commonly used strains include BALB/c-nu, Swiss-nu, NC-nu,

and NIH-nu, all of which are widely used in the study of immune

diseases and tumors (10). However, as they still retain B cells and

NK cells, they cannot completely accept human immune cell

engraftment, and so cannot be used as an ideal humanized

mouse model (11).
SCID mice

In 1983, researchers found CB-17 inbred mice that carried a

recessive mutation of a single gene on chromosome 16, which

led to the abnormal recombination enzyme activity of the

sequence encoding the mouse lymphocyte antigen receptor

gene VDJ, due to which immunoglobulin, T, and B
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lymphocyte receptors could not be synthesized effectively (3).

This mutation obstructs the repair and recombination of T and

B cell receptors and seriously affects the differentiation and

maturation of these cells, resulting in the lack of mature T and

B cells and low immunoglobulin levels in the peripheral blood or

lymphoid organs of SCID mice (2). However, the NK cells and

macrophages in SCID mice function normally (12, 13).

Furthermore, “leakage” was observed (4, 14, 15), meaning that

2 to 23 percent of the mice showed recovery of T and B

lymphocytes with increasing age (16). As SCID mice are

highly sensitive to radiation, Ragnull mice were generated by

the knockout of recombinant activated genes Rag1 (15) or Rag2

(17) to reduce their radiosensitivity. Rag1 and Rag2 induce V(D)

J rearrangement of TCR and immunoglobulin genes by

producing DNA double-strand breaks. Homozygous mutations

in these genes result in the inability to produce mature T and B

cells and produce the same SCID-like phenotype (18). Similar to

the SCID mutation, mice with the Rag mutations lack mature T

and B lymphocytes. Contrastingly, this mutation does not repair

spontaneously. Nevertheless, these mice also allow limited

human cell and tissue engraftment because of highly active

NK cells (19–21).
NOD/SCID mice

In 1980, researchers obtained nonobese diabetic (NOD)

mice via inbreeding and selective breeding, with pathological

characteristics and changes similar to those in human diabetes

(22). NOD mice have defects in their innate immune system,

with low NK cells and macrophage activity, and an absence of

circulating complement. Introducing the SCID mutation into

the genetic background of NOD mice was hypothesized to result

in NOD/SCID mice with simultaneously defective adaptive and

innate immunity (23). Indeed, researchers successfully

introduced the SCID mutation into NOD mice in 1995. The

resulting NOD/SCID mice showed functional loss of T and B

lymphocytes and other immune cells, as well as defective NK cell

function, resulting in a higher degree of immune deficiency than

in the previously noted mouse models (5). Human B cell

reconstruction in nude mice and SCID mice was poor. In one

study, NOD/SCID mice injected with 1×105 human CD34+ cells

showed that humanized B cells from different organs showed

different stages of maturation, with immature IgM-IgD- CD24hi

CD38hi B cells predominating in the bone marrow and mature

CD5+ IgM+ IgD+ CD24int CD38int CD19+ B cells predominating

in the spleen and peripheral blood.

Compared with SCID mice, human tumors and immune

cells had better survival status in NOD/SCID mice (23). The

NOD/SCID mice had the following characteristics (1): low NK

cell levels, with significantly reduced killing function; (2)

complement C5 deficiency, resulting in inhibition of
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complement activation;(3) defective IL-1 secretion in

lipopolysaccharide-induced macrophages. These characteristics

enabled the generation and survival of human cells and grafts in

NOD/SCID mice at higher levels. However, this model remained

unsuitable, owing to certain defects, including radiosensitivity,

which only allows a small radiation dose. T and B cell leakage

also occurred in older mice, and their average life span was only

8 months. Furthermore, the NOD gene mutation in NOD/SCID

mice increased the probability of spontaneous thymic

lymphoma, resulting in a short life cycle of such mice along

with partial NK cell activity, limiting its application as a

humanized animal model (5).

NOD/SCID mice are not as commonly used to generate

humanized mice because they require a higher dose of HSCs for

efficient engraftment, compared with more deficient mouse

strains like NOD/SCID rgnull mice and they developed thymic

lymphomas shortening their lifespan. Despite these

disadvantages, the model is still in use because of its unique

characteristics. For example, it has been shown that NOD/SCID

mice better support the development of human gut-associated

lymphoid tissue (GALT) structures due to the presence of the

common gamma chain. Therefore, when more robust human

GALT structures are needed, NOD/SCID BLT mice may be

preferred (24). One study also showed enhanced human cell

reconstitution in the GALT of BLT mice. This study, using HIV

infection of humanized mice (BLT) as a model of heterosexual

transmission, demonstrated that blocking lymphocyte egress
Frontiers in Immunology 03
from lymph nodes prevented viremia and infection of the gut

