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INTRODUCTION

Type 1 diabetes mellitus (T1D) occurs as a result of autoimmune 

destruction of beta cells in the pancreas, leading to a loss of in-
sulin production and hyperglycemia.1 The causes of T1D are 
not completely clear and may be genetic or environmental, 
such as viral infection or exposure to toxic chemicals.2 Women 
who are positive for auto-antibodies, such as antibodies to in-
sulin, glutamic acid decarboxylase, protein tyrosine phospha-
tase, and others, are at high risk of developing T1D.3 Poorly 
controlled T1D can have severe effects on female reproductive 
health, including low fertility, hypogonadism through impair-
ment of the hypothalamic-pituitary-ovarian (HPO) axis, mis-
carriage, and congenital malformation. Female mouse models 
of T1D show hypogonadism, reduced ovary size, and de-
creased oocyte quality.4,5 Within the ovarian follicle, T1D mice 
show impaired granulosa cell-oocyte communication, mito-
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chondrial dysfunction during meiosis, apoptosis of cumulus 
cells, and alteration of DNA methylation status.6-9 Neverthe-
less, the mechanisms underlying these effects of diabetes on 
reproduction are not completely understood. 

Most studies of the reproductive effects of T1D have used a 
single animal model, either a genetic- or chemical-induced 
model of T1D. The AKITA mouse expresses an autosomal 
dominant mutation on chromosome 7 that leads to a cysteine 
to tyrosine change and misfolding of the insulin 2 protein.10 
This induces abnormal activation of the unfolded protein re-
sponse, which causes endoplasmic reticulum (ER) stress and 
apoptosis of pancreatic beta cells.11,12 Streptozotocin (STZ) is a 
toxic glucose analogue that accumulates in pancreatic beta 
cells through glucose transporter-2 and causes selective cell 
death.13,14 Injections of high doses of STZ are used to chemi-
cally induce T1D in mice. In both genetic and chemically in-
duced mouse models of T1D, the destruction of pancreatic 
beta cells leads to hypoinsulinemia and the inability to regu-
late blood glucose. 

To shed light on the underlying mechanisms driving im-
paired fertility in women with T1D, we sought to compare the 
effects of T1D on a comprehensive set of female ovarian func-
tional endpoints—from follicle growth to oocyte maturation 
to embryo development—in two mouse models. We hypothe-
sized that T1D caused by either a genetic mutation (AKITA 
model) or an environmental factor (STZ-induced model) 
would affect ovarian physiology.

MATERIALS AND METHODS

Animals
The use of mouse models of T1D in this study was approved 
by the Institutional Animal Care and Use Committee (IACUC) 
of Northwestern University (IS00000442). All procedures were 
carried out under an IACUC-approved protocol. Animals were 
housed in a temperature- and light-controlled environment 
(14h light: 10h dark) and provided with food and water ad li-
bitum. Animals were fed Teklad Global irradiated 2919 chow, 
which does not contain soybean or alfalfa meal and contains 
minimal phytoestrogens as described in a previous paper.15 
Heterozygous AKITA male (003548, The Jackson Laboratory, 
Bar Harbor, ME, USA) and wild type C57BL/6J female (000664, 
The Jackson Laboratory, Bar Harbor, ME, USA) mice were 
bred, and the offspring were genotyped to confirm AKITA het-
erozygosity. For the STZ model of T1D, wild-type C57BL/6J 
mice were administered 190 mg/kg of STZ (S0130-1G, Milli-
poreSigma, Burlington, MA, USA) at 2 weeks after weaning.9 
Blood glucose levels were measured by a blood glucose and 
ketone monitoring system (98814-65, Abbott, Chicago, IL, USA) 
4 days after injection to confirm whether T1D was completely 
induced. Mice with blood glucose levels higher than 1.67 mM 
(300 mg/dL) were considered to have induced T1D (Fig. 1).16 

Three weeks after the blood glucose check, the body weights 
of control, AKITA, and STZ-injected mice were measured. A 
total of 150 mice [wild-type C57BL/6J (n=50), AKITA (n=50), 
and STZ-injected mice (n=50)] were used in this study. 

