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Abstract

Variants at 21 genetic loci have been associated with an increased risk for Alzheimer’s disease (AD). An important
unresolved question is whether multiple genetic risk factors can be combined to increase the power to detect
changes in neuroimaging biomarkers for AD. We acquired high-resolution structural images of the hippocampus
in 66 healthy, older human subjects. For 45 of these subjects, longitudinal 2-year follow-up data were also
available. We calculated an additive AD genetic risk score for each participant and contrasted this with a weighted
risk score (WRS) approach. Each score included APOE (apolipoprotein E), CLU (clusterin), PICALM (phosphati-
dylinositol binding clathrin assembly protein), and family history of AD. Both unweighted risk score (URS) and
WRS correlated strongly with the percentage change in thickness across the whole hippocampal complex (URS:
r � �0.40; p � 0.003; WRS: r � �0.25, p � 0.048), driven by a strong relationship to entorhinal cortex thinning
(URS: r � �0.35; p � 0.009; WRS: r � �0.35, p � 0.009). By contrast, at baseline the risk scores showed no
relationship to thickness in any hippocampal complex subregion. These results provide compelling evidence that
polygenic AD risk scores may be especially sensitive to structural change over time in regions affected early in AD,
like the hippocampus and adjacent entorhinal cortex. This work also supports the paradigm of studying genetic
risk for disease in healthy volunteers. Together, these findings will inform clinical trial design by supporting the
idea that genetic prescreening in healthy control subjects can be useful to maximize the ability to detect an effect
on a longitudinal neuroimaging endpoint, like hippocampal complex cortical thickness.
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Significance Statement

This is the first study to show a relationship between a genetic risk score (GRS) for Alzheimer’s disease (AD) and
hippocampal thinning in healthy adults. We found that a GRS composed of AD risk factors that have been shown
to relate to hippocampal structure or function in humans predicted thinning of the hippocampal complex. Our
ability to interpret these findings is bolstered by the association of genetic risk with longitudinal atrophy as
opposed to cross-sectional morphology, which might be driven by neurodevelopmental differences. This work
has implications for clinical trials focused on preclinical subjects such that screening by polygenic risk might
increase the ability to detect an effect of a drug in a trial where hippocampal integrity is an endpoint.
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Introduction
The development of preclinical biomarkers for sporadic,

late-onset Alzheimer’s disease (AD) is critical for clinical
trial design, and ultimately for disease prevention. Neuro-
nal loss in the hippocampus occurs early in the course of
AD. This neuronal loss leads to morphological changes
over time resulting in severe atrophy of the entire hip-
pocampus in advanced AD. The hippocampus, however,
begins to shrink long before the emergence of clinical
symptoms. Research on families who carry genetic mu-
tations for dominantly inherited AD has revealed that hip-
pocampal volume loss is detectable up to 15 years before
the expected onset of symptoms (Bateman et al., 2012).
Studies have shown that a key difference between normal
age-related hippocampal thinning and pathological thin-
ning related to AD may be the rate of thinning over time
(Lu et al., 2011; Chincarini et al., 2016). Longitudinal data
are, therefore, extremely important in predicting the tra-
jectories of normal and pathological aging.

Genetic risk for AD is also related to hippocampal thin-
ning. Carriage of the apolipoprotein E �4 allele (APOE�4)
allele accelerates age-related hippocampal shrinkage in
older healthy adults, which may make individuals more
susceptible to AD (Jak et al., 2007; Donix et al., 2010a).
While APOE is the strongest genetic risk factor for AD, at
least 20 other genes have been identified as being asso-
ciated with the disease (Lambert et al., 2013). Among
these non-APOE AD risk genes, clusterin (CLU) and phos-
phatidylinositol binding clathrin assembly protein
(PICALM) have been studied using a neuroimaging genet-
ics approach more than any other risk genes (Biffi et al.,
2010; Bralten et al., 2011; Braskie et al., 2011; Erk et al.,
2011; Furney et al., 2011; Hohman et al., 2013; Green
et al., 2014; Stevens et al., 2014; Harrison et al., 2015;
Zhang et al., 2015; Harrison and Bookheimer, 2016). Also,
a family history of AD can serve as a proxy for genetic risk
and has been used in neuroimaging genetics studies to
identify characteristics of a high-risk group (Xu et al.,
2009; Berti et al., 2011; Honea et al., 2012; Wang et al.,
2012). Each of these factors, APOE, CLU, PICALM, and a

family history of AD, has been previously shown to be
related to hippocampal structure or function, as measured
by MRI-based techniques in humans (Biffi et al., 2010;
Donix et al., 2010b; Erk et al., 2011; Furney et al., 2011;
Honea et al., 2011; Okonkwo et al., 2012; Zhang et al.,
2015). Thus, we selected these components to calculate a
genetic risk score (GRS) based on their statistical associ-
ation with AD risk and their previous association with the
hippocampus in neuroimaging genetics studies.

