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Abstract

Worldwide, crop production is intrinsically intertwined with biological, environmental and

economic systems, all of which involve complex, inter-related and spatially-sensitive phe-

nomena. Thus knowing the location of agriculture matters much for a host of reasons. There

are several widely cited attempts to model the spatial pattern of crop production worldwide,

not least by pixilating crop production statistics originally reported on an areal (administrative

boundary) basis. However, these modeled measures have had little scrutiny regarding the

robustness of their results to alternative data and modeling choices. Our research casts a

critical eye over the nature and empirical plausibility of these types of datasets. To do so, we

determine the sensitivity of the 2005 variant of the spatial production allocation model data

series (SPAM2005) to eight methodological-cum-data choices in nine agriculturally-large

and developmentally-variable countries: Brazil, China, Ethiopia, France, India, Indonesia,

Nigeria, Turkey and the United States. We compare the original published estimates with

those obtained from a series of robustness tests using various aggregations of the pixelized

spatial production indicators (specifically, commodity-specific harvested area, production

quantity and yield). Spatial similarity is empirically assessed using a pixel-level spatial simi-

larity index (SSI). We find that the SPAM2005 estimates are most dependent on the degree

of disaggregation of the underlying national and subnational production statistics. The

results are also somewhat sensitive to the use of a simple spatial allocation method based

solely on cropland proportions versus a cross-entropy allocation method, as well as the set

of crops or crop aggregates being modeled, and are least sensitive to the inclusion of crude

economic elements. Finally, we assess the spatial concordance between the SPAM2005

estimates of the area harvested of major crops in the United States and pixelated measures

derived from remote-sensed data.

Introduction

Where in the world agriculture occurs is consequential. Crop yields, for example, are the result

of a complex and spatially sensitive set of interactions between climate, soil, crop variety and

innumerable other crop management and input use choices made by farmers [1]. But we have
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comparatively little knowledge of precisely where (and how) crops are grown the world over.

The diversity and spatial variation in cropping that stems from differences in agro-ecological

conditions and market structures may not be adequately captured when using agricultural pro-

duction statistics delineated by coarse administrative boundaries (e.g., countries or regions),

such as those commonly reported by the Food and Agricultural Organization (FAO) or

national statistical offices with whom they collaborate. In response, analysts and others have

sought higher-resolution, pixelated data on crop production to better represent the spatially

heterogeneous nature and impacts of agriculture.

Remote-sensed data, increasingly with global coverage, enables the gathering of timely and

spatially-delineated data on cropping practices worldwide. However, highly detailed maps of

cropland, crop acreage and crop performance are only available from a handful of national

agricultural monitoring programs [2–3]. Similar data products with the same temporal and

spatial resolutions are presently not available for most of the countries in the world. Beyond

the considerable cost of acquiring and processing remote-sensed images worldwide, there are

marked variations in cropping systems that complicate efforts to develop an integrated charac-

terization system [4]. For instance, while maize production is ubiquitous, maize fields vary in

size, climatological and edaphic attributes, seasonal performance, varietal choice and other

crop management practices (e.g., timing and use of fertilizer or multiple-cropping), thus com-

plicating efforts to develop comparable crop coverage maps for all countries. However, as ana-

lytical capabilities improve and costs fall, the use of remote-sensed imagery to develop

detailed, reliable, spatially-calibrated maps of crop acreage and yield is bound to increase.

Meanwhile, other methods are being used to address the myriad of demands for pixilated

crop production data, all of which entail procedures to “spatially downscale” or “spatially allo-

cate” areal data reported as national or subnational aggregates or (in the case of yields) aver-

ages. You and Wood [5] identified three simple allocation methods, whereby hierarchical,

areal crop production data (i.e., data at national versus regional versus local scales) are allo-

cated to pixels within subordinate administrative areas in proportion to the distribution of

total land area, cropland area, or biophysically suitable land for agriculture within each pixel.

For example, one widely cited set of pixelated production estimates developed by Monfreda

et al. [6] used pixelated cropland estimates reported by Ramunkutty et al. [7] to spatially allo-

cate area data for each crop in proportion to the estimated share of total cropland within each

pixel. Monfreda et al. [6] also assumed that the average yield for each administrative unit

equaled the yield for each and every pixel within that unit, then (with some correction for

cropping intensity) used these yield data in conjunction with the allocated area data to impute

crop quantities for each pixel. Portmann et al. [8] took the Monfreda et al. [6] harvested area

estimates and partitioned them further into irrigated and non-irrigated areas within each

pixel.

A second, more complex method of spatially allocating areal data uses ancillary data on

population density, crop suitability, irrigation and so forth to create a plausible, pixel-level

sense of the geography of crop area, production and yield. This approach was first described

by You and Wood [9], and subsequently used by Fischer et al. [10] and You et al. [11]. Ander-

son et al. [12] examined the spatial concordance of alternative circa 2000 estimates reported in

Monfreda et al. [6], Portmann et al. [8], Fischer et al. [10] and You et al. [11] and found sub-

stantial differences.

