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Abstract: The fast and in-line multigas detection is critical for a variety of industrial applications. In
the present work, we demonstrate the utility of multiple-pass-enhanced Raman spectroscopy as a
unique tool for sensitive industrial multigas detection. Instead of using spherical mirrors, D-shaped
mirrors are chosen as cavity mirrors in our design, and 26 total passes are achieved in a simple
and compact multiple-pass optical system. Due to the large number of passes achieved inside the
multiple-pass cavity, experiments with ambient air show that the noise equivalent detection limit
(3σ) of 7.6 Pa (N2), 8.4 Pa (O2) and 2.8 Pa (H2O), which correspond to relative abundance by volume
at 1 bar total pressure of 76 ppm, 84 ppm and 28 ppm, can be achieved in one second with a 1.5 W
red laser. Moreover, this multiple-pass Raman system can be easily upgraded to a multiple-channel
detection system, and a two-channel detection system is demonstrated and characterized. High
utilization ratio of laser energy (defined as the ratio of laser energy at sampling point to the laser
output energy) is realized in this design, and high sensitivity is achieved in every sampling position.
Compared with single-point sampling system, the back-to-back experiments show that LODs of
8.0 Pa, 8.9 Pa and 3.0 Pa can be achieved for N2, O2 and H2O in one second. Methods to further
improve the system performance are also briefly discussed, and the analysis shows that similar or
even better sensitivity can be achieved in both sampling positions for practical industrial applications.

Keywords: industrial process control; multiple-pass Raman spectroscopy; multiple-point detection;
multigas analysis

1. Introduction

Optical spectroscopy is one of the most important techniques for multigas analysis
since optical spectroscopy techniques are nondestructive and noncontact and allow for
in situ monitoring. Traditional multigas analysis techniques include gas chromatography
(GC), mass spectroscopy (MS) and infrared (IR) absorption spectroscopy. The analysis
speed is relatively slow for GC. Though MS is very sensitive, the instrument is rather
expensive, and a lot of calibration efforts are needed for quantitative analysis. Infrared
absorption-based technologies, such as tunable diode laser spectroscopy (TDLAS) [1],
photoacoustic spectroscopy (PAS) [2] or cavity ring-down spectroscopy (CRDS) [3], are
most commonly used since these techniques provide extraordinary sensitivities and selec-
tivity. However, important diatomic homonuclear molecules (e.g., H2, N2) are challenging
to detect with infrared-based techniques. Besides, several laser sources with different
wavelengths are required for multigas detection.

Raman spectroscopy, on the other hand, allows for simultaneous identification of
almost all gases (e.g., H2, CO2 and hydrocarbons, except for monatomic gases) with a single
laser source. Due to different selection rules, Raman spectroscopy can also be used to target
important diatomic homonuclear molecules. These molecules are particularly relevant for
many fields, such as power transformer diagnosis [4], medical gas sensing [5,6], biogas
analysis [7,8] and process control in nuclear reactors [9,10]. The main disadvantage of
Raman spectroscopy is the low Raman signal intensity due to small scattering cross section
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of gas molecules and low molecular density in the gas phase. Thus, for Raman spectroscopy
to achieve widespread use in scientific and industrial applications, the Raman signal of
gas molecules must be enhanced substantially. In the past few years, various Raman
systems have been designed and implemented, aiming at lowering limit of detection (LOD)
of gas molecules. Examples of such systems are cavity-enhanced Raman spectroscopy
(CERS) [11–15], fiber-enhanced Raman spectroscopy (FERS) [16–21], Purcell-enhanced
Raman spectroscopy [22,23] and multiple-pass-enhanced Raman spectroscopy [24–31].

Among various techniques, the multiple-pass optical system is the easiest way to
realize high sensitivity, though usually the gain factor is limited compared to other tech-
niques. In a multiple-pass system, the optical system design is aimed at increasing the laser
energy in a small collection volume, and the multiple reflections of light are ultimately
responsible for the resulted high sensitivity. Petrov described a near-concentric multiple-
pass Raman system based on 90-degree geometry Raman light collection. With 5 W laser
output energy, LODs close to 50 ppm can be achieved in 30 s for main components of
ambient air [26]. Recently, instead of using side detection geometry, Velez et al. employed a
collinear detection geometry for their near-concentric multiple-pass cavity, and 34 ppm was
achieved for CO2 in 5 s [27]. We have recently introduced a variant of multiple-pass Raman
spectroscopy with enhanced sensitivity and stability for industrial long-term monitoring
applications [29–31]. We take advantage of the large collection area of fiber bundles, which
relaxes the laser beam overlap requirements inside a multiple-pass cell. The use of fiber
bundle with large area also greatly improves the long-term stability and practicability of
an industrial Raman system. With a closed gas chamber, this system is ideal for sensitive
in-line monitoring of radioactive or corrosive gas species, as well as other nonhazardous
gas samples.