The use of high-resolution structural MRI to calculate
the thickness of the strip of gray matter within the convo-
luted hippocampus allows for the sensitive measurement
of changes in morphology (Ekstrom et al., 2009). This
approach is preferable to measuring the gross volume of
the hippocampus because it focuses on the compartment
of the hippocampal complex where cell bodies reside and
thus is designed to measure morphological changes that
may be related to neuronal loss. Using hippocampal
thickness measurements, subregions of the hippocampal
complex, including entorhinal cortex, subiculum, CA3,
and dentate gyrus, have been shown to be thinner in
APOE�4 carriers compared to noncarriers (Burggren
et al., 2008; Mueller et al., 2008; Mueller and Weiner,
2009). In this work, we take these findings further by
expanding our focus to include additional genetic risk
factors for AD.

The present study is the first to find evidence of an
association of an AD GRS and cortical thinning of the
hippocampus over time in healthy adults. By focusing our
GRS development on genetic factors that have been
shown to associate with hippocampal structure or func-
tion in healthy older adults, we were able to boost our
power to detect a link between the genetic risk for AD and
changes in hippocampal gray matter. Our findings sup-
port the validity of a neuroimaging genetics approach to
studying genetic risk for disease in healthy, preclinical
populations. Identifying quantitative neuroimaging endo-
phenotypes associated with genetic risk for AD in healthy
adults will increase our ability to identify healthy individu-
als who are at greatest risk for the development of AD and
target them for intervention. In the present study, we
hypothesized that the AD GRS would be related to
baseline hippocampal morphology when controlling for
confounding factors like age and sex. We further hy-
pothesized that the GRS would predict longitudinal
thinning in the hippocampal complex, especially the
entorhinal cortex and subiculum subregions, over a 2
year follow-up period.

Materials and Methods
Participants

Participants for this study were Caucasian individuals of
either sex recruited as part of an ongoing initiative to
study aging, AD genetic risk, and dementia by the Uni-
versity of California, Los Angeles (UCLA) Longevity Cen-
ter. The recruitment strategy focused on older adult
community centers, relatives of AD patients referred by
the local Alzheimer’s Association chapter, memory
groups, and other groups catering to older adults with
age-related memory concerns. This strategy resulted in
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the recruitment of �40–50% of participants carrying at
least one copy of the APOE�4 allele, which is greater than
the 20-25% that would be expected from purely random
recruitment (Bookheimer et al., 2000; Small et al., 2000).
Participants were categorized as having a positive family
history of AD if at least one first-degree relative had
received a diagnosis of AD based on standard criteria
(Dubois et al., 2007). All participants in the present study
were healthy and cognitively intact at the time of study
enrollment. In our study, participants were defined as
nondemented if they were cognitively intact based on
clinical examination, the results of the mini mental state
exam (MMSE; for gross cognition, threshold �27) and
standard criteria for age-associated memory impairment;
specifically, participants were excluded if they had scores
�2 SDs below normal on two or more of the memory tests
described in the next section. In addition, participants
with clinical anxiety, depression, or any neuropsychiatric
or neurological illness were excluded. This study was
performed in accordance with UCLA Institutional Review
Board protocols and was approved by the UCLA Human
Subjects Protection Committee. All participants gave writ-
ten informed consent upon enrollment in this study.

Neuropsychological assessment
A 3 h neuropsychological battery was administered to

each participant. The battery included tests of the follow-
ing: general intelligence (subtests of the Wechsler Adult
Intelligence Scale, third edition; Wechsler, 1997), fluency
(Fruits and Vegetables; Cauthen, 1978), attention (Digits
Forward and Backward; Wechsler, 1997), language (Bos-
ton Naming Test; Goodglass and Kaplan, 2001), verbal
memory (Buschke-Fuld Selective Reminding Task;
(Buschke and Fuld, 1974) as well as Wechsler Memory
Scale, third edition, logical memory and verbal paired
associates learning (Wechsler, 1997)), and visual memory
(Rey-Osterrieth figure test; Osterrieth, 1944). Participants
also completed a family history questionnaire (Breitner
and Folstein, 1984), a memory complaints self-report
questionnaire (Gilewski et al., 1990), the Hamilton Depres-
sion and Anxiety Inventories (Hamilton, 1959, 1960), the
Neuropsychiatric Inventory (Cummings et al., 1994), and
the MMSE (Folstein et al., 1983).

Genotyping
A trained phlebotomist at the UCLA Clinical and Trans-

lational Research Laboratory drew a blood sample from
each participant. Leukocytes from 10 ml of the sample
were frozen and stored at �80°C. Two hundred micro-
grams of genomic DNA was isolated from the remaining
10 ml of the sample and were screened using a PCR-
based mutation detection assay and microsatellite
marker-based genotyping. Real-time PCR on an Applied
Biosystems 7900HT Fast Real-Time PCR System was
used to perform genotyping of APOE single nucleotide
polymorphisms (SNP; rs429358 and rs7412). In addition
to a standard curve amplification protocol, an allelic dis-
crimination step was added to facilitate the contrast be-
tween the two alleles and their respective reporter dyes.
These dyes are incorporated into a TaqMan SNP Geno-
typing Assay with identification numbers C_3084793_20