We did not use homozygous AKITA mice because they 
rarely survive beyond 12 weeks of age without insulin treat-
ment.17 Although homozygous AKITA mice may be more rele-
vant to human T1D, the homozygous AKITA mouse was not 
ideal for evaluating ovarian functional endpoints due to their 
early mortality. 

Genotyping
Genomic DNA (gDNA) was extracted from tail tips and used 
for PCR. We followed Jackson Laboratory’s protocol for geno-
typing. A set of primers (forward: 5'-TGCTGATGCCCTGGC 
CTGCT-3', reverse: 5'-TGGTCCCACATATTGCACATG-3') was 
used to amplify the gDNA. PCR was performed according to 
the manufacturer’s instructions (K0171, Thermo Fisher Scien-
tific, Waltham, MA, USA) and was followed by digestion with 
the restriction enzyme Fnu4HI (R0178, New England Biolabs, 
Ipswich, MA, USA) at 37°C overnight. PCR products of 140 
base pairs (bp) and 280 bp indicated the presence of the wild-
type allele and AKITA mutant allele, respectively.10

Ovarian morphology and immunoblot analysis
Ovary size was compared in control, AKITA, and STZ-injected 
mice by gross observation. Follicle number and growth was 
assessed based on immunoblot analysis of anti-Mullerian hor-
mone (AMH), follicle-stimulating hormone receptor (FSHR), 
and luteinizing hormone/chorionic gonadotropin receptor 
(LHCGR), which are exclusively expressed in granulosa cells 
and theca cells of ovarian follicles. Ovarian tissues from each 
group were homogenized according to a previous report,18 
and total protein was collected for immunoblot analysis. Pri-
mary antibodies were rabbit anti-AMH (PA5-35851, Thermo 
Fisher Scientific, Waltham, MA, USA; 1:2000), anti-FSHR (PA5-
50963, Thermo Fisher Scientific, Waltham, MA, USA; 1:2000), 
and anti-LHCGR (SC-25828, Santa Cruz Biotechnologies, Dal-
las, TX, USA; 1:2000), and mouse anti-alpha-tubulin (T9026, 
MilliporeSigma, Burlington, MA, USA; 1:5000). Secondary an-
tibodies were horseradish peroxidase (HRP)-conjugated goat 
anti-rabbit or anti-mouse (65-6120, 65-6520, Thermo Fisher 
Scientific, Waltham, MA, USA; 1:5000). A sample of 20 µg of to-
tal protein was separated by SDS-PAGE (NP0335 BOX, Thermo 
Fisher Scientific, Waltham, MA, USA) at 150 V for 2 hr and then 
transferred to a polyvinylidene difluoride membrane (IB23002, 
Thermo Fisher Scientific, Waltham,  MA, USA). The mem-
branes were then blocked at room temperature for 1 hr and 
incubated with primary antibodies at 4°C overnight. Mem-
branes were then washed three times and incubated with sec-
ondary antibodies at room temperature for 1 hr. The blots were 
developed with Luminata Crescendo Western HRP substrate 
(WBLU0500, MilliporeSigma, Burlington, MA, USA). Images 
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were captured by Azure C500 (Azure C500, Azure Biosystems, 
Dublin, CA, USA). 

Histological and immunohistochemical analysis of 
ovarian tissue
Three weeks after a single STZ injection, control, AKITA, and 
STZ-injected mice underwent gonadotropin hyperstimula-
tion and the ovaries were collected. The mean number of cor-
pora lutea (CLs) was counted on the surface of whole ovaries. 
The ovaries were then fixed with 4% paraformaldehyde (PFA) 
and embedded in paraffin wax, then serially sectioned at 5 
µm thickness. Ovarian tissues were stained with hematoxylin 
and eosin (H&E, Merck, Kenilworth, NJ, USA) for histological 
analysis. For immunofluorescence, the paraffin sections were 
incubated with anti-AMH (sc-6886, Santa Cruz Biotechnology, 
Dallas, TX, USA; 1:100), anti-estrogen receptor-beta (ER-beta, 
sc-6821, Santa Cruz Biotechnology, Dallas, TX, USA; 1:50), Ki-
67 (652401, BioLegend, San Diego, CA, USA; 1:50), and anti-
MSY2 (a gift from Dr. Richard Schultz, University of Pennsylva-
nia, 1:4000) antibodies. Alexa Fluor 488 donkey anti-rabbit IgG 
(H+L) was used as the secondary antibody.19 To counterstain 
the nucleus, the slides were mounted with DAPI [2-(4-amidino-
phenyl)- 1H-indole-6-carboxamidine, Vector Laboratories, 
Burlingame, CA, USA] mounting solution. 