Based on circa 2005 data obtained from You et al. [13], developed using their complex spa-

tial production allocation method (dubbed SPAM), we conduct an in-depth assessment of the

implications of using alternative data and modeling choices on the estimated landscape of

crop production for 42 crops in nine countries. Our robustness assessment focuses on the

empirical implications of eight methodological and data choices; specifically, the type of spatial
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allocation method, the crop coverage, the treatment of a “rest-of-crops” aggregate, the incor-

poration of a “crop suitability” data layer, the inclusion of rudimentary economic elements,

and the administrative boundary details of the primary source statistics.

A spatial similarity index (SSI) index is used to assess the sensitivity of the SPAM2005 allo-

cation method to each of the methodological-cum-data choices we studied. Each of the eight

options has significant implications for the measured landscape of crop production, but some

matter more than others. SPAM2005 is most sensitive to the spatial resolution of the underly-

ing subnational crop production statistics, and moderately sensitive to the choice of the spatial

allocation method used and the choice of crops or crop aggregates included. Finally, we assess

the spatial concordance of harvested area from the original SPAM2005 estimates and variants

thereof resulting from our robustness tests to the remote-sensed, pixilated data on U.S. crop-

ping acreages reported by in the United States Department of Agriculture (USDA), National

Agricultural Statistics Service’s (NASS) Cropland Data Layers (CDL) [14–16].

Materials and methods

Data

The data examined in this paper were sourced from HarvestChoice’s SPAM2005 v3r1 [13]

global estimates of physical area, harvested area, production quantity and yield centered on the

year 2005 for 42 crops and crop aggregates, and are available for download at www.mapspam.

info. SPAM2005 disaggregates its estimates by four production systems (namely, irrigated,

rainfed-high inputs, rainfed-low inputs and rainfed-subsistence). Our robustness assessments

are based on the sum (for harvested area or production quantity) or area-weighted average

(for yields) across these four production systems.

SPAM2005 estimates begin as informed priors on the pixel-level physical cropping area,

which are developed in a pre-processing step using ancillary data on crop statistics, cropland,

irrigated area, suitable area, population, crop prices and potential yields. These prior global 5

arc-minute pixelated estimates are then updated by way of a cross-entropy optimization

model subject to several constraints to derive the allocated physical cropping area in each

pixel. Using information on cropping intensities, production systems and potential yields, the

allocated physical area is subsequently converted to estimates of allocated harvested area, pro-

duction quantity and yield. The data and modeling methods used to create the SPAM2005 spa-

tial crop production estimates are summarized in S1 Appendix in the Supporting Information,

and are fully documented in Wood-Sichra et al. [17]. Our analysis focuses on nine agricultur-

ally-important countries that represent a range of agro-ecologies, geographical regions, and

per capita income classes (indicating, inter alia, various stages of economic development):

namely Brazil, China including Taiwan (hereafter, China), Ethiopia, France, India, Indonesia,

Nigeria, Turkey and the United States.

Robustness scenarios

The estimates provided by SPAM2005 (or any similar spatial allocation model) are only as reli-

able as the methodology and data choices that underpin them. The data and methodological

details we examine are summarized in Table 1, and the procedures we used to construct our

eight robustness tests are discussed in more detail in S2 Appendix. With the exception of our

test of the allocation method per se, each of the remaining robustness tests were performed by

re-running SPAM2005 subject to the exclusion of a particular piece of information (e.g., 34

versus the 42 crops or crop aggregates in the reference SPAM2005 estimates, with and without

a land suitability data layer or a market access layer, and so on). To test the empirical conse-

quences of the allocation method per se, we compared the original SPAM2005 results (dubbed

Pixelating crop production

PLOS ONE | https://doi.org/10.1371/journal.pone.0212281 February 19, 2019 3 / 16

http://www.mapspam.info/
http://www.mapspam.info/
https://doi.org/10.1371/journal.pone.0212281


“complex method”) with those obtained using the Monfreda et al. [6] procedure (designated

“simple method”) applied to the data elements underlying You et al. [13] (see S3 Appendix for

details).

Throughout this paper the spatial unit of analysis for the areal data are statistical reporting

units (SRUs). In keeping with Wood-Sichra et al. [17], SRUs constitute the most disaggregated

geo-political unit for which the primary data are available for each country in our analysis. Fig

A in S1 Appendix summarizes the spatial resolution of the crop-level source data at the

ADM0- (national-level), ADM1- (subnational-level one) and ADM2-levels (subnational-level

two). For Brazil, China, Ethiopia, India, Turkey and the United States the data were primarily

compiled at an ADM2-level, although some reported crop coverage estimates in each country

were only available at an ADM1-level. In the United States, there were counties with missing

data for all crops except cotton. These data were predominately missing for non-disclosure

reasons. In Indonesia and Nigeria, data were compiled for all crops at an ADM1-level. In

France, most data were compiled at an ADM1-level; although data on eight crops were only

available at the national-level. Robustness tests 1–6 in Table 1 maintain the original SRUs,

while tests 7 and 8 are used to explicitly examine the empirical consequences of using data

compiled only at the ADM1- or ADM0-level respectively.