and C_904973_10 for rs429358 and rs7412, respectively
(Applied Biosystems). Results were confirmed by repeat-
ing the experiment. SNP genotyping data were analyzed using
SDS software (version 2.3, Applied Biosystems). This program
calculates the affinity of the sample to one of the two reporter
dyes that, in turn, represents one allele over the other. CLU
(rs11136000) and PICALM (rs3851179) SNPs were geno-
typed using iPLEX chemistry on the massARRAY platform
(Sequenom) as per the manufacturer instructions. The
assay was based on primer extension and allowed for a
locus-specific PCR followed by an extension reaction in
which the primer anneals immediately upstream of the
polymorphic site being genotyped. Through the use of
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry the mass of the extended primer is
determined. Sequenom Typer software automatically
translates the mass of the observed primers into a geno-
type. Positive controls were included on every chip to
ensure genotyping accuracy. The results of all genotyping
protocols are strictly confidential and are never revealed
to the research participant.

Genetic risk scores
A GRS for AD was calculated for each participant. The

GRS measured genetic risk load for AD across APOE,
CLU, and PICALM, as well as taking into account the
family history of AD. We calculated two sets of GRSs:
unweighted risk score (URS) and weighted risk score
(WRS). The URS was the sum of risk factors including a
family history of AD (0 if negative history or 1 if positive
history), APOE�4 alleles (0, 1, or 2), CLU risk alleles (0, 1,
or 2) and PICALM risk alleles (0, 1, or 2; Fig. 1). For the
WRSs, we used the logarithm of published odds ratios
(ORs) to weight the relative contribution of these following
risk factors before summing: positive family history, OR �
2; APOE�4, OR � 3; CLU minor allele, OR � 0.9; PICALM
minor allele, OR � 0.9 (Lambert et al., 2013). We chose to
focus our GRS on these risk factors because they are
among the most consistently reproduced genetic risk
factors associated with late-onset sporadic AD. In addi-
tion, each of these factors has been previously shown to
be a related hippocampal structure or function, as mea-
sured using MRI-based techniques in humans (Biffi et al.,
2010; Donix et al., 2010b; Erk et al., 2011; Furney et al.,
2011; Honea et al., 2011; Okonkwo et al., 2012; Zhang
et al., 2015).

Imaging acquisition
MRI acquisition was completed using a Siemens 3 T Trio
magnet located at the UCLA Staglin IMHRO Center for
Cognitive Neuroscience (scans acquired 2010-2012; n �
8 baseline, n � 13 follow-up) or a Siemens Allegra 3 T
scanner located at the UCLA Brain Mapping Center
(scans acquired 2006–2010). Whole-brain 3D T1-
weighted magnetization-prepared rapid acquisition gradi-
ent echo (MPRAGE) volumetric scans and high-resolution
oblique coronal T2-weighted fast spin echo sequences
were acquired with each participant. Scan parameters are
as follows for the MPRAGE (parameters for the Allegra 3
T scanner are in parentheses): axial slicing; TR � 1900 ms
(2300 ms); TE � 2.26 ms (2.93 ms); FOV � 250 � 218 mm
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(256 � 256 mm); flip angle � 9°; matrix � 256 � 215 mm;
176 slices (160 slices); slice thickness � 1 mm; zero-filled
to a matrix of 256 � 224, resulting in a voxel size of 1 �
0.976 � 0.976 mm3 (1 � 1.3 � 1.3mm3). For the high-
resolution hippocampal structural imaging, sequence pa-
rameters are as follows: TR � 5200 ms; TE � 107 ms (105
ms); FOV � 200 � 200 mm; flip angle � 139°; matrix �
512 � 512 mm; slice thickness � 3 mm; spacing, 0 mm;
19 slices; in-plane voxel size � 0.39 � 0.39 mm. Some
participants’ whole-brain or high-resolution hippocampal
structural imaging data have been used in previous pub-
lications (Donix et al., 2010a,b,2013; Brown et al., 2011;
Burggren et al., 2011; Burggren and Brown, 2014).

Statistical and imaging analyses
Neuropsychological performance
To test whether participants in the baseline group differed
from the subset with follow-up data, two-tailed t tests
were used to examine age, sex, education, and general
cognition. We examined potential relationships between
genetic risk load and sex or age using a t test and Pearson
correlation, respectively. These tests were completed us-
ing tools from the R Project for Statistical Computing
(http://www.r-project.org; Research Resource Identifier,
SCR_001905).

Whole-brain structural imaging
Whole-brain structural MRI scans were processed using
Freesurfer (Fischl and Dale, 2000). This computational
neuroanatomy software suite uses tissue contrast to de-
termine the boundary between gray matter and white
matter as well as the pial surface of the brain, and calcu-

lates the distance between vertices plotted as a mesh on
each surface across the whole cortex. After completing
the FreeSurfer automated pipeline, each participant’s
scan was visually checked for accuracy. Minimal manual
edits were completed when necessary by a single indi-
vidual (T.M.H.). Intracranial volume (ICV) estimates from
FreeSurfer were used to normalize hippocampal thick-
ness estimates from baseline scans for baseline-only
analyses. We used the following formula in order to nor-
malize: ICV-corrected thickness � [(thickness in mm/ICV
in mm3) � 106]. Multiplying the quotient by 106 results in
values at the same order of magnitude as the original
thickness estimates.