Hormone stimulation and evaluation of oocyte quantity
Eight-week-old female mice were hormonally primed by in-
traperitoneal injection of 5 IU equine chorionic gonadotropin 
(367222, equine chorionic gonadotropin, MilliporeSigma, Bur-
lington, MA, USA) and then 5 IU human chorionic gonadotro-
pin (hCG) (CG10-1VL, MilliporeSigma, Burlington, MA, USA) 
48 hr later. At 16 hr after hCG administration, metaphase II 
oocytes were collected from the oviduct to assess oocyte qual-
ity. The number and stage of oocytes retrieved after superovu-
lation was determined to evaluate in vivo folliculogenesis and 
oocyte maturation in control, AKITA, and STZ-injected mice.

Serum hormone ELISA
After hormonal stimulation to induce superovulation, whole 
blood was collected and the serum separated by centrifuga-
tion at 3000 RPM for 30 min. ELISAs for insulin (EZRMI-13K, 
Calbiochem, San Diego, CA, USA), AMH (MBS2507173, My-
BioSource, San Diego, CA, USA), 17 beta-estradiol (E2, ES180S, 
Calbiochem, San Diego, CA, USA), testosterone (T, TE187S, Cal-
biochem, San Diego, CA, USA), and progesterone (P4, PG129S, 
Calbiochem, San Diego, CA, USA) were performed to compare 
levels of each hormone between control, AKITA, and STZ-in-
jected mice. 

Immunofluorescence of oocyte structures 
after superovulation
Meiotic spindle formation and the distribution of cortical gran-
ules were investigated to determine oocyte quality. To detect 

the intra-oocyte meiotic spindle, chromosomal alignment, 
and cortical granules, metaphase II oocytes retrieved from con-
trol, AKITA, and STZ-injected mice were denuded by treating 
with 85 IU/mL hyaluronidase (H4272, MilliporeSigma, Burl-
ington, MA, USA) and then immediately fixed with 4% PFA 
(15710, Electron Microscopy Sciences, Hatfield, PA, USA). Fol-
lowing fixation, the oocytes were permeabilized by treating 
with 0.1% Triton X-100 (X100, MilliporeSigma, Burlington, 
MA, USA) in phosphate-buffered saline (14190-250, Thermo 
Fisher Scientific, Waltham, MA, USA) and then blocked with 
3% BSA in PBS (A0281, Thermo Fisher Scientific, Waltham, 
MA, USA) at room temperature for 1 hr. Oocytes were then in-
cubated with rabbit anti-α-tubulin antibody (5063S, Cell Sig-
naling Technology, Danvers, MA, USA; 1:100) at 4°C overnight 
to detect the meiotic spindle. To localize cortical granules, oo-
cytes were incubated with rhodamine-conjugated Lens Culi-
naris Agglutinin (RL-1042, LCA, Vector Laboratories, Burlin-
game, CA, USA; 1:100) at room temperature for 1 hr. After 
staining, the oocytes were mounted with 4’,6-diamidino-
2-phenylindole mounting solution (H-1200, Vector Laborato-
ries, Burlingame, CA, USA) and then examined under a TCS 
SP5 confocal microscope (SP5, Leica, Wetzlar, Germany). Oo-
cytes with barrel-shaped bipolar spindles, well-organized mi-
crotubule fibers, and tightly aligned chromosomes on the 
metaphase plate were scored as normal. All other configura-
tions were considered abnormal.20,21