(25).In addition, NOD/SCID mice transplanted with HSCs are

specifically used to generate mice that possess human myeloid

and B cells but are devoid of human T cells following the

transplant to study certain aspects of EBV and HIV infection

(26, 27).
NOD/SCID rgnull mice

The IL-2 receptor gamma chain, also known as the common

cytokine receptor gamma chain, is a key component of high-

affinity receptors for cytokines such as IL-2, IL-4, IL-7, IL-9, IL-

15, and IL-21. The development and maturation of T and B

lymphocytes and NK cells require the participation of some of

these cytokines. The loss of the IL-2 receptor gamma chain

hinders the development of T and B lymphocytes as well as NK

cells and severely weakens the innate and adaptive immune

systems of mice (28). When IL-2 rgnull was combined with SCID,

Rag1null, or Rag2null mutations, the resulting NOD/Shi-SCID IL-

2null (NOG) (29), NOD/LtSz-SCID IL-2null (NSG) (30), and

NOD-Rag1null IL-2 rgnull (NRG) (31) mice were deficient in T

and B lymphocytes as well as NK cells (13). These mice

completely lost the ability to mount an adaptive immune

response and showed serious defects in the innate immune

system; which are the main requirements for immunodeficient

mice for the construction of humanized mouse models (6).
A

B D

C

FIGURE 1

Characteristics of different immunodeficient mice. (A) Nude mice lack T cells due to Foxn1 mutation. (B) SCID mice lack T and B cells due to
Prkdc mutation. (C) NOD mice combined with SCID mice produce NOD/SCID mice, which lack T and B cells and have reduced phagocytic
activity of macrophages, the cell-killing activity of NK cells, and complement activity. (D) NOD/SCID rgnull mice lack T, B, and NK cells and have
reduced phagocytic activity of macrophages and complement activity, defective dendritic cell maturation and function, and reduced incidence
of lymphoma due to the loss of the IL-2 receptor g chain.
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NOD/SCID rgnull mice can be divided into NOG and NSG

mice according to the mutation of the IL-2 receptor gamma

chain. The major difference between the NSG and NOG strains

is that the IL-2 rg targeted mutation used to develop the NSG

strain is a complete null so that no IL-2 rg is expressed,

effectively hindering cytokine binding, whereas the IL-2 rg

mutation in the NOG strain produces a protein that is

expressed and will bind cytokines but cannot transduce the

signal (32). NOG and NSG mice were found to be the best

models for human cell and tissue transplantation, with a higher

transplantation success rate than either SCID or NOD/SCID

mice (33, 34). Another important advantage of NOG and NSG

mice is the absence of leakage and spontaneous thymomas,

which may also be related to the lack of active IL-2 rg.

Moreover, several immunodeficient mouse strains, such as

NSGB2m and NSG-SGM3, have been derived by gene

modification based on NSG mice. These mice are more

advantageous in xenotransplantation (35, 36). One study

comparing the implantation rate of human cells in the

peripheral tissues of NSG mice with that in NOD/SCID mice

showed a significantly higher implantation rate of human cells in

NSG and NOG mice than in NOD/SCID mice. In addition, the

implantation rate of human cells in the bone marrow of NSG

mice was higher than that in the other strains, especially in

females (37). Therefore, NSG mice are good candidates for

generating humanized immune system mouse models.

Another study examined the recovery of the immune system

in humanized mice after the transplantation of human

hematopoietic stem cells in NSG mice. The results showed

that T, B cells, monocytes, macrophages, and neutrophils were

developed to normal human levels in these mice. Moreover, the

phagocytic ability of monocytes and macrophages, and the

secretion ability of inflammatory factors under TLR4

stimulation also developed to normal human levels (38).

Signal regulatory protein a (SIRPa) is a transmembrane

protein that contains three Ig-like domains within the

extracellular region. SIRPa is expressed in macrophages,

myeloid cells, and neurons, and interacts with its ligand CD47

via respective IgV-like domains, where the NOD strain has

specific polymorphism. CD47 is a member of the

immunoglobulin (Ig) superfamily that is ubiquitously

expressed in hematopoietic as well as non-hematopoietic cells.

The cytoplasmic region of SIRPa has immunoreceptor tyrosine-

based inhibitory motifs (ITIMs), and the cell surface binding of

CD47 with SIRPa on macrophages provokes inhibitory signals

via phosphorylation of ITIM of SIRPa (39), preventing their

phagocytic activity (40–42). A recent study showed that

transgenic expression of mouse CD47 into the CD34+CD38-

human fetal liver cells significantly enhanced the human cell

engraftment into BALB-RG mice (43). Based on these results, it

is assumed that the binding of NOD-SIRPa with human CD47

produces signals for mouse macrophages not to engulf human

HSCs, presumably making the strain permissive for human HSC
Frontiers in Immunology 04
engraftment (44). The important question was whether the