High-resolution hippocampal structural imaging
A cortical segmentation and unfolding procedure was
used to measure the thickness of the gray matter of the
hippocampal complex (HC) (Burggren et al., 2008, 2011;
Ekstrom et al., 2009; Donix et al., 2010b; Fig. 2). First, the
white matter and cerebrospinal fluid (CSF) within the me-
dial temporal lobe were manually traced on oblique cor-
onal slices. Slices were acquired from the scanner at
intervals of 3 mm perpendicular to the longitudinal axis of
the HC to maximize the resolution where anatomical vari-
ability is greatest. To account for slice thickness, a pro-
cedure that creates six linearly interpolated slices
between each acquired pair was used to increase reso-
lution along the longitudinal axis of the HC (Zeineh et al.,
2001). The interpolation procedure resulted in a final voxel
size of 0.39 � 0.39 � 0.43 mm (for two subjects, the final
voxel size was 0.39 � 0.39 � 0.56 mm due to a thicker
slice interval of 3.9 mm). Next, up to 18 contiguous layers

Figure 1. Genetic risk score calculation. A URS for each participant was calculated by adding family history of AD (0 if negative history
or 1 if positive history), and the number of APOE�4 alleles (0, 1, or 2), CLU risk alleles (0, 1, or 2), and PICALM risk alleles (0, 1, or
2). A WRS for each participant was calculated using the logarithm of published ORs to weight the relative contribution of the factors
before summing: positive family history (OR � 2), APOE�4 (OR � 3), CLU minor allele (OR � 0.9), PICALM minor allele (OR � 0.9).
Possible unweighted risk scores range from 0 to 7, and weighted risk scores range from �0.18 to 1.25.

Methods/New Tools 4 of 13

May/June 2016, 3(3) e0098-16.2016 eNeuro.sfn.org

http://www.r-project.org


of gray matter were created using a region-expansion
algorithm starting at the white matter boundary and con-
tinuing to the CSF boundary. This results in an HC gray
matter strip, which contains cornu ammonis (CA) fields 1,
2, and 3; the dentate gyrus (DG); the subiculum (SUB);
entorhinal cortex (ERC); perirhinal cortex (PRC); parahip-
pocampal cortex (PHC); and the fusiform gyrus (FUS). Our
resolution is not high enough to reliably distinguish be-
tween DG and CA fields 2 and 3, so we combine these
regions into a single subregion denoted CA23DG. Next,
the gray matter strip was flattened using an iterative
algorithm based on multidimensional scaling that has
been used previously by our group (Ekstrom et al., 2009).
Demarcations indicating the boundaries between different
HC subregions were drawn on each slice based on ana-
tomical landmarks in histological and MRI atlases (Amaral
and Insausti, 1990; Mai and Paxinos, 1997; Duvernoy,
2005). Demarcations were placed in accordance with
guidelines and findings produced by the Hippocampal
Subfields Group (Yushkevich et al., 2015). The demarca-
tions are extended to form continuous boundaries be-
tween subregions in 2D space. ROIs are drawn in 2D
space and transformed back into in-plane space where

gray matter thickness measurements were calculated. To
calculate thickness, we computed the distance to the
closest non-gray matter voxel. Specifically, in 2D space,
for each middle point voxel, the maximum distance value
for all of the corresponding 3D voxels across the layers of
the gray matter strip was multiplied by 2. The mean
thickness was calculated by averaging this value across
all of the 2D voxels within a given subregion. We averaged
each subregion across left and right hemispheres as we
did not have any specific hypotheses regarding the later-
ality of an association between longitudinal change in
hippocampal structure and genetic risk for AD.

Manual segmentations of baseline and follow-up scans
for each participant were inspected by a single individual
(Z.M.) to ensure consistency and minimize noise in our
thickness estimates. During image processing, investiga-
tors were blinded to the demographic and genetic infor-
mation corresponding to each image.

Associations between baseline thickness estimates
corrected for ICV and the GRS were tested using Pearson
correlations. To examine thinning over time, the percent-
age change in cortical thickness between baseline and
follow-up scans was calculated for each participant with

Figure 2. High-resolution hippocampal imaging processing steps. A, Manual segmentation results in the following three distinct
compartments: cerebrospinal fluid (CSF) (teal), white matter (WM) (pink), and gray matter (GM) in between. B, The boundaries between
hippocampal complex subregions are marked according to anatomical landmarks. Demarcations include CA23DG | CA1 (green), CA1
| subiculum (dark blue), subiculum | entorhinal cortex (orange), perhinal cortex | entorhinal (light blue), collateral sulcus (red), and
fusiform gyrus (yellow). C, These demarcations are extended along the longitudinal axis of the hippocampal complex to form complete
and smooth boundaries between subregions. D, Each subregion is then considered separately as a region of interest (ROI), and
average thickness is calculated for each.
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longitudinal data. The formula for calculating the percent-
age change was as follows: [((thickness at follow-up/
thickness at baseline) � 1) � 100]. The percentage change
statistics were not corrected for ICV, as measuring the
percentage change in thickness within subjects obviates
the need to control for normal variation in brain size. We
also calculated partial correlations between GRS and
baseline thickness or the percentage change in thickness
controlling for the effects of age, sex, and time between
visits, when appropriate.