Results

The pixelized crop allocation implications of each methodological choice are evaluated by

comparing various aggregations of the spatial distributions of production statistics from each

of the robustness scenarios against the original (published) SPAM2005 estimates.

The modeled presence or absence of production by pixel

A primary point of distinction among the different scenarios we assess is whether or not a

crop is present or absent from a given pixel, irrespective of the magnitude of measured or

modeled production. The upper half of Table 2 gives a country-level perspective on the spatial

extent of maize within each of the nine listed countries. Column 2 reports the share of total

cropland pixels within each country (reported in Column 1) where SPAM2005 reports non-

zero maize production (cropland data was sourced from Fritz et al. [18]). Columns 3–10 report

Table 1. Summary of robustness scenarios.

Robustness Test Original Description Test Description

1 Allocation

Method

Use complex method to disaggregate administrative-level statistics to pixels Use simple method to disaggregate administrative-

level statistics to pixels

2 Crop Choice 33 major crops and 9 crop aggregates 30 major crops and 4 crop aggregates

3 Remainder

Allocation

Actively allocate rest-of-crops aggregate along with other 41 crops and crop aggregates Passively assign remaining cropland after

allocation to rest-of-crops aggregate

4 Crop Suitability Allocated physical area by pixel, crop and production system constrained to not exceed the

suitable area within the pixel with corresponding crop and production system

No suitability constraint in place during allocation

process

Economic Suitability

5 Market Access Measure of market access varies by pixelated estimates of rural population density No variation in market access measure

6 Crop Price Global commodity prices vary by crop No variation in global commodity prices (i.e., all

prices are set to 1.0 I$/mt in model)

Underlying Statistics

7 ADM0 Only If available, production statistics collected at ADM2-level used before ADM1-level or

ADM0-level

Only ADM0-level production statistics used

8 ADM1 Only If available, production statistics collected at ADM2-level used before ADM1-level or

ADM0-level

If available, production statistics collected at

ADM1-level before ADM0-level

https://doi.org/10.1371/journal.pone.0212281.t001
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the share of pixels where maize is deemed to occur subject to each of the methodological-cum-

data scenarios we examined. Thus, for example, SPAM2005 estimates that maize grew on 79.0

percent of the 66,224 cropped pixels in Brazil in 2005. This compares with almost all the

cropped pixels (95.2 percent) if the simplified Monfreda et al. [6] allocation procedure was

used, or just 72.0 percent if ADM1 (i.e., provincial-level) data were used instead of the ADM2

(municipality-level) data that underpins the majority of the original SPAM2005 estimates for

Brazil.

The lower half of Table 2 reports ADM1 level data for Ethiopia to illustrate the spatial sensi-

tivity of the allocated presence or absence of maize per cropped pixel, again comparing the

robustness test results against the original SPAM2005 estimates. S4 Appendix contains the

same data for the other eight countries we studied. It reveals significant subnational differences

in the modeled presence (and by implication absence) of maize throughout Ethiopia when

comparing both across ADM1s for a given robustness test, and among robustness tests for a

given ADM1. In some instances the differences are profound. For example, SPAM2005 esti-

mates that 98.9 percent of the cropped pixels in the Benishangul-Gumuz region (located in

western Ethiopia on the Sudanese border) grew maize in 2005, whereas allocating ADM0

Table 2. Comparison of non-zero maize production pixels between original and robustness test estimates.

Robustness Tests

Economic Suitability Underlying Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Aggregation Cropland

Pixels

Original Allocation

Method

Crop

Choice

Remainder

Allocation

Crop

Suitability

Market

Access

Crop

Price

ADM0

Only

ADM1

Only

(count) (percent)

Country

Brazil 66,224 79 95.2 79.3 79 80.6 79.2 79.1 101.2 72

China 67,572 73.6 77.2 73.3 73.7 74.6 73.5 73.5 69.4

Ethiopia 4,723 69.4 84 69.6 68.8 80.5 69.4 69.4 65.3 68.1

France 8,309 84.3 81.2 78.9 79.2 80.2 79.2 79.1 79.6 79.2

India 37,049 71.6 74.2 71.7 72 75.5 71.9 72 32.6

Indonesia 24,964 79.7 93.7 66.4 59.1 85 79.1 79.7 85.9 59.1

Nigeria 10,269 91.7 92.8 92.6 90.3 92.3 91.1 91.7 91.7

Turkey 11,966 69.5 85.6 66.9 67.8 81.1 69.5 69.5 73.1 70

United States 78,995 64.8 64.4 64.6 64.8 65.6 64.8 64.8 79.1 76.5

Ethiopia Region

Addis Ababa 6 83.3 66.7 83.3 83.3 83.3 100 83.3 83.3 83.3

Afar 65 100 92.3 98.5 100 100 100 100 96.9 104.6

Amhara 1,361 60.3 82.1 63.3 57.6 81.9 60.3 60.4 67.2 67.2

Benishangul-

Gumuz

264 98.9 96.2 98.9 98.9 98.9 98.9 98.9 8.3 98.5

Dire Dawa 11 100 100 100 100 100 100 100 81.8 100

Gambella 59 71.2 67.8 71.2 71.2 71.2 71.2 71.2 11.9 71.2

Harari 3 100 100 100 100 100 100 100 100 100

Oromia 1,686 69.6 84 75.5 70.3 79.8 69.6 69.8 67 66.8

SNNP 590 73.9 93.2 53.4 73.7 81.2 73.7 73.6 75.8 50.8

Somali 168 47 53 47 47.6 54.2 47.6 47 51.8 82.1

Tigray 510 74.5 82.5 72.9 74.5 76.1 74.5 74.5 77.6 68.2

Percentages over 100 percent are possible due to adjustments made to the cropland available to facilitate an entropy solution (see Wood-Sichra et al. 2016 for more

details).