Measurement of mitochondrial function (Δψm) and 
mtDNA
Following oocyte denudation with 0.1% bovine testes hyal-
uronidase (MilliporeSigma, Burlington, MA, USA), metaphase 
II oocytes were stained with JC-1 dye (T3168, Thermo Fisher 
Scientific, Waltham, MA, USA) at 37°C for 30 min. Oocytes 
were then transferred into a mineral oil-covered Leibovitz-15 
medium (11415-114, Thermo Fisher Scientific, Waltham, MA, 
USA) and green/red fluorescence was captured by confocal 
microscopy to evaluate high (green) and low (red) mitochon-
drial membrane potential of the metaphase II oocytes, as de-
scribed in previous studies.22,23

Mitochondrial DNA from individual metaphase II oocytes 
was isolated, and the copy number was determined as de-
scribed previously by Dr. Robker’s group.24 Briefly, oocytes iso-
lated from wild-type control, AKITA, and STZ-injected mice 
were washed with 0.1% polyvinylpyrrolidone (PVP) (P5288, Mil-
liporeSigma, Burlington, MA, USA) in PBS and then transferred 
into 5 µL of 0.1% PVP in PBS. Carrier RNA (1 µg) was then 
added into each sample, and the DNA was isolated using the 
QIAamp DNA Micro Kit (56304, Qiagen, Venlo, Netherlands) 
according to the manufacturer’s instructions. DNA copy num-
ber (mtDNA) was eluted with 50 µL of distilled water and used 
for quantitative PCR. A standard curve for absolute quantifica-
tion of copy number was generated based on 101 to 107 copies, 
kindly provided by Dr. Robker’s group. The primers used for 
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PCR were 5'-CGTTAGGTCAAGGTGTAGCC-3' and 5'-CCA 
GACACACTTTCCAGTATG-3'. All experiments were carried 
out at least three times. The mtDNA copy number in individu-
al oocytes was determined by comparing the calculated cycle 
threshold value against the corresponding standard curve as 
described in previous studies.25,26

Live cell fluorescence measurement of calcium 
Intracellular calcium [(Ca2+)i] measurement in activated oo-
cytes was performed as previously described.25,27 (Ca2+)i was 
measured using the Ca2+ sensitive dye Fura-2-acetoxymethyl 
ester (F1221, Fura 2-AM, Thermo Fisher Scientific, Waltham, 
MA, USA). Oocytes were monitored simultaneously using an 
inverted Nikon Eclipse Ti microscope (Eclipse Ti, Nikon, Shi-
nagawa, Tokyo, Japan) outfitted with fluorescence measure-
ment capabilities. Ionomycin stock (I9657, MilliporeSigma, 
Burlington, MA, USA) solution was introduced into the imag-
ing drop 1 min after the start of monitoring. The Fura 2-AM 
dye was stimulated between 340 nm and 380 nm by a filter 
wheel (Lambda 10-3, Sutter Instrument, Novato, CA, USA), 
and fluorescence was captured every 4 sec. Emitted light was 
collected by a CoolSnapES2 CCD camera (Photometrics, Tuc-
son, AZ, USA). Fluorescence ratios were analyzed by ImageJ 
(Bethesda, MD, USA).  

In vitro fertilization
In vitro fertilization (IVF) was carried out using cumulus-oo-
cyte complexes (COCs) containing metaphase II oocytes from 
8-week-old wild-type control, AKITA, and STZ-injected mice. 
Epididymal spermatozoa were collected from wild-type mice 
and capacitated to ensure penetration and fertilization of the 
metaphase II oocytes. For capacitation, the collected sperma-
tozoa were incubated in 0.4% bovine serum albumin contain-
ing EmbryoMax® human tubal fluid (HTF) (MR-070-D, Milli-
poreSigma, Burlington, MA, USA) at 37°C, 100% humidity, 
and 5% CO2 atmosphere. COCs were isolated from the am-
pulla region of the oviduct and pre-incubated in HTF medium. 
Following capacitation, approximately 1 to 2×106 fully capaci-
tated motile spermatozoa were incubated with COCs for 4 hr. 
The fertilized oocytes were then isolated and transferred into a 
potassium simplex optimized medium (EmbryoMax® KSOM 
Medium, MR-121-D, MilliporeSigma, Burlington, MA, USA) 
for 5 days at 37°C in 5% CO2. Cleavage (% of two-cell embryos/
oocytes fertilized) and blastocyst formation rate (% of blasto-
cyst/oocytes fertilized) were then measured as markers of 
embryonic developmental competence.27