Corrections for multiple comparisons were performed
within each GRS because they were highly correlated and
not independent (r � 0.72, p � 0.0001). We used a
Bonferroni correction for two independent tests (p �

0.05/2 � 0.025) to control for multiple testing in entorhinal
cortex and subiculum, the two regions in which we hy-
pothesized that thinning would be related to genetic risk
for AD. These tests were simple effects tests following
whole HC analysis. Because entorhinal cortex and subic-
ulum are subregions of the whole HC, these are not
independent tests. Tests restricted to subfields other than
entorhinal cortex and subiculum were exploratory only.

Results
Participants
In the current study, 66 participants �48 years of age
were recruited. For 45 of our participants, 2 year follow-up
data were available. There were no differences in sex
composition (p � 0.42), age (p � 0.95), education (p �
0.42), or MMSE score (p � 0.31) between our larger
baseline group and the subset with longitudinal data
(Table 1). In order to ensure that there were no confounds
of age or sex that would make interpreting the GRS signal
difficult, we tested for a difference in genetic risk load
between men and women (baseline, p � 0.82; follow-up,
p � 0.48), and for a correlation between age and risk
score (baseline: r � �0.10, p � 0.42; follow-up: r � 0.01,
p � 0.94), and detected no significant confounds.

Genetic risk scores
In our cohort, the URS ranged from 1.0 to 6.0 (Fig. 3). No
participant had zero risk factors or the maximum URS of

Table 1: Cohort characteristics

Characteristic

Baseline
participants

(n � 66)

Follow-up
participants

(n � 45) p value

Sex (M/F) 21/45 18/27 0.421
Age (years; mean�SD) 63.0 � 10 .4 63.2 � 7.8 0.953
Education (years;

mean�SD)
16.4 � 2.4 18.0 � 5.7 0.417

MMSE (mean�SD) 29.2 � 0.84 28.9 � 0.86 0.313
Time between visits

(years; mean�SD)
N/A 2.12 � 0.68 N/A

MMSE � Mini Mental State Exam.

Figure 3. Distribution of genetic risk scores. Participants’ risk scores were normally distributed across the range of possible scores. No
participants had zero genetic risk factors nor did any have the maximum of seven risk factors. There were no differences in either unweighted risk
score or weighted risk score distributions between the baseline cohort (n � 66) and the subset of participants with longitudinal data (n � 45).
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7.0. WRSs ranged from �0.09 to 1.15 (Fig. 3). As ex-
pected, there was a high correspondence between URS
and WRS within subjects (r � 0.72, p � 0.0001). The
distributions of risk scores between our baseline group
and the follow-up group were not significantly different.
We included the WRS in our analyses for transparency, so
the effect of weighting could be fairly assessed alongside
the additive URS approach. Our focus, however, was on
the URS, as this score is most easily and reliably repro-
duced across research sites.

We tested for an association of verbal memory scores
(logical memory delay total and delay total change over 2
years) with GRS, and found no significant relationship
between behavior and URS (baseline: r � 0.14, p � 0.13;
follow-up: r � �0.06, p � 0.34) or WRS (baseline: r �
�0.06, p � 0.34; follow-up: r � 0.05, p � 0.37). The lack
of an association between cognition and genetic risk
score highlights the preclinical focus of this work, which is
to identify biomarkers that are associated with genetic risk
for AD in cognitively healthy older adults.

High-resolution hippocampal structural imaging:
baseline
Baseline HC subfield thickness was corrected for overall
differences in size by normalizing each participant’s thick-
ness values by their ICV. There was no significant rela-
tionship between GRS and ICV-normalized thickness
across the entire HC (URS: r � 0.15, p � 0.16; WRS: r �
0.02, p � 0.44; Fig. 4). Next, we examined ERC and SUB,
two regions affected early in AD, and again found no
association between GRS and ICV-normalized thickness
(URS: r � 0.14, p � 0.13; WRS: r � 0.05, p � 0.35). As an
exploratory analysis, we examined the remaining sub-
fields and did not find any significant relationship between
thickness and genetic risk. Finally, we ran partial correla-
tions controlling for the effects of age and sex in the whole

HC and in each subregion individually. These partial cor-
relations again showed no significant association be-
tween thickness and genetic risk.