Conventional multiple-pass optical systems for Raman detection usually adopt either
(near) concentric or confocal cavity designs. As a result, spherical mirrors are used as cavity
mirrors. Usually, the alignment is very tedious in those systems, and cavity mechanical
stability is critical. In this contribution, we improve on the multiple-pass optical system
developed previously. A highly sensitive and versatile multiple-pass Raman system has
been established, mainly aiming for multiple point detection of trace nonhazardous gas
samples. Instead of using spherical mirrors, D-shaped flat mirrors are chosen as cavity
mirrors in our design, and 26 total passes are achieved inside the compact multiple-pass
cavity. Alignment of this multiple-pass system is extremely simple and straightforward.
With help of these important improvements, noise equivalent detection limits (3σ) of 7.6 Pa
(N2), 8.4 Pa (O2) and 2.8 Pa (H2O) are achieved in 1 s integration time with a 1.5 W red laser.
This multiple-pass Raman system can be easily upgraded to a multiple-channel detection
system, and a two-channel detection system is demonstrated and characterized. High
utilization ratio of laser energy (defined as the ratio of laser energy at sampling point to
the laser output energy) is realized in this design. As a result, high sensitivity is achieved
in both sampling positions. Compared with the single-channel system, the back-to-back
experiments show that LODs of 8.0 Pa, 8.9 Pa and 3.0 Pa can be achieved for N2, O2 and
H2O. The results obtained with this multiple-pass Raman setup are very promising, and a
variety of industrial applications can benefit from the current design.

2. Materials and Methods

The newly designed multiple-pass Raman system is shown schematically in Figure 1. The
laser head (Laser Quantum OPUS660) is stabilized by a water cooler, which maintains the base
plate temperature at 24 degrees Celsius. The OPUS660, in fact, was first chosen for hydrogen
isotopologues monitoring applications in our previous systems [29–31]. We use 660 nm instead
of a shorter wavelength (e.g., 532 nm) because, in our previous design, the gas chamber was
located between the cavity mirrors, and thus, fluorescence generated from optical windows
reduced the signal-to-noise ratio. For current system with a different gas chamber design, 532
nm or even shorter wavelength can also be used. A band-pass filter (Semrock, FF01-661/11) is
used to remove any unwanted laser lines. The laser output beam is then guided by two highly
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reflective mirrors (M1 and M2) to pass an optical isolator. The dielectric coatings of mirror used
in this experiment usually have approximately 99.5% reflectivity at the laser wavelength. After
that, a half-wave plate is inserted to tune the polarization of the excitation beam to maximize
gas Raman signal for 90-degree collection geometry. The beam is finally focused by a 300 mm
focus lens (L1) into a multiple-pass optical system and reflected multiple times inside the
multiple-pass cavity to increase the signal strength.

Figure 1. Scheme of the experimental setup. M, Mirrors; L, lenses; F, Filter; PM, power meter; HWP,
half-wave plate.