Blastomere TUNEL staining
Five days after IVF, blastocysts from wild-type control, AKITA, 
and STZ-injected mice were immediately fixed with 4% PFA 
and then washed three times with 0.1% PVP. The blastocysts 
were then incubated with 0.1% Triton X-100 in PBS at room 
temperature for 30 min. To visualize blastomere apoptotic 

status, blastocysts were treated with an incubation buffer con-
taining equilibration buffer, nucleotide mix, and rTdT enzyme 
(G3250, Promega, Madison, WI, USA) at 37°C for 1 hr. Blasto-
cysts were mounted with DAPI-containing mounting solution. 
The apoptotic and total blastomere numbers were measured 
by Z-stack confocal microscopy.28

Statistical analysis
Data were analyzed by either Chi-square test (oocyte matura-
tion, spindle normality, and embryonic development after 
IVF) or one-way ANOVA (body weight, blood glucose, hor-
mone measurements, number of oocytes retrieved after su-
perovulation, number of CL, and apoptotic and total blasto-
meres) using SPSS ver. 12.0 (SPSS Inc., Chicago, IL, USA) or 
GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA). 
Tukey’s multiple comparison was used as a post-hoc test. Val-
ues were considered statistically significantly different at p< 
0.05.

RESULTS

Characteristics of T1D mouse models
Fig. 1A shows the PCR-based confirmation of ins2 mutant 
heterozygosity in the AKITA mouse model of T1D (presence 
of both 140 bp and 280 bp Fnu4HI digestion products). STZ-
injected mice had elevated blood glucose and significantly 
lower body weight compared with wild-type control mice. 
While the heterozygous AKITA mice also showed higher 
blood glucose levels, body weights were comparable between 
AKITA and wild-type control mice (Fig. 1B and C, p<0.05).

The HPO axis is impaired by STZ treatment in mice
To investigate the effect of diabetes on female reproductive 
tissues, ovaries from 8-week-old control, AKITA, and STZ-in-
jected mice were harvested (Fig. 1D). Ovary size was not sig-
nificantly different in control and AKITA mice, whereas ova-
ries from STZ-injected mice were substantially smaller 3 
weeks after injection. To assess the function of granulosa and 
theca cells in ovarian follicles in the three groups of mice, we 
examined protein expression levels of AMH, FSHR, and LHC-
GR. Consistent with the smaller ovary size, STZ-injected ova-
ries had relatively low expression levels of AMH, FSHR, and 
LHCGR protein (Fig. 1E, left; control, middle; AKITA, and right; 
STZ-injected). Immunofluorescence showed uneven expres-
sion of AMH in antral follicles in the ovaries of AKITA mice, 
while it was uniformly expressed in granulosa cells of growing 
follicles (primary, secondary, and multilayered secondary fol-
licles).16 Furthermore, the expression of ER, a granulosa cell 
marker, was barely detectable in the granulosa cells of antral 
follicles from AKITA and STZ-injected mice, while high ex-
pression levels of Ki-67 were detected in proliferating granu-
losa cells in all three groups (Fig. 1F). This suggests that hyper-
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glycemia affects the expression patterns and levels of ovarian 
proteins in the diabetes mouse models. 

Ovarian histology and the quantity and quality 
of oocytes following ovarian hyperstimulation are 
affected by T1D in mice 
The ovaries in all three groups of mice contained growing fol-
licles at all stages and antral follicles. All mice responded to 
stimulation with exogenous gonadotropin (Fig. 2A). Although 
STZ-injected mice had smaller ovaries compared with control 
and AKITA mice, follicle growth was stimulated by exogenous 
gonadotropins. Ovarian histology revealed antral follicle stag-
es (black arrows) and CLs (yellow arrows), although the ova-
ries of STZ-injected mice contained CL with “trapped” oo-
cytes (red arrow), suggesting impairment of the ovulation 
process (Fig. 2A). Interestingly, Fig. 2B shows a normal struc-
ture of ovary while, we observed abnormal morphology of 
COCs, such as pyknotic nuclei in granulosa cells in AKITA mice 
(inset, Fig. 2B) and disconnection of oocytes and granulosa 
cells in both AKITA and STZ-injected mice (Fig. 2B). To con-