NOD-specific highly efficient human cell engraftment in vivo

could be explained solely by the NOD-SIRPa polymorphism. In

one study, Yamauchi et al. established a C57BL/6-Rag2nullIL-

2rgnull (C57BL/6-RG) line harboring the NOD-type SIRPa. The
results clearly show that the replacement of the C57BL/6-type

SIRPa with the NOD-type SIRPa is sufficient for the C57BL/6-

RG strain to be endowed with the xenotransplantation capability

at least equal to NOD-RG mice. Thus, they successfully

segregated the genetic abnormality responsible for efficient

human cell engraftment from multiple genetic abnormalities

in the NOD strain (45). The simplified humanized mouse system

established by the new C57BL/6-Rag2nullIL-2rgnullNOD-SIRPa
(BRGS) s t ra in should be very use fu l to improve

xenotransplantation strategies in studies on human cell

biology. In one study, Di Santo et al. induced the expression of

thymic-stromal-cell-derived lymphopoietin (TSLP) in a BALB/c

Rag2-/-IL-2rg-/-SIRPaNOD (BRGS) human immune system

(HIS) mouse model. The resulting BRGST HIS mice developed

a full array of LNs with compartmentalized human B and T cells.

Compared with BRGS HIS mice, BRGST HIS mice have a larger

thymus, more mature B cells, and abundant IL-21-producing

follicular helper T (TFH) cells, and show enhanced antigen-

specific responses. Peripheral human B cells in HIS mice retain

an immature, transitional phenotype with elevated expression of

CD24 and CD38. In BRGS and BRGST HIS mice, they observed

this predominant population of CD24hiCD38hi immature B cells

in the bone marrow, liver, and spleen. In contrast, mature

CD24loCD38lo cells were the dominant human B cell subset in

LNs of BRGST mice. Although they did not observe notable

differences in these different B cell subsets between the two

models, the total numbers of mature CD24loCD38lo B cells in

LNs were significantly increased in BRGST HIS mice compared

with those in BRGS mice (46).

Humanized mouse models constructed by engrafting

peripheral blood mononuclear cells have mainly revealed the

presence of human T cells (47, 48). However, in stem cell

transplant models, B-cell reconstitution is efficient with T-cell

engraftment lagging (49). Although both HSC-infused newborn

and adult mice were highly reconstituted with human B cells, the

development of B cells was arrested in an early stage and did not

suffice for reconstitution of human immunoglobulins (natural

antibodies) in serum, other than IgM (50). Impairment of human

T and B cell function inHSC reconstituted IL-2 rgnull genetic stocks

has been attributed to the lack of expression of human leukocyte

antigens (HLA) in the mouse thymus since HLA molecules are

required for the development of human T cells that in turn, are

essential for stimulation of B cells towards immunoglobulin class

switching and antibody secretion (51, 52). In one study, Danner

et al. generated NOD.Rag1KO.IL2RgcKO mice expressing HLA-

DR4 molecules under the I-Ed promoter infused as adults with

HLA-DR-matched human hematopoietic stem cells generating a

new strain of NOD.Rag1KO.IL2RgcKO mice expressing HLA-
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DR*0401 molecules (DRAG mice). The presence of these HLA-

DR4-IE transgenes allows irradiated DRAG mice to be engrafted

with HLA-DR-matched hematopoietic stem cells; resulting in

humanized T-cell and B-cell populations. The HLA-DR4

expressing mice reconstituted serum levels (natural antibodies) of

human IgM, IgG (all four subclasses), IgA, and IgE comparable to

humans, and elicited high titers of specific human IgG antibodies

upon tetanus toxoid vaccination (53). In another study, Ito et al.

generated transgenic mice with HLA-DRA-IEa and HLA-

DRB1*0401-IEb chimeric genes. The HLA-DRA-IEa/HLA-

DRB1*0401-IEb molecules rescued the development of CD4+ T

cells in major histocompatibility complex (MHC) class II-deficient

mice, but T cells expressing Vb5, Vb11, and Vb12 were specifically
deleted (54).

These various types of mice are suitable for constructing

various humanized mouse models for studying tumors,

hematological diseases, infectious diseases, immune diseases,

and metabolic diseases (29).
Development of humanized immune
system mice

Humanized immune system mice can be divided into three

groups according to the method used for immune system

reconstruction: humanized-peripheral blood mononuclear cells

(Hu-PBMCs) or humanized-peripheral blood lymphocytes (Hu-

PBLs), humanized hematopoietic stem cells (Hu-HSCs) and

humanized bone marrow, liver, thymus (Hu-BLT) mouse

models. The different construction methods and characteristics

of humanized mice are shown in Figure 2 and Table 1.
Hu-PBMCs/PBLs mouse model

In this model, human peripheral blood mononuclear cells

(PBMCs) or peripheral blood lymphocytes (PBLs) are

transplanted into mice via a caudal vein or peritoneal injection

(48, 55, 56). In general, 50–80% of human CD45+ cells can be

detected in the blood and spleen of mice. Human CD3+ T cells

are usually detected in the first week after transplantation,

forming an ideal model for studying mature effector T cells

(57). Small numbers of B cells, myeloid cells, and other immune

cells are also detected in these mice (57, 58). In this model,

human memory B cells can produce antibodies after antigen

stimulation, but cannot produce a primary immune response.