https://doi.org/10.1371/journal.pone.0212281.t002

Pixelating crop production

PLOS ONE | https://doi.org/10.1371/journal.pone.0212281 February 19, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0212281.t002
https://doi.org/10.1371/journal.pone.0212281


(country-level) data puts the estimated share of cropped pixels growing maize in this region at

just 8.3 percent.

Likewise, SPAM2005 estimates that 71.2 percent of the cropped pixels in the Gambella

region (also located on the border region of western Ethiopia) grew maize, compared with just

11.9 percent of the region’s cropped pixels if the allocation process were initialized with just

country-level data. These simulation results suggest that the crop suitability layer conditioning

the spatial allocation process may cluster country-level data into highly localized pixels when

unconstrained by more disaggregated ADM2 data. The ADM2 data implicitly incorporate

many attributes (e.g., farmer choice and market access) into the spatial allocation process that

go well beyond the climate and edaphic suitability attributes embodied in the Fischer et al. [10]

crop suitability layer used by SPAM2005.

Consequently, there are significant spatial discrepancies in the pixilated presence or absence

of production within a given SRU depending on the methodological-cum-data choices used in

the spatial allocation procedure; discrepancies that tend to be magnified when the allocation

procedure is primed with areal data from countries with large subnational administrative units

like Ethiopia (where the average ADM2 unit is 13.1 square kilometers) versus countries like

Brazil (where the average ADM2 unit is just 1.5 square kilometers). These spatial sensitivities

point to the need for caution when interpreting the results of studies such as Franch et al. [19],

Hutabarat et al. [20] and Johnson et al. [21] that use SPAM2005 data in their simulations tak-

ing this estimate of the geographical footprint of crop production at face value. Beddow et al.’s

[1] results highlight the sensitivity of production and productivity assessments to the (chang-

ing) spatial footprint of crop production.

Spatial evaluation criteria

A binary evaluation (presence versus absence) of crop production provides an important, first-

cut perspective on the implications of different methodological and data choices on the mod-

eled distribution of crop production, but there is added value in a more nuanced, spatially-

explicit assessment of alternative spatial allocation approaches. The number of pixels in our

nine-country sensitivity assessment is large; a total of 308,558 pixels. To develop a summary

sense of the spatial implications of alternative data and modeling choices on the landscape of

production we use a spatial similarity index (SSI). SSIi is only calculated in those instances

where pixel i has non-zero production for at least one of the modeled scenarios being com-

pared. Additionally, we assessed similarity using the root mean squared errors (RMSEs) from

an OLS regression of the robustness scenario estimates on the original estimates for each pixel

i = 1 to n, but opted not to use this metric since RMSEs are highly sensitive to outliers and dis-

similarity is not bounded (i.e., complete distinctiveness cannot be measured).

Our SSIi, based on Hangen-Zanker [22], measures the similarity of modeled production

reported in pixel i estimated using one of our alternative methodological-cum-data choices, ai,
relative to modeled production for that same pixel taken from the original SPAM2005 data set,

bi,. By construction, SSIi ranges from 0 (entirely distinct) to 1 (identical), and is calculated

between each pair of corresponding pixels (ai, and bi,) using the following similarity function:

SSIi ¼ 1 �
jai � bij

maxðai; biÞ
: ð1Þ

SSIi can be used to examine differences on a pixel-by-pixel basis or summed across pixels

at varying spatial scales (e.g., ADM 0, 1 or 2 levels of aggregation) or across pixel-crop

combinations to provide a summary assessment of the relative consequences of alternative

methodological-cum-data choices on the spatial distribution of production. Avitabile et al.
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[23] used this same approach to assess the spatial similarity of forest biomass throughout

Uganda.

A raw pixel-wise comparison between the original and robustness scenario estimates can

result in an exaggerated perception of spatial differences in crop production estimates, espe-

cially if the robustness scenario indicates an absence of production within a pixel whereas the

original SPAM2005 estimate indicates some, albeit perhaps even minimal, production, within

that same pixel (or vice versa). To address this problem, we recalculated each pixel value based

upon a linear combination of values within a defined neighborhood of that pixel for each of

the country-, crop-, and production system-specific estimates. Similar to Anderson et al. [12],

we used Gaussian-based focal weights (or kernel files, see ESRI [24]) to account for the poten-

tial influence of neighboring pixels. But in contrast to Anderson et al. [12], given the compara-

tively large (5 arc-minute) spatial resolution of the SPAM2005 pixels, we opted to report the

spatially averaged results from using focal weights with a 1-pixel radius and 0.33 standard devi-

ation for the remainder of this analysis. Anderson et al. [12] used a 12-pixel radius and 3 stan-

dard deviation filter for their analysis on estimates with a similar 5 arc-minute resolution. We

opted to use a radius that is three times the standard deviation (rather than four times the stan-

dard deviation) because 99.7 percent of the total integral of an infinite Gaussian filter falls

within a radius of three standard deviations, and a finite choice larger than three standard

deviations would unduly distort the shape of the Gaussian curve. Additionally, in our sample,

the 5 arc-minute pixels with estimated crop production range in size from 2,774 hectares to