firm that oocytes were “trapped” in CLs in STZ-injected mice, 
we conducted an immunofluorescence assay with MSY2, an 
oocyte-specific marker; a positive green signal indicated oo-
cytes of growing follicles. Oocytes trapped in the CL, even af-
ter exogenous hCG stimulation, appeared only in STZ-inject-
ed mice. Trapped and ruptured oocytes showed diffuse MSY2 
signals, in contrast to strong signals in growing follicles (Fig. 
2C). In addition, STZ-injected mice produced significantly 
fewer metaphase II oocytes following hormonal stimulation 
compared with control mice (Fig. 2D), with significantly fewer 
CLs in STZ-injected mice (Fig. 2E). Oocyte maturation to the 
metaphase II stage after hCG treatment was less frequent in 
oocytes collected from AKITA and STZ-injected mice com-
pared to control mice (Fig. 2F). 

T1D mice show variations in hormonal response to 
exogenous hormone stimulation
As expected, both AKITA and STZ-injected mouse models of 
T1D showed dramatically decreased serum insulin levels at 8 
weeks of age (Fig. 3A, p<0.05). Serum AMH, 17-beta-estradiol 
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(E2), and testosterone (T) levels following exogenous hor-
mone stimulation and superovulation were comparable be-
tween control mice and the T1D mice (Figs. 3B-D). Serum 
progesterone levels were lower in STZ-injected mice than in 
control mice (Fig. 3E). This indicated that growing follicles in 
diabetic mice could be stimulated by exogenous hormone 

priming. 

TID mice have abnormal meiotic spindle formation in 
metaphase II oocytes 
Fig. 4A shows the distribution of cortical granules (red) and 
DNA (blue) in metaphase II oocytes collected from control, 
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cantly lower in STZ-injected mice. Different letters (a, b) indicate a statistically significant difference (p<0.05, n=6). (F) Oocyte maturation in diabetic 
mice was also impaired, compared with control. * and † respectively indicate p<0.05 and p<0.001 (n=80). CON, control; Oo, oocyte; Deg-, degenerated; 
GV, germinal vesicle; MI, germnial vesicle breakdown; MII, metaphase II.

100 μm



673

Jaewang Lee, et al.

https://doi.org/10.3349/ymj.2019.60.7.667

AKITA, and STZ-injected mice. Representative images of oo-
cytes with localization of the meiotic spindle with tubulin 
staining (green) and DNA with DAPI (blue) are shown in Fig. 
4B. Abnormal oocyte spindle formation was observed more 
frequently in oocytes from the T1D mouse models compared 
to oocytes from control mice (Fig. 4C). 

T1D affects mitochondrial membrane potential and 
DNA copy number in metaphase II oocytes
Fig. 5A shows JC-1 staining of the mitochondrial membrane 
potentials associated with oocyte quality. Red and green dots, 
respectively, indicate high and low mitochondrial membrane 
potentials in the metaphase II oocytes. Metaphase II oocytes 
from both T1D mouse models showed a significantly lower 
mitochondrial membrane potential compared with meta-
phase II oocytes from control mice (Fig. 5B). However, mtD-
NA copy number was comparable across all three mouse 
groups, as shown in Fig. 5C. Intracellular calcium release in 
activated oocytes was also comparable between control and 
T1D mice (Figs. 5D and E)

T1D mice have reduced embryonic developmental 
competence of metaphase II oocytes
In vitro fertilized oocytes from both AKITA and STZ-injected 
mice showed significantly impaired developmental compe-
tencies. Compared to control mice, fewer fertilized eggs ob-
tained from T1D mice underwent cleavage at 24 hr (Fig. 6A) 
and reached the blastocyst stage by 120 hr (Fig. 6B). In addi-
tion, the number of blastomeres per blastocyst was signifi-
cantly lower in T1D mice compared to controls (Fig. 6C), and 
fertilized oocytes retrieved from T1D mice also contained a 
higher number of apoptotic blastomeres than fertilized oo-
cytes from control mice (Fig. 6D). Fig. 6E shows a representa-
tive image of terminal deoxynucleotidyl transferase dUTP nick 

end-labeling (TUNEL) and DAPI staining of a blastocyst fol-
lowing IVF. 