Human immune cells can survive for several weeks after

transplantation and are effective to some extent. They can be

efficiently infected with HIV, HBV, EBV, HSV, HCMV, KSHV,

etc., and play an important role in allogeneic immune response

and viral immunity studies (59–65). In the early stage of

establishing the humanized mouse model, human peripheral
Frontiers in Immunology 05
blood mononuclear cells or peripheral blood lymphocytes were

injected into nude mice. Since nude mice are only deficient in T

lymphocytes, they cannot completely accept human PBMCs or

PBLs, resulting in immune rejection (2). In later work, PBLs

were directly transplanted into SCID mice to construct a

humanized PBLs-SCID mouse model. In this model, a multi-

lineage humanized immune system can be obtained, and long-

term reconstruction can be maintained. However, the main

problem with this model is the fatal graft-versus-host disease

(GVHD) caused by the MHC mismatch between human T cells

and mouse immune cells (35, 66). GVHD symptoms usually

appear 4–6 weeks after injection of human PBMCs, with a short

observation window of limited use (58, 67). However, this

window can be prolonged and ameliorated by using NSG

(NOD/SCID IL-2Rg C-/-) or RG (BALB/C Rag2-/- IL-2R g C-/-)

mice with deletion of the MHC-I or II genes (68). The Hu-PBLs

model is the simplest and most economical humanized mouse

model because of the easy availability of human PBLs. However,

it also has several shortcomings, such as the low and unstable

level of human lymphocyte reconstruction, lack of a normal

lymphoid tissue structure and a follicular germinal structure in

the spleen, EBV-associated lymphoproliferative disease after

massive injection of human cells, and xenograft rejection.
Hu-HSCs mouse model

In this model, the immunodeficient mice were irradiated

with a sublethal dose to destroy the hematopoietic function of

the autologous bone marrow in mice; human CD34+

hematopoietic stem cells (HSCs) were then transplanted into

these immunodeficient mice through the vein or femoral artery

(HSCs via intrahepatic injection as pups and via tail vein

injection as adults) (69–71). Human HSCs in mice (such as

NOG, NSG, etc.) developed into T cells, B cells, and NK cells,

and formed bone marrow sources of inhibitory myeloid-derived

suppressor cells (MDSCs), and other immune cells (72). The

number of human CD45+ T cells usually reaches 25–60% in

peripheral blood at 4 weeks after implantation (72). As these

immune cells develop from transplanted HSCs and are tolerant

to the mouse host, GVHD usually does not occur. The stable

period can be as long as 10–12 weeks (73), allowing the study of

HIV (74), EBV (75), other infection models, and hematopoietic

system development. HSCs can be obtained from bone marrow,

umbilical cord blood, or peripheral blood after mobilization

using granulocyte colony-stimulating factor (G-CSF) (76). In the

early stage of developing this model, human CD34+

hematopoietic stem cells were transplanted into NOD/SCID

mice, which could reconstruct lymphocyte proliferation, but

the resulting T cells were dysplastic. NSG, RG, or NOG

(NOD/Shi-SCID IL-2Rg C-/-) mice now allow better

implantation of human cells (77, 78).
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Hu-BLT mouse model

The precursor of this model was the SCID-hu mouse model,

which involved surgical implantation with a human fetal thymus

and liver under the renal capsule of SCID mice (79, 80).

However, this model had obvious shortcomings, such as a low

level of human cell reconstruction, unstable development of

human T cells, and short survival time (81). Human fetal thymus
Frontiers in Immunology 06
was also transplanted into SCID-hu mice; and although human

T cells developed in the thymus, the level of humanized

development was low and unstable. However, when human

HSCs were transferred into the hu-HSCs mouse model, a large

number of B cells and myeloid cells were generated, but human

T cells were completely lacking. In one study, the advantages of

SCID-hu mice and Hu-HSCs mice were combined. Human fetal

thymus and fetal liver tissue blocks were transplanted from
A

B

C

FIGURE 2

Different construction methods of humanized mice. (A) Injection of human peripheral blood mononuclear cells or lymphocytes. (B) Injection of
human CD34+ hematopoietic stem cells. (C) Co-transplantation of human fetal thymus and fetal liver into the renal capsule of mice, involving
injection of hematopoietic stem cells from the fetal liver or bone marrow of the same individual into mice.
TABLE 1 Different construction methods and characteristics of humanized mice.