8,548 hectares, so the assumption that an individual 5 arc-minute pixel is affected by all of the

neighboring pixels within a 12 pixel radius (which results in a total of 440 neighboring pixels

versus our choice of 4) seems far-fetched. The implications of using alternative focal weights

are presented in S5 Appendix, but none that we tried changed the qualitative nature of our

results.

Methodological choice sensitivity

To examine the country-level effects of methodological choices on SPAM2005, we first average

each pixel-level SSIi to a crop-level j indicator by summing and then averaging across each of

the pixels i = 1 to n for a given country k:

SSIjk ¼
1

n
Pn

i¼1
SSIijk: ð2Þ

Heatmaps of these crop-level SSIs are presented in S6 Appendix for each of the nine countries

we examined. The spatial implications of the alternative methodological-cum-data choices we

assessed vary markedly by crop and by country, but have less of a consequence for any of the

production indicators (i.e., crop area, output or yield) for a particular crop-country combina-

tion. For example, while the pattern of SSI values for Brazil (S6 Appendix, Fig A) varies accord-

ing to the modeling choices made, for a given modeling choice the SSI values are reasonably

consistent across all 33 crops whose estimated spatial pattern of production was being assessed.

While China’s SSI values (S6 Appendix, Fig B) are also sensitive to modeling choices (but in

ways that are different from Brazil), in contrast to Brazil, China’s SSI values for a given model-

ing choice are also sensitive to the crop (in this instance 37 in total) under consideration.

Fig 1 provides a summary, on-average, sense of the implications of modeling choices for

each of the nine countries in our assessment. Here we present a weighted average of the crop-

level SSIs (SSIjk0
) for each country (revealed in S6 Appendix, Figs A to Fig 1), using crop-level

harvested-area (CropHjk0
) as the weight to reflect the relative spatial importance of each crop j
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in each country k:

SSIk ¼
PJ

j¼1
SSIjk0

�

Pn
i¼1

CropHijk
PJ

j¼1

Pn
i¼1

CropHijk

 !

: ð3Þ

A dark blue panel indicates a comparatively low pixel-by-pixel concordance in the spatial pat-

tern of production for a given country-modeling choice combination, averaged across all

crops. Increasingly lighter colored panels indicate increasingly higher pixel-by-pixel concor-

dance in the location of crop production, on average. The general indication is that the spatial

pattern of crop yields is less sensitive to methodological-cum-data choices than either har-

vested area or the quantity of crop production, irrespective of the country under

consideration.

That said, the estimated pixilated pattern of output, area and, to some extent even, yields,

tends to be more sensitive, and for some countries even quite sensitive, to the spatial resolution

of the original tabulated data used to prime the SPAM2005 spatial allocation (maximum

entropy) procedure. Notably, the SSIs in Fig 1 indicate that when the SPAM2005 procedure

was primed with ADM0 (country-level) data, the resulting pixilated pattern of harvest area

and production deviate markedly from the original SPAM2005 estimates. Similarly, using

AMD1 data to prime the spatial allocation algorithm for Brazil and India leads to pixelated

production estimates that do not concord closely with the original SPAM2005 estimates. In

both instances, i.e., where either ADM0- (country) or ADM1- (first subnational) level data

primed the allocation procedure, it was the countries with larger geographical crop footprints

that tended to result in estimated spatial patterns of production that deviated the most from

the original SPAM2005 estimates. For example, among the nine countries studied, Nigeria is

one of the geographically smallest countries studied (0.91 million km2) compared with Brazil,

which was among the largest (8.48 million km2, see S1 Appendix). Relying only on ADM1 har-

vested area data rather than much more granular ADM2 data to prime the spatial allocation

procedure led to a large SSI value (0.998 for harvested area, thus spatially similar) for Nigeria

versus a low SSI value (0.241 for harvested area, thus spatially dissimilar) for Brazil. India is an

obvious anomaly to this generalization for reasons that we are unable to identify.