High-resolution hippocampal structural imaging:
longitudinal change
Across the entire cohort, the average change in whole HC
thickness was �1.91% (�4.7%) over an average of 2.13
years (�0.68 years). This is slightly higher than previously
published estimates of hippocampal atrophy using vol-
umes estimates, but we are using a more sensitive tech-
nique, and we include perihippocampal cortical regions in
our whole HC average (Das et al., 2012; Fraser et al.,
2015). Individual trajectories varied relatively widely, ac-
counting for the large SD in the percentage change in
thickness. Most people experienced mild changes in
thickness, but a subset had more dramatic changes,
usually thinning over time (Fig. 5). There were some indi-
viduals whose thickness increased between baseline and
follow-up.

We found a significant negative correlation between
increasing GRS and more negative percentage change in
cortical thickness across the entire HC (URS: r � �0.40,
p � 0.003; WRS: r � �0.25, p � 0.048; Fig. 6). We
hypothesized that this effect was driven by ERC and SUB,
two regions of the HC that are affected early by AD
pathology. In ERC, thickness correlated with both GRS
types (URS: r � �0.35, p � 0.009; WRS: r � �0.35, p �
0.009; Fig. 6). In SUB, the association was significant but
not as strong (URS: r � �0.31, p � 0.01; WRS: r � �0.22,
p � 0.07). We also ran partial correlations controlling for
the effects of age, sex, and time between baseline and
follow-up scans. Partial correlation coefficients were still
significant for whole HC cortical thickness and URS (URS:
r � �0.34, p � 0.028; WRS: r � �0.27 p � 0.086), and for
ERC thickness with both risk scores (URS: r � �0.32 p �

Figure 4. Baseline scatterplots show no association between genetic risk scores and hippocampal complex thickness. Baseline
whole hippocampal complex thickness estimates were corrected for normal variation in size using intracranial volume (ICV). There was
no significant correlation between unweighted or weighted risk scores and ICV-corrected whole hippocampal complex thickness in
our baseline cohort of 66 cognitively healthy older adults.
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0.038; WRS: r � �0.34 p � 0.025). As exploratory anal-
yses, we examined each remaining HC subfield and found
additional significant relationships to URS with FUS (r �
�0.35, p � 0.009), PHC (r � �0.26, p � 0.042), and CA1
(r � �0.25, p � 0.048) thickness (Fig. 7). Finally, we
compared a multiple regression model using our URS to
predict a change in whole HC thickness to a model that
included only APOE as the genetic risk regressor (ho-
mozygous carrier � 2, heterozygous carrier � 1, noncar-
rier � 0; Table 2). Age, sex, and time between baseline
and follow-up visits were included in both models. We
found that the URS model overall was highly significant (p
� 0.001) and that URS was a significant predictor within
the model (p � 0.028), along with time between visits (p �
0.002) and a trend for sex (p � 0.059). In contrast, the
APOE-alone overall model was significant (p � 0.003), but
APOE itself was not a significant predictor of thickness (p
� 0.15). Instead, the model was driven by the time be-
tween visits (p � 0.002) and sex (p � 0.004; Table 2). We
used Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) to directly compare models.
Comparing the URS model to the model with APOE alone
reveals that the URS model is a better fit to our data (URS
model: AIC � 258.0, BIC � 268.9; APOE model: AIC �
261.2, BIC � 272.1). The URS model was also a better fit
when compared with a model that used an FH of AD to
quantify genetic risk (URS model: AIC � 258.0, BIC �
268.9; FH model: AIC � 263.0, BIC � 273.9).

Discussion
We have shown that a GRS for AD is associated with
hippocampal thinning over 2 years, but not with baseline
morphology, in cognitively healthy older adults. Our find-
ings provide evidence that genetic risk screening might be
a valuable tool for predicting the trajectories of endophe-
notypes and, ultimately, disease. By showing that greater
genetic risk is associated with greater thinning in the
hippocampus, a region that is particularly vulnerable to
AD pathology, we demonstrate the power of working with
a neuroimaging genetics approach in cognitively healthy
individuals. There were no associations between GRS and
baseline hippocampal morphology, which was not in line
with our hypotheses. This highlights the importance of
longitudinal data, especially when studying healthy older
volunteers, for identifying differences in atrophy rates
which are likely more sensitive than baseline differences
(Lu et al., 2011; Chincarini et al., 2016). There were also no
associations between GRS and verbal memory perfor-
mance in our participants, which supports the idea that
neuroimaging endophenotypes for AD may be more sen-
sitive markers of risk for disease progression during the
preclinical phase. Our study identified a predictive rela-
tionship between genetic risk for AD and hippocampal
complex thinning that is not mediated by cognition. Thus,
our findings demonstrate a truly preclinical potential bio-
marker for AD.

Figure 5. Longitudinal hippocampal complex gray matter thickness. Each participant’s mean thickness across the whole hippocam-
pal complex is plotted at baseline and at follow-up. Most participants experienced modest changes in thickness, while fewer subjects
had more dramatic changes in thickness, usually as decreases in thickness. Only one subject had an increase in mean thickness
�0.15 mm.
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Other investigators have taken polygenic AD risk score
approaches in neuroimaging studies. One of the first of
these studies reported that a GRS that included all of the
then known AD risk genes predicted cortical thinning in
regions that are particularly vulnerable to AD, including
entorhinal, lateral temporal, and posterior cingulate corti-
ces (Sabuncu et al., 2012). Another more recent study
(Chauhan et al., 2015) used a similar approach, combining
all known AD risk genes into a single score, and examined
several structural measures in a large cohort of cognitively
healthy subjects. The authors found that a higher genetic
risk score was significantly associated with hippocampal
volume, but not with intracranial volume or whole-brain
volume. Our results, like those from these studies, sup-
port the existence of a predictive link between genetic risk
for AD and hippocampal complex morphology.