Models Construction methods Advantages Disadvantages

Hu-
PBMCs/
PBLs

Injection of human peripheral blood mononuclear cells or lymphocytes 1 Sample is easy to obtain and the
transplantation method is simple
2 Efficient and stable transplantation of T
cells

1 Lack of B, NK, and other
immune cells
2 Possible induction of GVHD
3 The massive injection of
human cells results in EBV-
associated lymphoproliferative
disease

Hu-
HSCs

Injection of human CD34+ hematopoietic stem cells 1 Multiple line of hematopoietic cell
development, including T, B, myeloid, and
NK cells
2 Less GVHD

1 Limited sample sources
2 Lack of T cells (NOD/SCID
mice)

Hu-BLT Co-transplantation of human fetal thymus and fetal liver into the renal
capsule of mice, involving injection of hematopoietic stem cells from the
fetal liver or bone marrow of the same individual into mice

1 Better T, B, myeloid, and NK cell
development
2 Can produce the human mucosal immune
system and secondary lymphoid tissue and
mount an adaptive immune response
3 Human T cells are educated on human
MHC (HLA-restricted) in the human thymic
organoid

1 Limited sample sources
2 Possible induction of GVHD
Hu-PBMCs/PBLs, humanized-peripheral blood mononuclear cells/peripheral blood lymphocytes; Hu-HSCs, humanized hematopoietic stem cells; Hu-BLT, humanized bone marrow, liver,
thymus; GVHD, graft-versus-host disease.
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NOD/SCIDmice irradiated with a sublethal dose under the renal

capsule, and CD34+ HSCs were isolated from the homologous

fetal liver by tail vein injection to construct Hu-BLT mice (82).

The major difference between the BLT and the SCID-hu mouse

model is the additional reconstruction of hematopoietic stem

cells from the same fetal liver in the BLT model. The complete

range of T cells, B cells, NK cells, DCs, monocytes, macrophages,

and other human immune cells can be found in Hu-BLT mice in

vivo. Furthermore, they can produce a human adaptive immune

response, thereby constituting the most effective mouse model of

human immune system reconstruction (83).

The Hu-BLT mouse model (NOD/SCID mice) also shows a

humanmucosal immune system, and secondary lymphoid tissue,

and mounts adaptive human immune responses, such as the

production of IgM, IgG, and other immunoglobulins. Therefore,

the immune response of humanized BLT mice to implanted

exogenous tissues or cells is more similar to the natural

response of the human body. NOD/SCID mice were used in the

early BLTmodel, whereas NSG, NOG, or RGmice are used in the

improved model (82, 84). The use of human grafts can result in

the production of more T cells, B cells, macrophages, NK cells,

and DCs. In one study, the generation of humanized BLTmice by

the co-transplantation of human fetal thymus and liver tissues

and CD34+ fetal liver cells into NOD/SCID rgnull mice allows for

the long-term reconstitution of a functional human immune

system, with human T cells, B cells, dendritic cells, and

monocytes/macrophages repopulating mouse tissues (85). As T

cells in human thymus tissue have a high affinity for the MHC of

mice, the Hu-BLTmodel may exhibit a graft-versus-host reaction

after 20 weeks of implantation. Humanized mice constructed in

the TKO-BLT model, (Rag2, IL-2YC, and CD47 triple gene

knockout) did not develop GVHD at 45 weeks, and showed a

better effect than the existing BLT mouse model (86).

BLT humanizedmice are nowwidely used for studying tumors,

immunology, infectious diseases, regenerative medicine, stem cell

therapy, and other research areas (87–89). BLT mice have made a

lot of contributions to the study of HIV infection. Using HIV

vaginal infection of humanized mice as a model of heterosexual

transmission, Deruaz et al. demonstrate that blocking the ability of

leukocytes to respond to chemoattractants prevented HIV from

leaving the female genital tract (25). In one interesting study,

intravital microscopy was used to observe changes in humanized

mice after the intervention. Usmani et al. show by intravital

microscopy in humanized mice that perturbation of the actin

cytoskeleton via the lentiviral protein Nef, and not changes to

chemokine receptor expression or function, is the dominant cause

of dysregulated infected T cell motility in lymphoid tissue by

preventing stable cellular polarization required for fast migration

(90). Smith et al. have developed a method to quickly propagate

established BLT mice by the secondary transfer of bone marrow

cells and human thymus implants from BLT mice into NSG

recipient mice. In this way, they were able to expand one primary

BLT mouse into a colony of 4–5 propagated BLT mice in 6–8
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weeks. These propagated BLT mice reconstituted human immune

cells, includingT cells, at levels comparable to those of their primary

BLT donor mouse. They also faithfully inherited the human

immune cell genetic traits from their donor BLT mouse, such as

the HLA-A2 haplotype that is of special interest for studying HLA-

A2-restricted human T cell immunotherapies. This method

provides an opportunity to overcome a critical hurdle to utilizing

the BLT humanizedmouse model and enables itsmore widespread

use as a valuable preclinical research tool (91).Vatakis et al. used the

BLT humanized mouse as a stem cell-based gene therapy tumor

model. They use geneticallymodified humanHSCs to construct the

thymus/liver implant followed by injection of transduced

autologous human HSCs. This approach results in the generation

of genetically modified lineages. After the intervention, the

regression of the tumor was observed by positron emission

tomography (PET) (92). In conclusion, the BLT mouse model

has many advantages in human disease research, but its complex

construction process needs to be further optimized.
The improvement of humanized
immune system mouse models