Fig 1. Spatial sensitivity of production to each robustness run relative to original estimates.

https://doi.org/10.1371/journal.pone.0212281.g001
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Across the methodological variants we examined, Ethiopia and France exhibited the most

sensitivity. To illustrate the locally variable nature of this sensitivity, Fig 2 gives a mapped

representation of the pixel-level SSIs across methodological-cum-data choices along with the

original SPAM2005 harvested area estimates for maize in Ethiopia. These sensitivity levels in

Ethiopia and France may be due to several factors. Similar to the discussion above, for exam-

ple, the average geographical sizes of the SRUs priming the crop allocations in both countries

are relatively large; 13,140 km2 for ADM2 units in Ethiopia, and 24,960 km2 for ADM1 units

in France. Imposing less geographical constraint on the location of production in the priors

Fig 2. Spatial similarity index (SSI) for maize harvested area (ha) in Ethiopia, by robustness run. vD–Very Dissimilar; D–Dissimilar; mD–

Marginally Dissimilar; mS–Marginally Similar; S–Similar; vS–Very Similar. SSI is calculated between each robustness run and original

estimates. Areas not under cultivation are shaded light grey. The panel in the bottom right of the figure plots the original SPAM2005 estimates

of harvested area.

https://doi.org/10.1371/journal.pone.0212281.g002
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used to prime the allocation process increases the spatial degrees of freedom for the subsequent

allocation algorithm, thus opening up the prospects of larger variation among alternative allo-

cation procedures in the modeled location of production. Average administrative unit sizes are

presented for each country in S1 Appendix.

In addition to the relatively large size of Ethiopia’s SRUs, another somewhat unique attri-

bute (in the context of this study) is that the area weights used to form the country-level SSIs
are heavily influenced by a crop aggregate, which consists largely of teff. FAO [25] does not

report teff data per se, but rather includes the crop in their cereals nes (not elsewhere stated)

aggregate. In Ethiopia, cereals nes account for 98.6 percent of the total area harvested in the

other cereals category (with the residual 1.4 percent of that area in oats). The other cereals cate-

gory, representing crops such as rye, buckwheat, quinoa and other minor crops in addition to

oats, accounts for just 23.4 percent of the total area harvested in 2004/2006, and 12.3 percent of

the total production quantity across all crops included in SPAM2005, thus indicating teff’s

importance for Ethiopian agriculture. Optimizing the spatial allocation of crops using

SPAM2005 requires the use of a substantial number of crop-specific parameters. However, if

the optimization entails a “crop aggregate” there is no alternative but to use a set of proxy

parameters (notionally representing the composite crop implied by the crop aggregate) to run

the model. This may contribute to the apparent sensitivity of the Ethiopian results to methodo-

logical choices, compounded by the fact that in this case teff (a locally dominant, but interna-

tionally minor crop) has less than ideal data available.

While there are evident sensitivities to the spatial allocation of harvested area, quantity pro-

duced and crop yields associated with the granularity of the original data used to prime the

allocation procedure, Fig 1 reveals much reduced sensitivity to the inclusion or exclusion of a

(non-spatial) crop price element, the inclusion or exclusion of a market access layer, and the

method used to allocate a rest-of-crops aggregate. Crop price was effectively removed from the

spatial allocation procedure by setting all crop prices equal to one (see Wood-Sichra et al.

[17]). The consequences of this methodological choice is that a crude potential revenue rather

than potential quantity optimizing regime was implicit in the allocation procedure.

As a final sensitivity check, we examined the propensity of the allocation procedure to gen-

erate spatial clusters of harvested area, quantity and yield within the SRUs used to prime the

allocation process. To test this proposition we calculated Moran’s I statistic (a measure of spa-

tial autocorrelation) for each crop-country combination for each modeling scenario. As

reported in S7 Appendix, we found no noticeable differences in the spatial autocorrelation of

either harvested area, quantity produced or crop yield for the four crops (maize, rice, sorghum

and wheat) we examined.

Validation assessment

Pixelized estimates of crop production statistics represent a “plausible” accounting of the spa-

tial structure of crop performance within a country, conditioned on a host of source data and

measurement factors. To validate the SPAM2005 estimates, secondary data sets on crop pro-

duction are needed, but finding statistics that have not already been used within the model is

difficult, especially since these data have been shown to be important within SPAM2005. As an

alternative, the present analysis utilizes the high-resolution CDL data products provided by the

USDA, NASS. These layers delineate the major crop or land cover categories (e.g., wetlands or

forest) within each 56 (year 2004) and 30 (years 2005 and 2006) meter pixel [14–16]. While

accuracy assessment tables for the 2004, 2005 or 2006 CDL products are not published, Boryan

et al. ([26] p. 342) state that “the quality of the CDL products was high with classification accu-

racies ranging in the low to mid-90% for major crops.”
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The SPAM2005 estimates of harvested area in maize, soybeans, cotton, rice and wheat are

compared with corresponding CDL estimates of physical area, averaged from 2004–2006 and

aggregated to a 5 arc-minute grid resolution. When making direct comparisons between

aggregated pixel-level information from CDL and SPAM, it is also worth noting that counting

pixels and multiplying by the area of each pixel in the CDL will give a biased estimate of the

aggregate acreage as compared with NASS official estimates because of Type 1 and 2 classifica-

tion errors [26]. The differences between estimates of physical area and harvested area in the

United States was trivial during this time period, due to limited instances of double-cropping

[27]. Only states with complete coverage in all three years are used for our validation exercise:

specifically, Illinois, Indiana, Iowa, Louisiana, Mississippi, Nebraska, North Dakota and Wis-

consin. The crop-level SSIs—calculated using a state-level variant of Eq (2)—between the spa-

tially-averaged physical area estimates reported by CDL and the spatially-averaged harvested

area estimates reported by SPAM2005 are presented in Table 3 for the estimates from the orig-

inal, allocation method, ADM0 only and ADM1 only scenarios.