The present study design has two unique strengths. The
first is the two-level selection criteria that we used in

creating our GRS. While there is certainly a defensible
rationale for creating risk scores that include every known
genetic locus with a significant association with disease,
we argue in favor of a hypothesis-driven approach re-
stricted to genes and factors for which evidence links
them to the biomarker of interest. It unlikely that every
genetic risk factor associated with AD incidence is also
significantly associated with a given AD biomarker, such
as hippocampal integrity. It is more likely that many of the
genetic loci associated with AD incidence have nonover-
lapping molecular mechanisms leading to increased risk
for disease and, therefore, would likely drive changes in
some biomarkers for AD and not others. For example,
studies have shown that CLU variants are related to struc-
tural and functional MRI biomarkers, but no association
with positron emission tomography (PET)-measured am-
yloid deposition or to AD-relevant CSF analytes has been
reported. Our approach of using only genetic variants

Figure 6. Greater genetic risk score predicts thinning across the hippocampal complex and especially in entorhinal cortex (ERC).
There is a significant relationship between both weighted and unweighted risk scores and the percentage change in bilateral
hippocampal complex thickness over 2 years. This effect was particularly strong in ERC, a region adjacent to the anterior portion of
the hippocampus proper that is affected early in the course of AD.
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associated with AD incidence and also hippocampal
structure or function strengthens our ability to detect a
significant association with hippocampal atrophy. A sec-

ond strength of our study is the process by which we
measure our biomarker, hippocampal complex cortical
thickness. Volumetric measurements of the hippocampus

Figure 7. Hippocampal complex unfolded to reveal region-wise relationships to unweighted genetic risk score. A cortical unfolding
procedure is used to produce a flat map of the hippocampal complex. Regions are colored according to the statistical strength of the
association between unweighted risk score (URS) and the percentage change in thickness between baseline and follow-up scans. In
addition to ERC, the fusiform (FUS) showed a significant relationship to URS at p � 0.01. Parahippocampal cortex (PHC), subiculum
(SUB), and CA1 all showed a significant relationship to URS at p � 0.05. The only regions in the hippocampal complex where change
in thickness was not associated to genetic risk were CA23 and dentate gyrus (CA23DG) and perirhinal cortex (PRC).

Table 2: Multivariate models predicting percentage change in hippocampal complex thickness

Predictors Coefficients R2

� SE t value p value

Model 1: unweighted risk score Constant 17.153 5.994 2.862 0.007��

Age �0.102 0.079 1.291 0.204
Sex �2.730 1.409 �1.938 0.060
Years between visits �2.863 0.893 �3.207 0.003��

Unweighted risk score �1.322 0.583 �2.270 0.028�

<0.001 0.364
Model 2: weighted risk score Constant 17.032 6.144 2.772 0.008��

Age �0.144 0.079 �1.826 0.075
Sex �3.735 1.337 �2.793 0.008��

Years between visits �2.901 0.915 �3.172 0.003��

Weighted risk score �3.101 1.763 �1.758 0.086
0.002 0.333

Model 3: APOE Constant 17.227 6.255 2.754 0.009��

Age �0.150 0.080 �1.872 0.068
Sex �4.080 1.349 �3.024 0.004��

Years between visits �2.981 0.932 �3.199 0.003��

APOE �1.249 0.869 �1.437 0.158
0.003 0.317

Model 4: family history Constant 15.945 6.310 2.527 0.016�

Age �0.146 0.082 �1.782 0.082
Sex �3.702 1.435 �2.579 0.014�

Years between visits �2.699 0.960 �2.810 0.008��

FH �0.895 1.404 �0.637 0.528
0.007 0.289

��p�0.01
�p�0.05
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based on whole-brain structural imaging are less sensitive
to subtle changes in gray matter morphology than the
semi-manual hippocampal segmentation process with
high-resolution, partial-field-of-view imaging used in this
work. In preclinical AD, specific cortical laminae experi-
ence neuronal loss, which affects total volume only subtly
while exerting a greater effect on gray matter thickness
measurements (Hyman et al., 1984; Gómez-Isla et al.,
1996). Also, cortical thickness measurements are calcu-
lated at hundreds of points across the gray matter of the
hippocampal complex, making averages more robust and
less likely to be influenced by noise or error than lower-
resolution volume estimates that include regions of white
matter and, sometimes, CSF.