The humanized mouse models can be further improved by

irradiation or chemical pre-treatment, deletion of mouse

autoimmune cells, injection of human cytokines, construction

of viral vectors, high-pressure injection of gene expression

plasmids, and construction of genetically engineered mice. The

methods for improving humanized immune system mouse

models are summarized in Table 2.
Irradiation or chemical pretreatment

Immunodeficient mice could be irradiated or pretreated with

chemical reagents to provide more “space” for humanized

construction. One study compared the efficiency of

transplantation and found that human immune cells could

survive better in NOD/SCID mice when 2–3 Gy pre-radiation

was performed before injection of human HSCs (93).

Furthermore, a single dose (35 mg/kg) of Busilvex can achieve

the same transplantation effect as 3.5 Gy irradiation (66).

Therefore, these pretreatments may result in increased

concentrations of growth factors and chemoattractants and

reserve a certain amount of space for the development of

human HSCs and immune cells in immunodeficient mice.
Depletion of auto-immune cells in mice

The innate immunity of immunodeficient mice limits the

regeneration of human immune cells. Mouse NK cells can be

depleted by using CD122 or IL-2R antibodies (94). Another
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approach to deplete NK activity is the use of anti-asialo GM1

antibody injection before HSC transfer (29). Liposome-

encapsulated dichloroethylene diphosphonate (Cl2MDP) can

deplete mouse macrophages and facilitate better reconstruction of

the human immune system (94, 109). Therefore, when a particular

cell type needs to be focused, specific elimination of antibodies may

be a good choice.
Injection of human cytokines

With the development of immunodeficient mice and the

improvement of reconstitution levels, the role of cytokines has

attracted wide attention. In one study, a significant increase in

neutrophils, monocytes, and DCs was obtained by injecting

human G-CSF into NOG mice (38). Injection of human IL-7

into NOG mouse models was found to promote multi-lineage

cell differentiation, achieving a reconstruction effect equivalent

to that obtained with umbilical cord blood stem cells (95). In

NOD/SCID mice injected with human SCF, IL-3, GMCSF, and

TPO for two weeks, the development and differentiation of

lymphocytes and myeloid cells were significantly improved

(96). Furthermore, in NOD/SCID mice injected with human

FLT3L, the number and function of DCs were significantly

increased after four weeks (97). In summary, cytokines can

greatly promote the construction of humanized mice. Further

studies should focus on finding more suitable cytokines for the

construction of humanized mice.
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Construction of viral vectors

With advances in molecular biology, viral vectors have

become a common tool, which can transfer the required genetic

material into cells, to achieve the effect of foreign gene expression.

In one study, injection of human IL-15 or overexpression of

human IL-15 using adenoviral vectors was found to promote NK

cell development and maturation (98). Lentiviral vectors carrying

the human IL-7 gene have been used to overexpress human IL-7

in Rag2-/- g C-/- mice; the serum level of human IL-7 was

maintained at a high level during the observation period of up

to six months in these mice. Il-7 overexpression significantly

increased the proportion of T and B cells in peripheral blood, but

had little effect on the overall immune reconstitution and did not

affect the differentiation of T cell subsets (99).
Injection of gene expression plasmids

The high-pressure injection is a common technique for gene

overexpression in vivo. A study on humanized mice generated

via high-pressure injection of IL-15 and Flt3l expression vector

found that the reconstruction of NK cells was significantly

increased. Furthermore, these NK cells showed normal

expression of activated receptors and inhibitory receptors,

which could be induced to cause liver damage and could kill

target cells in vitro, demonstrating that the reconstructed NK

cells were functional (100).
TABLE 2 Improvement of humanized immune system mouse models.