We examine five crops that represent major as well as minor crops within each of the eight

states: namely, maize, soybean, cotton, rice and wheat. Maize is an important crop (i.e., grown

on at least 30 percent of the total harvested area within a state) in Illinois, Indiana, Iowa,

Nebraska and Wisconsin, while soybean is a similarly important crop in all eight states except

North Dakota, where the major crop is wheat. In general, there is a reasonable to high spatial

concordance between the CDL and SPAM2005 estimates for those crops that account for a sig-

nificant share of the overall crop production within a state. For example, in Illinois, Indiana,

Iowa and Nebraska, the CDL versus original SPAM2005 SSI values for the estimated area of

maize and soybeans range from 0.58 to 0.82. However, the fact that a crop constitutes a large

share of overall state production does not guarantee a strong concordance between the CDL

and SPAM2005 estimates For example, in North Dakota, the spatial similarity for wheat (a

crop that accounts for 44.6 percent of the state’s harvested area) between the original

SPAM2005 and CDL estimates is just 0.52. Moreover, even comparatively minor crops can

result in a reasonable degree of concordance between the CDL and SPAM2005 estimates. For

example, the SSI for wheat in Indiana is 0.50 where wheat accounts for just 3.6 percent of the

state’s harvested area. Regardless of the importance of each crop, the crop-level SSI values are

uniformly low in Louisiana, Mississippi and Wisconsin.

One of the factors accounting for the discrepancies between the CDL and SPAM2005 spa-

tial crop area estimates may be differences in the treatment of data due to disclosure concerns.

As mentioned previously, in the agricultural census and related survey data that underpin the

SPAM2005 estimates, NASS suppresses crop data in counties where there is a possibility of

revealing information about an individual crop producer. There are no data suppression issues

associated with the CDL estimates. Table 4 shows the share of counties for which the crop pro-

duction data are not revealed in the NASS census and survey data. Rice and wheat statistics

were withheld for a substantial number of counties. Likewise, crop statistics for a substantial

number of counties in Louisiana, Mississippi and Wisconsin were undisclosed for all five of

the crops included in our study.

We also examine the spatial concordance between the CDL estimates and estimates from

three of our modeling choice scenarios—specifically, the allocation method, ADM0 only and

ADM1 only. The SSIs indicate that the use of a simple versus a complex allocation method has

little consequence for the observed relationship between the SPAM2005 versus CDL estimates

(Table 3). However, variations in the spatial resolution of the source data are consequential for

the concordance between the CDL and SPAM2005 estimates. In particular, the ADM0 only

variant of SPAM2005 (i.e., using only country-level data to prime SPAM2005) tends to pro-

duce spatial patterns of production that do not concord closely with the CDL estimates,
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especially for the southern states and for maize and soybean in North Dakota. However, in line

with findings discussed above, using more granular, ADM1 only (in this instance county-

level) data to prime the SPAM2005 allocation method tends to improve the spatial concor-

dance of the estimates vis-à-vis the CDL estimates, relative to when only ADM0 data were

used.

A significant portion of the crop-level differences between SPAM2005 and CDL estimates

may lie in the differences in the spatial extent of the respective total land in crops layers under-

pinning (or in the case of CDL, implied by) these two sources. Fig 3 contains pairwise compar-

isons of the geography of the total land in crops within each state as reported by CDL and

SPAM2005. There are reasonably strong, but by no means near perfect, positive correlations

Table 3. Spatial similarities between CDL and SPAM2005 crop area estimates.

Spatial Similarity Indexes (SSIs)

Robustness Crop

Scenario State Maize Soybeans Cotton Rice Wheat

Original Illinois 0.70 0.72 0 0 0.42

Indiana 0.71 0.69 0.50

Iowa 0.82 0.82 0.21

Louisiana 0.21 0.23 0.17 0.24 0.13

Mississippi 0.20 0.24 0.18 0.10 0.19

Nebraska 0.60 0.58 0 0.36

North Dakota 0.34 0.36 0.52

Wisconsin 0.34 0.33 0.22

Allocation Method Illinois 0.70 0.72 0 0 0.43

Indiana 0.70 0.68 0.52

Iowa 0.82 0.82 0.21

Louisiana 0.21 0.24 0.17 0.21 0.17

Mississippi 0.21 0.25 0.19 0.10 0.25

Nebraska 0.60 0.58 0 0.38

North Dakota 0.39 0.37 0.51

Wisconsin 0.37 0.38 0.26

ADM0 Only Illinois 0.54 0.66 0.00 0.00 0.15

Indiana 0.58 0.66 0 0 0.17

Iowa 0.54 0.73 0 0 0.00

Louisiana 0.17 0.22 0.19 0.15 0.14

Mississippi 0.13 0.20 0.24 0.13 0.17

Nebraska 0.38 0.40 0.00 0 0.19

North Dakota 0.20 0.17 0 0.46

Wisconsin 0.45 0.28 0 0.07

ADM1 Only Illinois 0.63 0.68 0 0 0.30

Indiana 0.66 0.67 0.44

Iowa 0.77 0.79 0.23

Louisiana 0.19 0.23 0.20 0.25 0.12

Mississippi 0.19 0.24 0.21 0.19 0.16

Nebraska 0.58 0.39 0 0.20

North Dakota 0.28 0.14 0.40

Wisconsin 0.36 0.26 0.18

Values reported as 0 are true zeros, while values of 0.00 indicate positive, but infinitesimally small values.