Our method of hippocampal subfield segmentation is one
of several such techniques. There is an ongoing effort to
create a harmonized protocol for hippocampal subfield seg-
mentation, which we are actively supporting (Boccardi et al.,
2011; Yushkevich et al., 2015). These efforts are essential to
ensure that findings from different research groups are com-
parable and, therefore, better serve to enhance our under-
standing of hippocampal morphology and pathological
changes to hippocampal structure. However, our laboratory
has been consistently and successfully using versions of our
current method for �10 years, and it is the most reliable
method available, especially as it pertains to the segmenta-
tion of the most anterior hippocampal subfields, including
entorhinal cortex (Ekstrom et al., 2009; Donix et al., 2010a;
Burggren et al., 2011). In future studies, we plan to adopt the
automated techniques resulting from the Hippocampal Sub-
fields Working Group efforts. In the present study, we chose
not to interrogate left and right hippocampal complexes
separately because we did not have a hypothesis regarding
the laterality of the association between an AD GRS and
hippocampal thinning.

We recognize that the factors included in our genetic
risk score are not entirely independent. For example,
carriers of the APOE�4 allele often have a higher inci-
dence of positive family history of AD when compared
with APOE�4 noncarriers (Zintl et al., 2009). However, due
to our recruitment strategy targeting the worried well and
older adults with a family history of AD, APOE�4 noncar-
riers in our cohort are enriched for other genetic risk
factors for AD, such as family history of AD, despite their
lack of an APOE�4 allele. In our cohort, there were no
significant differences in family history in carriers (60.7%
with positive family history) versus noncarriers (65.8%) of
the APOE�4 allele (p � 0.80).

There are several ways to attempt to identify genetic
risk factors associated with a particular endophenotype,
including data reduction techniques such as principal
component analysis and regression techniques such as
logistic regression in genome-wide association studies
(GWASs). In the present study, we chose to use the
two-level selection criteria approach due to its conceptual
novelty. Our use of an OR-weighted GRS and an un-
weighted GRS side by side was meant to illustrate the
advantage of one over the other, if present. However, we
found that in our GRS, composed of four genetic risk
factors, it was at least equally effective to use a simple

linear additive risk score as it was to use a weighted
approach. Because odds ratios change slightly with each
GWAS, a simple additive approach might be best to
ensure comparability and reliability of a GRS across lab-
oratories and in clinical trials.

In addition to hippocampal integrity, another potential bio-
marker of preclinical AD is amyloid and tau deposition, as
measured by PET scanning. We do not have amyloid- or
tau-PET data available on these subjects, so it is not possi-
ble to rule out the presence of these pathologies in these
subjects. We are also not able to estimate the tau positivity
rate based on the literature as tau-PET scanning is a rela-
tively new tool, but there is evidence that, like amyloid, tau is
sometimes present in high levels in the brains of clinically
healthy individuals (Johnson et al., 2015). According to Do-
raiswamy et al. (2014), �14% of cognitively healthy older
subjects are amyloid positive. Of course, the cutoff to define
amyloid positivity is not precise and varies across studies, so
this positivity rate is just an estimate. Still, assuming that this
rate is accurate, it would indicate that 9–10 (9.24) partici-
pants in our cohort are likely to be amyloid positive. Thus, we
feel that even with the potential noise introduced into our
sample by possibly including subjects with amyloid, we still
have a large enough sample of amyloid-negative partici-
pants to detect the significant effect between GRS and
hippocampal morphology.

Mechanistic insights from neuroimaging genetics stud-
ies are inherently limited by the lack of known causal
variants driving many of the significant GWAS signals in
AD. Saykin et al. (2015) describe a multistep process to
move from these genetic signals to targeted therapeutic
agents. In their model, genetics and neuroimaging inter-
sect at the first step (discovering genetic loci that are
robustly associated with a relevant trait) and at the final
step (identifying individuals most likely to benefit from
experimental therapies). The steps linking these two to-
gether include, first, the identification of causal variants,
then testing hypothesized mechanisms in model systems,
and, finally, developing mechanism-targeted therapeutic
agents. In the present study, we have demonstrated an
additive effect of multiple genetic risk factors on an AD
biomarker, indicating that there might be different mech-
anisms affecting the same outcome measure, in this case
hippocampal complex cortical thickness.

The present study provides the first evidence that a
hypothesis-driven AD GRS predicts increased hippocam-
pal complex subfield thinning over 2 years in healthy older
adults. This work is extremely relevant to clinical trial
design because of the short, 2 year follow-up time along
with the ease of collecting genetic and MRI data. Both are
minimally invasive and can be repeated as needed. We
argue that prescreening preclinical, cognitively healthy
individuals to maximize genetic risk will increase the
power to detect changes in related biomarkers. Indeed,
preliminary work designed to assess the increased power
of genetic prescreening in clinically impaired cohorts has
been promising. Kohannim et al. (2013) report up to a
50% decrease in sample size needed to detect an effect
in atrophy over 2 years. Genetic prescreening paired with
neuroimaging-based outcome measures is going to be a
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critical component of future AD clinical trials focused on
cognitively healthy, preclinical individuals for which tradi-
tional pencil-and-paper outcome measures will not be
sensitive enough to detect drug effects.
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