Treatment Results Reference

Irradiation and chemical reagents Busilvex (35 mg/kg) ! Mouse immune system ↓
Irradiation (2–3 Gy) ! Mouse immune system ↓

(66)
(93)

Knock out of mouse autoimmune
cells

Anti-asialo GM1 antibody ! Mouse NK cells ↓
CD122 antibody ! Mouse NK cells ↓
IL-2R antibody ! Mouse NK cells ↓
Cl2MDP ! Mouse macrophages ↓

(29)
(94)
(94)
(94)

Injection of human cytokines Human G-CSF ! Human dendritic cells, monocytes, and neutrophils ↑
Human IL-7 ! Multi-lineage human cell differentiation
Human SCF, IL-3, GMCSF, TPO ! Human myeloid cells and lymphocytes ↑
Human FLT3L ! Human dendritic cells ↑

(38)
(95)
(96)
(97)

Construction of viral vectors Adenoviral vectors overexpress human IL-15 ! Human NK cells ↑
Lentiviral vectors overexpress human IL-7 ! Human T cells and B cells ↑

(98)
(99)

Injection of gene expression plasmids Human IL-15 and Flt3l gene expression plasmid ! Human NK cells ↑ (100)

Genetic engineering Human M-CSF gene knock-in ! Human monocytes and macrophages ↑
Human M-CSF, IL-3, GM-CSF, TPO gene knock-in !Humanized myeloid and NK cells ↑
Human SIRPaand TPO gene knock-in ! Human hematopoietic engraftment levels ↑
Human TPO gene knock-in ! Multi-lineage human immune cells and platelets ↑
Human SIRPa gene knock-in ! Phagocytosis of macrophages ↓
Human SCF, GM-CSF, and IL-3 gene knock-in ! Human myeloid cells ↑
Human SF, IL-3, and GM-CSF gene knock-in ! Humanized myeloid cells ↑
Human SCF and KITL gene knock-in ! Humanized myeloid cells ↑
Human M-CSF, IL-3, GM-CSF, TPO, SIRPa gene knock-in ! Human myeloid and NK cells ↑
Human M-CSF, IL-3, SIRPa, TPO, GM-CSF, and IL-6 gene knock-in !More susceptible to SARS-CoV-2
infection

(41)
(101)
(102)
(103)
(104)
(105)
(106)
(106)
(107)
(108)
fro
“↑/↓” in humanized immune system mouse models represent an increase or decrease respectively compared with non-intervention control.
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Genetic engineering

Mouse models genetically engineered from immunodeficient

mice are more stable. Mice repopulated with human

hematopoietic cells are a powerful tool for the study of human

T and B cells in vivo. However, existing humanizedmousemodels

are unable to support the development of human innate immune

cells, including myeloid cells and NK cells. In one study,

Rongvaux et al. describe a mouse strain, called MI(S)TRG, in

which human versions of four genes (human M-CSF, IL-3, GM-

CSF, and TPO) encoding cytokines important for innate immune

cell development are knocked into their respective mouse loci.

The human cytokines support the development and function of

monocytes/macrophages and natural killer cells derived from

human fetal liver or adult CD34+ progenitor cells injected into

the mice. Human macrophages infiltrated a human tumor

xenograft in MI(S)TRG mice in a manner resembling that

observed in tumors obtained from human patients (101).

Human CD34+ hematopoietic stem and progenitor cells

(HSPCs) can reconstitute a human hemato-lymphoid system

when transplanted into immunodeficient mice. Although fetal

liver-derived and cord blood-derived CD34+ cells lead to high

engraftment levels, engraftment of mobilized, adult donor-derived

CD34+ cells has remained poor. Saito et al. generated so-called

MSTRG and MISTRG humanized mice on a Rag2-/-IL-2rg-/-

background carrying a transgene for human SIRPa and human

homologs of the cytokine macrophage colony-stimulating factor,

TPO, with or without IL-3 and granulocyte-macrophage colony-

stimulating factor under murine promoters. They transplanted

mobilized peripheral blood (PB) CD34+ cells in sublethally

irradiated newborn and adult recipients. Human hematopoietic

engraftment levels were significantly higher in bone marrow (BM),

spleen, and PB in newborn transplanted MSTRG/MISTRG

recipients as compared with non-obese diabetic/severe combined

immunodeficient IL-2rg-/- or human SIRPa-transgenic Rag2-/- IL-
2rg-/- recipients. Furthermore, newborn transplanted MSTRG/

MISTRG mice supported higher engraftment levels of human

phenotypically defined HSPCs in BM, T cells in the thymus, and

myeloid cells in non-hematopoietic organs such as liver, lung,

colon, and skin, approximating the levels in the human system.

Similar results were obtained in adult recipient mice (102).

In addition, in one study, human TPO knock-in mice were

constructed using Rag2-/-g C -/- mice, resulting in an increased level

of humanized reconstruction, multi-lineage immune cell

development and differentiation, and increased platelet counts

(103). SIRPa inhibits the phagocytosis of macrophages

physiologically (110) and plays an important role in the

maintenance of hematopoietic stem cells, red blood cells, and

platelets (101). In one study, the phagocytic activity of

macrophages was significantly inhibited by knock-in human

SIRPa in Rag2-/- g C-/- mice (104). In another study, the

expression of human monocytes and macrophages in bone
Frontiers in Immunology 09
marrow, spleen, peripheral blood, lung, liver, and the abdominal

cavity was significantly increased by knock-in of human M-CSF

into Rag2-/- g C-/- mice and their migration, phagocytosis, and

activation were enhanced (41). Human SCF, GM-CSF, and IL-3

have also been expressed in NSGmice using transgenic technology,

to formNSG-SGM3mice. The reconstruction level ofmyeloid cells,

especially dendritic cells, is significantly improved in these mice

(105). In addition, NSG-3GSmice were also constructed by knock-

in of human SF, IL-3, and GM-CSF into NSG mice. Humanized

myeloid cells were significantly increased in these mice (106).