To enhance the Raman signals of nonhazardous gas species in the collection volume,
a new multiple-pass scheme is designed. The multiple-pass cell used in our experiments
mainly consists of two high-reflection D-shaped mirrors of 25 mm diameter (M3 and M4),
and the alignment of this multiple-pass optical system is greatly simplified by not using
spherical mirrors. Those D-shaped mirrors offer an advantage over traditional mirrors
since they facilitate the separation of closely spaced beams. The cavity length (distance
between M3 and M4) is about 35 mm and is greatly reduced compared with conventional
(near) concentric systems and our previous designs. The distance between M3 and the
focusing lens (L1) is approximately 10 cm. The exact distance between optical components
is not that important in current design. Alignment of this multiple-pass system is extremely
simple, and usually a couple of minutes are enough to complete the construction of the
multiple-pass cavity. In the forward path, the incoming beam is first incident on mirror M4.
After reflection from this mirror, the beam is incident on the edge of mirror M3. The laser
beam is then reflected multiple times between M3 and M4 before it leaves the multiple-pass
cell defined by M3 and M4. Six laser spots are clearly seen on both mirrors, though the
diameters of laser spots are slightly different (spot pattern on M3 is show schematically
in Figure 1, top left). The lateral separation of excitation beams in the collection volume
is about 8 mm. This excitation geometry gives a total forward pass of 13 (single pass
configuration). Using beam diameter of about 1.1 mm and lens focus of 300 mm, the
beam diameter at the focus is 228 um and approximately 700 um for the first and last
passes. The beam diameter for other passes will be in between. The out-going beam is then
collimated by a second lens with focus of 300 mm and is finally reflected back by mirror M5
to double the number of passes (double-pass configuration). The back-going beam is finally
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deflected out of the beam path by an isolator to avoid any back-reflection of laser beam
into the laser head. Thus, 26 total passes are achieved in this multiple-pass system. During
alignment, the laser beams should not clip the sharp edge of the D-shaped mirror in order
to minimize formation of interference fringes. Compared with conventional two-concave
mirror designs, current multiple-pass system is characterized by its simplicity of alignment
and compactness, as well as its adjustment stability.

Another advantage of current design is that the multiple-pass optical system described
above can be easily upgraded to a multiple-channel detection system. For example, for
a two-channel detection system, the mirror M5 is removed, and lens L3 with a focus of
300 mm is used to refocus the collimated laser beam into another multiple-pass cell defined
by mirrors M6 and M7. The two sampling regions where the Raman signal can be collected
are named positions 1 and 2, as also indicated in Figure 1. The incoming beam is then
reflected back and forth inside the multiple-pass cavity to give exactly 13 total passes. The
out-going laser beam is then collimated by lens L4 with a focus of 300 mm. Finally, mirror
M8 is used to double the number of passes in both multiple-pass cavities. Thus, 26 total
passes are achieved in both sampling positions.

The gas Raman signals are collected by a pair of achromatic lenses (L5 and L6, with
focal lengths of 80 mm and 50 mm diameter) at a right angle to the excitation beam and 1:1
imaged onto a fiber bundle comprising 60 multimode fibers (N.A. = 0.22, core diameter
100 um) arranged in a rectangular-to-slit configuration. For the two-channel detection
system, another pair of achromatic lenses (L7 and L8, with focal lengths of 80 mm and
50 mm diameter) is installed to collect the gas Raman signals at position 2. The collection
end of the fiber has a dimension of approximately 0.7 × 1.5 mm to match the beam diameter
in the collection volume. The output end is arranged as a curved slit with approximately
7 mm height. This allows the full binning of vertical pixels without sacrifice resolution.
Typical resolution of our system is about 25 cm−1. For applications where higher resolution
is required, either a grating of higher density can be used or multimode fiber with smaller
core diameter can be selected. The scattered light is then coupled into a Kaiser Optics
f/1.8i high throughout spectrograph. This system contains no moving parts to ensure long
system stability and is suitable for industrial applications. The Raman spectra were finally
recorded by a CCD detector (PIXIS 400BRX) operating at −74 degrees Celsius.

3. Results
3.1. Performance of Current Multiple-Pass Raman System

Compared with our previous multiple-pass setups, the multiple-pass cavity length
is greatly reduced in the new design, and it is impossible to insert a closed gas chamber
between cavity mirrors. The current setup can be directly used to monitor gas species in an
atmosphere environment. For example, multiple consecutive breaths from different people
can be exhaled into the sampling positions using Teflon tubes [24,25]. For applications
where a closed gas chamber is needed, a slight modification of current configuration can
be adopted, and the multiple-pass cavities (M3, M4 and M6, M7) can be placed inside two
closed gas chambers [4,11,26]. For example, the system can be applied to power transformer
diagnosis and logging gas detection, and the gas samples can be sent to the (multiple)
closed gas chambers through a valve system. Both configurations have the advantage
that no fluorescence background is generated in the excitation region. To demonstrate
performance and sensitivity of this multiple-pass Raman system, spectra of ambient air
were recorded without a gas cell.