DISCUSSION

In this study, we compared various markers of ovarian func-
tion, from ovarian health and oocyte quality to embryo devel-
opmental competence, between wild-type mice and two dif-
ferent mouse models of T1D (AKITA and STZ-induced). We 
found that, compared to wild-type control and AKITA mice, 
STZ-induced T1D mice showed more severe impairment of 
LHCGR signaling-associated events, including luteinization, 
oocyte maturation, and serum progesterone production. 
Metaphase II oocytes from both T1D mouse models showed 
impaired spindle formation, lower mitochondrial membrane 
potential, and lower developmental competence after IVF 
compared with oocytes from wild-type mice.

Though the severity of T1D in various animal models might 
differ, only a few studies have compared AKITA and STZ-in-
jected mouse models in relation to function in the ovary.9,29-31 
We found that mice injected with STZ showed a more severe 
hyperglycemic condition and lower body weight than the 
AKITA mice, which may underlie the observed differences in 
reproductive endpoints between the two models. 

Previous studies have described the development of hypo-
gonadism as a complication of T1D.29-31 According to our data, 
AKITA mice did not show evidence of hypogonadism com-
pared to wild-type controls, despite the presence of hypoinsu-
linemia and hyperglycemia. Schoeller, et al.30,31 similarly de-
scribed no difference in testis size between male heterozygous 
AKITA and wild-type control mice. In contrast, we observed 
that mice with T1D induced by STZ showed markedly reduced 
ovary size compared to controls, with lower levels of FSHR and 
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Fig. 3. (A-E) Hormone profiles after superovulation. (A-E) Insulin, anti-Mullerian hormone (AMH), 17-beta-estradiol, testosterone, and progesterone 
were measured. Diabetic mice had lower insulin and progesterone levels, whereas 17-beta-estradiol and testosterone levels were comparable be-
tween control and diabetic mice. Different letters (a, b) indicate a statistically significant difference (p<0.05). STZ, streptozotocin; CON, control.
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LHCGR expression. The previous study by Schoeller, et al.30,31 
found that homozygous AKITA male mice, which have a more 
severe phenotype with lower serum insulin compared to het-
erozygous AKITA male mice, also showed more severe hypo-
gonadism and reductions in serum LH. This suggests that the 
severity of T1D may determine the impact of the disease on 
the HPO axis, particularly LHCGR signaling, in diabetic mice. 

Interestingly, the function of the HPO axis could be partially 
restored by exogenous gonadotropin in STZ-injected mice. 
The ovaries from both T1D mouse models contained all stag-
es of growing, pre-ovulatory follicles and CLs, as well as nor-
mal E2 and T levels, comparable to wild-type controls. John-
son and Sidman32 showed normal sensitivity of target organs to 
gonadotropin and sex hormones in female T1D mice. Schoeller, 
et al.30 also reported no significant difference in serum FSH lev-

els between wild-type control and AKITA mice. Taken togeth-
er with our findings, this suggests that the FSH responsiveness 
of growing follicles is preserved in T1D mice. Conversely, 
Schoeller, et al.30,31 found that serum LH levels were lower in 
both heterozygous and homozygous AKITA mice, and brain-
specific knockout of the insulin receptor impaired spermato-
genesis by reducing circulating LH. We found that STZ-induced 
T1D mice had a markedly decreased number of ovulated oo-
cytes and CLs after hormonal stimulation, a reduced level of 
serum progesterone, and impaired oocyte maturation. Based 
on these findings, we conclude that poorly controlled, severe 
T1D might lead to impairment of later stages of folliculogene-
sis and oocyte maturation, which are strongly associated with 
LHCGR signaling, through a decrease in circulating LH and 
LHCGR expression, rather than changes in FSH. 
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Studies documenting oocyte quality in AKITA and STZ-
injected T1D mice have been conducted by the Moley group.9,26, 