Similarly, myeloid cells were significantly increased by the knock-

in of human SCF and KITL in NSG mice (106). On this basis, a

study was conducted integrating human M-CSF, IL-3/GM-CSF,

TPO, and SIRPa in Rag2-/- gC-/-micewhich promoted the increase

of human myeloid and NK cells (107).

Humanized mice are also irreplaceable in COVID-19

research. Severe COVID-19 is characterized by persistent lung

inflammation, inflammatory cytokine production (111–113),

viral RNA, and sustained interferon (IFN) response all of which

are recapitulated and required for pathology in the SARS-CoV-2

infected MISTRG6-hACE2 humanized mouse model (based on

the Rag2-/- IL2rg-/-129xBalb/c background supplemented with

genes for human M-CSF, IL-3, SIRPa, TPO, GM-CSF, and IL-6

knocked into their respective mouse loci) of COVID-19 with a

human immune system (108). In this study, Sefik et al. show that

SARS-CoV-2 infection and replication in lung-resident human

macrophages is a critical driver of the disease (108). In summary,

the genetic engineering of humanized mice plays a unique role in

modeling and studying specific diseases.
Conclusions and future prospects

To the present day, immunodeficient mice have undergone

development from Nude mice to SCID, NOD/SCID, and NOD/

SCID rgnull mice, and their immunity level has gradually

increased. To better simulate human diseases, researchers have

constructed the human immune system in immunodeficient

mice, and the humanized immune system mouse model

provides a powerful tool for studying human diseases.

However, there are still many limitations of the various

humanized mouse models, and further improvements are

needed to truly recapitulate the human immune system. One

major hurdle is the scarcity of sources of human cells and tissues,

in particular, those obtained from fetal samples carry ethical

restrictions. One possible solution to this is induced pluripotent

stem cell (iPSC) technology, which enables the use of patient-

specific iPSCs allowing a renewable source of autologous cells

without immune rejection. The second obstacle is that in

humanized mice, secondary lymphoid structures are either

missing or disorganized, curtailing essential humoral

responses, resulting in impairments for both class switching
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and affinity maturation post-immunization. To overcome this,

lymphoid tissue inducer cells should be introduced without

affecting IL2rg receptors. Alternatively, immunodeficient mice

can be engrafted with both fetal liver and cells that support fetal

liver cell growth from the same clinical donor and supplemented

with cytokines, to ensure that the differentiation and maturation

of HSCs can take place to improve functional immune cells

including macrophages, follicular DC, and T helper cell

reconstitution. The third obstacle is that an absence of

essential human cytokines hinders optimal HSC engraftment,

differentiation, and maturation of functional immune cells. To

tackle this issue, mouse models can be hydrodynamically

boosted with plasmids encoding cytokines. Despite this

improvement, the binding of human cytokines may be

hindered by residual mouse cytokines or may induce mouse

cells to proliferate and displace the engraftment of human cells

due to the cross-reactivity between human and mouse cytokines.

Eliminating this problem would require the absolute depletion of

murine cells or the introduction of high-affinity human-specific

cytokines and growth factors. The fourth hurdle is that human

cell engraftment is being negatively affected by mouse cells (red

blood cells and innate immune cells) that were not completely

depleted during the construction of immunodeficient mice. To

improve this, additional gene knock-outs could be added to

current strains of immunodeficient mice to further reduce

mouse red blood cells, granulocytes, and macrophage

functions. However, because of the low human erythrocyte

engraftment, excessive reduction of mouse red blood cells

might result in anemic mice which have short lifespans, are

weak, and are not suitable for experiments. A long-term solution

would be to optimize and increase the engraftment rate of

human red blood cells in humanized mice so that all traces of

mouse red blood cells can be removed. The fifth is the

irreproducibility of mouse studies when donors are different

for each “batch” of mice. This may be the most important and

challenging task for the development of humanized mouse

models. Indeed, there is a significant lack of evaluation criteria

for donors including clinical data of patients in different disease

states and the quantity and quality of their donated specific

immune cells. For humanized mouse models, various systemic
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characteristics are still needed to comment on the development

of a successful model. In summary, despite great progress and

advances, there are still many limitations to the various

humanized mouse models, and further improvements are

needed to truly recapitulate the human immune system.
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