For the double pass configuration, the spectrum of ambient air is shown in Figures 2 and 3.
For these experiments, the laser output power was set to 1.5 W. The spectrum of ambient air
is dominated by the spectral features of oxygen (O2) at 735.5 nm (1555.2 cm−1), nitrogen (N2)
at 779.9 nm (2329.9 cm−1) and water molecules (H2O) at 869.9 nm (3656.2 cm−1). Besides
major components, the spectral features of Q2 (N2) branch at 952.8 nm (4656.0 cm−1) and
CO2 at 721.1 nm (1283.6 cm−1) and 726.6 nm (1388.7 cm−1) can also be unequivocally
assigned with 1 s integration time (Figure 2, bottom), though the contrast of the higher
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wavenumber peak of the CO2 Fermi resonance pair has been degraded by the Q1 (O2)
branch. The signature of Q2 (O2) branch at 828.9 nm (3087.6 cm−1) is almost noise-limited
with 1 s integration time but is detectable with 10 s integration time, as shown in Figure 3.
The above results clearly demonstrate the high sensitivity achieved in this Raman setup,
considering that the intensity of Q2 (O2) branch is approximately 3000 times less than Q1
(O2) branch. The LODs are estimated using procedures described in detail in a previous
publication and is associated with a signal-to-noise ratio (SNR) of 3 [29]. In the current
work, noise is calculated using flat regions between 5400 to 5700 cm−1. For N2 and O2
(assuming 78% and 21% composition in the air) with 1 s integration time, the noise (σ)
is extracted as 1.96. The estimated noise equivalent detection limits (3σ) are 7.6 Pa and
8.4 Pa for N2 and O2, respectively, which corresponds to relative abundance by volume
at 1 bar total pressure of 76 ppm and 84 ppm. From the humidity data logger reading of
55% RH (corresponding to approximately 1265 Pa of water vapor in the air), a LOD of
2.8 Pa is deduced for H2O, which corresponds to relative abundance by volume at 1 bar
total pressure of 28 ppm. Recently, Godot et al. have introduced a commercial Raman
analyzer for process control in a tritium facility, and the LOD was reported as 200 Pa for
hydrogen isotopologues, with an acquisition time of 120 s [32]. Based on our previous
investigations [29–31], the LOD of the current setup for hydrogen isotopologues can be
safely estimated to be lower than that of H2O. Thus, the current system is preferred in
low-pressure gas applications. In recent year, FERS has shown excellent sensitivity for
multigas analysis. Hanf et al. showed that LODs of 9 ppm and 8 ppm could be achieved for
N2 and O2 [33]. For H2S, LOD as low as 33 ppm was also demonstrated [20]. Besides, small
samples volumes are needed in this technique, which is critical for certain applications
where amount of gas sample is limited. However, the small core diameter hampers the
quick exchange of gas samples, and this technique is not suitable for in-line low-pressure
gas detection and monitoring.

We have also tested a slightly different version of the single-pass configuration, where
the isolator and half-wave plate are removed. A power meter is also inserted between
L3 and L2 to safely collect the laser light and monitor laser performance. First, this
configuration gives a simpler Raman system and should improve system robustness, as
the number of optical components is reduced. Besides, full laser energy can be used
for excitation, as approximately 15% laser energy is lost after passing the isolator and
half-wave plate. The recorded spectra of ambient air are also shown in Figures 2 and 3
with different integration times. Compared with double-pass configuration, the LODs for
gas molecules have been increased by a factor of about 1.6. For certain applications, the
achieved sensitivity is still acceptable, and single-pass configuration provides a simpler
and lower-cost solution.

Figure 2. Raw spectra of ambient air with 1 s integration time. Top: Spectral overview. Bottom:
Low-intensity parts of spectra.
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Figure 3. Low-intensity parts of raw spectra with 10 s integration time. Note that with 10 s integration
time, the Q-branch peaks (not shown) of O2 and N2 are saturated in the detector.