30,31,33,34 In 2005, they found that T1D mice exhibit delayed ger-
minal vesicle breakdown after hCG treatment and reduced 
connexin-43 expression in cumulus-enclosed oocytes.6 Oo-
cytes from female T1D mice showed evidence of altered mito-
chondrial ultrastructure, mtDNA copy number, and adenosine 
triphosphate (ATP) and tricarboxylic acid (TCA) cycle metabo-
lites due to mitochondrial metabolic dysfunction.9,33,34 In addi-
tion, female T1D mice had a greater frequency of oocyte spindle 
or chromosomal misalignment leading to aneuploidy. Finally, 
they showed that T1D disrupted crosstalk between the oocyte 
and cumulus cells by inducing mitochondrial impairment in 
cumulus cells.9 Similar to their studies, we found significantly 
increased spindle abnormalities in both AKITA and STZ-in-
jected T1D mice; however, there was no difference in cortical 
granule distribution in T1D mice compared to control, which 
had not been investigated previously in metaphase II oocytes. 
Some research groups previously demonstrated that T1D 
mice exhibit abnormal, dynamic changes in the ER, granulosa 
cell apoptosis, abnormal energy metabolism, and mitochon-
drial dysfunction in oocytes.6,9,33 Recent papers have described 
that cortical granules can change the structure of zona pelluci-
da35,36 and can cause low fertility in diabetic mice. In this re-
gard, we analyzed cortical granules in oocytes retrieved from 
both healthy and diabetic mice. We found a reduced mito-
chondrial membrane potential in both T1D mouse models 
compared to controls, but no change in mitochondrial DNA 
copy number. Wai, et al.37 demonstrated that oocytes with as 
few as 4000 copies of mtDNA can be fertilized and develop to 
the blastocyst stage, and that only 40000–50000 copies of mtD-
NA are required to permit fetal development. As there was no 
significant difference in mtDNA copy number in metaphase II 

oocytes between the T1D and wild-type control groups, it is 
likely that oocytes from either T1D model possess the poten-
tial to develop into a fetus. 

Zhang, et al.38 demonstrated that T1D mice develop abnor-
mal dynamic changes in the ER during oocyte maturation and 
early embryo development. We expected that the T1D-related 
abnormal distribution of ER would have a deleterious impact 
on calcium physiology during activation of the metaphase II 
oocyte. However, the amplitude and duration of calcium fluc-
tuations after ionomycin-derived egg activation were compa-
rable between control and both T1D mouse models. Thus, ER 
function, not ER distribution, appears to have been preserved 
in our T1D mouse models. 

Finally, we found that T1D decreases pre-implantation em-
bryonic development and promotes blastomere apoptosis 
120 hr after IVF. Alterations in microorganelles, function, 
physiology, and ATP levels in metaphase II oocytes may me-
diate the detrimental effects of T1D on developmental com-
petence after IVF. Moley, et al.39 found that pre-implantation 
embryos from diabetic mice exhibit a shift in glucose trans-
porter 1-3 (GLUT 1-3) utilization. Additionally, Chi, et al.40 de-
scribed a decline in GLUT 1 utilization, which may promote 
blastomere apoptosis at the blastocyst stage. Thus, our obser-
vation of an increase in total and apoptotic blastomeres in T1D 
mice may be related to impairment of glucose uptake and me-
tabolism in pre-implantation embryos. 

Collectively, we found that the STZ-induced mouse model 
of T1D, which developed more severe hyperglycemia com-
pared to the AKITA mouse model, showed greater impair-
ment of LHCGR signaling-related events, including ovulation, 
oocyte maturation, and luteinization, and pre-implantation 
embryonic development. Both T1D mouse models showed 
significantly decreased oocyte and pre-implantation embryo 
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quality. Our study is limited in that it compared only two T1D 
mouse models and that exogenous insulin treatment was not 
used to examine factors underlying differences in reproduc-
tive function between the models. Future mechanistic studies 
of the effects of T1D on reproductive function may provide 
additional insights that may improve reproductive outcomes 
in women with T1D. 
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Fig. 6. Embryonic developmental competence in type I diabetes mellitus mouse models was significantly lower compared with normal control mice. 
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cal microscopy. Blue and Green signal respectively indicate nucleus and apoptotic DNA of blastomeres. Different letters (a, b) indicate statistically 
significant differences (p<0.05). STZ, streptozotocin; CON, control; MII, metaphase II.
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