https://doi.org/10.1371/journal.pone.0212281.t003
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between the two pixel-level representations of cropland area for all states, with Nebraska

reporting the highest correlation (ρ = 0.93). However, there are marked differences in the mag-

nitude of some of the state-level cropland totals between the two sources. For example, in Lou-

isiana the cropland aggregate implied by CDL is nearly twice as large as the cropland extent

underpinning the SPAM2005 estimates, whereas in Iowa, Nebraska, Indiana and Mississippi,

the two cropland extents differ by less than 10 percent.

Discussion

The plausibility of the SPAM2005 (or any similarly derived) spatial crop production estimates

is tied to the methodological decisions made in downscaling data from an areal to a pixelated

representation. Remote-sensed, georeferenced crop data—although not without their own

measurement issues—are still comparatively scarce, making it difficult to “independently”

cross-validate downscaled spatial data such as SPAM2005. However, it is feasible to assess the

Table 4. Share of counties with undisclosed crop production data, by state.

Crop

State Maize Soybeans Cotton Rice Wheat

(percent)

Illinois 0.0 0.0 0.0

Indiana 0.0 0.0 28.3

Iowa 0.0 0.0 62.5

Louisiana 42.5 0.0 0.0 26.5 37.5

Mississippi 3.8 17.3 0.0 47.6 63.5

Nebraska 0.0 0.0 0.0

North Dakota 0.0 0.0 7.5

Wisconsin 11.4 12.9 38.6

https://doi.org/10.1371/journal.pone.0212281.t004

Fig 3. Pairwise comparison between CDL and SPAM2005 cropland estimates. Each plotted point represents the total cropland area within a

pixel. The x-axis represents values inferred from CDL (by aggregating the area of pixels designated as a food crop) and the y-axis represents the

total cropland area reported by Fritz et al. [18] and used by SPAM2005.

https://doi.org/10.1371/journal.pone.0212281.g003
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sensitivity of the modeled SPAM2005 (and related) data products to systematic variations in

the methodological choices made when generating these estimates. To that end, in this paper

we quantitatively examined the relative influence of choices regarding the spatial allocation

method, the crop coverage, the treatment of a “rest-of-crops” aggregate, the incorporation of a

“crop suitability” data layer, the inclusion of rudimentary economic elements, and the admin-

istrative boundary details of the primary source statistics.

We show that the SPAM2005 estimates are most dependent on the degree of disaggregation

of the underlying national and subnational statistics used to prime the allocation procedure.

The results are moderately sensitive to the use of a simple allocation model—whereby areal,

crop-specific production data are spatially allocated based solely on pixilated, aggregate crop-

land proportions—versus a cross-entropy allocation method. The results are also sensitive to

the crop coverage included in the model. The influence of these methodological and primary

data choices on crop harvested area, production and yields vary by country, crop and produc-

tion statistic. Mis-characterizing the information used to prime the allocation model, such as

the choice of cropping intensities or other ancillary data (most notably, assumed attributes

pertaining to the crop aggregates), has the potential to introduce compounding errors into the

spatial crop allocation procedure.

A particularly important, and somewhat unexpected result of our robustness analysis, was

that removing (spatially invariant) crop prices and the measure of market access from the

model had a relatively minor effect on the spatialized crop estimates (for most of the nine

countries). While subsistence farming is prevalent in many parts of the world, one would

expect that most of the production decisions made within global agriculture are intended to

improve profitability. That relative output prices did not substantially influence the resulting

spatial crop production estimates may be an artifact of the way prices are incorporated into the

SPAM2005 model (i.e., via a quasi-revenue function rather than a (quasi-) gross margin or

profit function). The SPAM2005 representation assumes that farmer crop choices are influ-

enced by crop revenue relativities rather than something more akin to gross margin relativities.

To calculate localized gross margins requires both local crop and input prices—see Joglekar

[28] for an attempt to estimate spatialized fertilizer prices for Tanzania. However, it is more

likely that using a spatially invariant (global average) crop price fails to reflect the local profit-

ability relativities that affect farmers cropping choices.

Understanding the implications of these methodological choices within SPAM2005 can

help researchers use this or similar data products with a better sense of their limitations. Our

findings also point the way to potential refinement of this and related spatial production allo-

cation models in the future. The finding that the SPAM2005 estimates are particularly sensitive

to the quality and spatial precision of the underlying statistics used to prime the model is par-

ticularly pertinent. These and similar other source statistics underpin all the spatially allocated

data products presently available, and so the veracity of all these other data products are likely

to be subject to the same caveat.
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