3.2. Characterization of the Two-Channel Detection System

With the development of science and technology, industrial monitoring applications
also have even higher requirements for gas sensor systems. Besides high sensitivity and
long-term stability, some applications require that the Raman system can be operated
in an economical manner. The multiple-channel detection scheme greatly reduces the
examination costs of a monitoring system and thus has drawn extensive attention in
industrial multigas analysis applications. In real industrial gas detection applications,
different gas samples can be transported to different detection positions (e.g., different gas
chambers) through valve–pipeline systems. Thus, simultaneous composition monitoring at
different sampling positions are realized using the same laser source and spectrometer. To
demonstrate the sensitivity of this newly designed two-channel detection system, spectra
of ambient air were recorded back-to-back at positions 1 and 2. The detailed experimental
procedure is as follows: The spectra of lab air were recorded first in position 1. After data
collection in position 1, the fiber bundle was removed and reinstalled and optimized in
position 2. The spectra of lab air were then recorded in position 2. It should be noted
that for these experiments the same fiber bundle is used, though in practical situations,
signals can be collected simultaneously at multiple sampling positions through a branched
fiber bundle.

For the two-channel detection system, the spectra of ambient air recorded with laser
output set to be 1.5 W is shown in Figure 4. The spectra of ambient air (Figure 4, top)
recorded in positions 1 and 2 are nearly indistinguishable by visual inspection. The small
difference in signal strength is due to slightly different alignments. With 10 s integration
time, the peaks of Q2 (N2) and CO2 are readily identified, and the peak of Q2 (O2) is also
distinguishable (Figure 4, bottom). Thus, similar high-sensitivity is also achieved in a
two-channel detection system. At position 1 with 1 s integration time, experiments with
ambient air show that the noise equivalent detection limit (3σ) of 8.0 Pa (N2), 8.9 Pa (O2)
and 3.0 Pa (H2O) can be achieved, which corresponds to relative abundance by volume
at 1 bar total pressure of 80 ppm, 89 ppm and 30 ppm. The LODs calculated at position 2
are almost identical to values obtained with position 1. The estimated LODs are slightly
higher than the above (double-pass configuration) single-channel detection system, which
is reasonable since the laser energy loss is higher in a two-channel detection system.
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Figure 4. Raw spectra of ambient air at sampling positions 1 and 2. Top: Spectral overview with 1 s
integration time. Traces are offset by 15,000 units. Bottom: Low-intensity parts of spectra with 10 s
integration.

The above results clearly demonstrate sensitivity and capability of this Raman setup
for multigas analysis. Due to similar design criteria, the long-term stability should also be
comparable to our previous setups. Thus, this newly designed Raman system is especially
suited for trace gas analysis in a number of industrial applications. Besides, the signal
enhancement provided with current multiple-pass system can be further improved. Various
approaches to improve the system performance have already been discussed thoroughly
in a previous contribution, and we are not going to discuss them in detail [29,31]. For
example, back reflection mirrors can be installed to double the collection solid angle; the
total number of achievable passes can also be increased (e.g., 30 total passes) by adjusting
the relative position (angle and distance) of the two cavity mirrors.

4. Conclusions

Sensitive multigas composition analysis and monitoring are needed for a variety
of industrial applications. Usually, a gas analyzer that measures gas samples in a wide
range of concentration and in real-time is required for process control applications. To
this end, a highly sensitive, versatile and economical multiple-pass Raman system has
been established and characterized, mainly aiming for multiple-point detection of trace
nonhazardous gas samples. Instead of using spherical mirrors, D-shaped mirrors are
chosen as cavity mirrors in this design, and 26 total passes are achieved inside a compact
multiple-pass cavity. With 1.5 W of 660 nm excitation laser and 1 s integration time, cavity
enhancement achieves LODs of 7.6 Pa (N2), 8.4 Pa (O2) and 2.8 Pa (H2O).

Moreover, this multiple-pass Raman system can be easily upgraded to a multiple-
channel detection system, and a two-channel detection system is demonstrated and charac-
terized. Compared with single-channel detection system, the noise equivalent detection
limits at the two positions are almost identical and have been estimated to be 8.0 Pa (N2),
8.9 Pa (O2) and 3.0 Pa (H2O). The slightly higher LODs obtained in the two-channel detec-
tion system are mainly due to reflection loss at the mirrors and lenses, and the achieved
LODs can be improved by using customized coatings. Other methods to improve the
system performance are also briefly discussed, and the analysis indicates that similar or
even better sensitivity can be achieved for every sampling position in a practical two-
channel detection system. The results obtained with this multiple-pass Raman setup are
very promising. The sensitivity can be further improved by using lasers with higher power
since the LODs almost scale linearly with excitation laser power. Additionally, the Raman
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signal can be significantly increased by using lasers with shorter wavelengths. Thus, limits
of detection in low ppm range for common gas samples are possible with exposure times
of seconds.
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