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Background: Atherosclerosis is a systemic inflammatory disease, with common

inflammatory processes implicated in both atheroma vulnerability and blood-brain

barrier disruption. This prospective multimodal imaging study aimed to measure directly

the association between systemic atheroma inflammation (“atheroinflammation”) and

downstream chronic cerebral small vessel disease severity.

Methods: Twenty-six individuals with ischemic stroke with ipsilateral carotid

artery stenosis of >50% underwent 18fluoride-fluorodeoxyglucose-positron emission

tomography within 2 weeks of stroke. Small vessel disease severity and white matter

hyperintensity volume were assessed using 3-tesla magnetic resonance imaging also

within 2 weeks of stroke.

Results: Fluorodeoxyglucose uptake was independently associated with more severe

small vessel disease (odds ratio 6.18, 95% confidence interval 2.1–18.2, P < 0.01 for

the non-culprit carotid artery) and larger white matter hyperintensity volumes (coefficient

= 14.33mL, P < 0.01 for the non-culprit carotid artery).

Conclusion: These proof-of-concept results have important implications for our

understanding of the neurovascular interface and potential therapeutic exploitation

in the management of systemic atherosclerosis, particularly non-stenotic disease

previously considered asymptomatic, in order to reduce the burden of chronic

cerebrovascular disease.

Keywords: atherosclerosis, blood-brain barrier, carotid artery, cerebrovascular disease/stroke, leukoaraiosis,

carotid-cerebrovascular interface

INTRODUCTION

Atherosclerosis is a systemic inflammatory disease that may cause stroke through destabilization
of atherosclerotic plaques and consequent thromboemboli (1). However, it is increasingly
recognized that the effects of atherosclerosis extend beyond a single “vulnerable plaque,” and
instead involve the overall burden from the systemic nature of atherosclerosis on the individual
“vulnerable patient” (2).
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This is particularly true in the neurovascular setting, where
the brain represents an end-organ highly sensitive to insult from
the general metabolic environment. The presence of vascular
risk factors may exacerbate inflammation within atheroma
(atheroinflammation) (3–6), disrupt blood-brain barrier (BBB)
integrity (7), and promote neuroinflammation in individuals
without stroke, potentially priming the brain for injury (8).
Furthermore, systemic inflammation itself may also promote
an increase in BBB permeability (9). Consequently, chronic
pro-inflammatory states, such as that seen in atherosclerosis,
may have a role in compromising BBB integrity. Such BBB
dysfunction is implicated in the development of chronic
cerebral small vessel disease (SVD) (10); focal lacunar infarcts
or subcortical diffuse white matter change (leukoaraiosis)
characterized by neuronal loss, demyelination, and gliosis (10).
SVD is a major risk factor for both stroke and dementia (11), and
is independently associated with poorer recovery after stroke (12)
and stroke recurrence (13).

The direct relationship between carotid atherosclerosis and
SVD remains unclear. Although leukoaraiosis is positively
associated with both carotid intima-media thickness (IMT) and
presence of atheroma, negative associations have been reported
with the degree of luminal stenosis (14). These inconsistent
findings may be due to variability in the extent of inflammation
within atheroma, which is independent of stenosis severity
(15). Inflammation within atheroma can be measured in vivo
by positron emission tomography (PET) using 18fluoride-
fluorodeoxyglucose (FDG), a radionuclide analog of glucose (16).
FDG uptake is increased in symptomatic carotid atheroma (15),
and correlates with histological macrophage density but not
plaque size (17).

This study examines the direct association between carotid
artery atheroinflammation, measured by FDG-PET/CT, and
the severity of cerebral SVD. We hypothesized that increased
carotid artery FDG uptake would be associated with more
severe leukoaraiosis.

MATERIALS AND METHODS

Participants
The Imaging Carotid Atherosclerosis in the Recovery
and Understanding of Stroke Severity (ICARUSS) Study
prospectively recruited individuals presenting with an ischemic
stroke within the previous seven days due to ipsilateral common
or internal carotid artery stenosis of ≥50% measured on
computed tomography angiography (CTA) [using the North
American Symptomatic Carotid Endarterectomy Trial method
(18)] at Addenbrooke’s Hospital, Cambridge, United Kingdom.
Cardiovascular risk factors and stroke severity were recorded at
baseline. Only individuals with evidence of brain infarction on
diffusion-weighted imaging (DWI) were enrolled. The minimum
age for study eligibility was 40 years. Individuals with atrial
fibrillation were excluded.

Anonymized imaging reads were performed for the full study
cohort after study completion, with readers (NRE, JMT, JW,
MMC) blinded to the clinical data. PET and MRI analyses were

analyzed independently and matched with clinical information
and each other only after analysis of the full cohort was complete.

All participants provided written informed consent in
accordance with the Declaration of Helsinki. The study
protocol was approved by a national research ethics committee
(Nottingham One Research Ethics Committee, 14/EM/0128).

PET/CT Protocol
FDG-PET/CT (Discovery 690 GE Healthcare, Little Chalfont,
UK) scans were performed with 64-slice computed tomography
within 14 days of ischemic stroke. Participants fasted for 6 h
prior to injection. Participants were injected intravenously with
a target of 250 MBq of FDG (sourced from Erigal Ltd, Keele,
UK), followed by a 90-min uptake time, as per previous work
(19). A silence protocol (minimal vocalization, only small sips
of water permitted) was adopted during this uptake period to
reduce physiological tracer uptake in neighboring structures. In
participants without diabetes, blood glucose concentrations were
confirmed as ≥7.0 mmol/L prior to tracer injection. Participants
with diabetes mellitus were instructed to take their usual oral
antidiabetic medications as normal, but insulin was omitted
within the 4 h prior to imaging.

PET imaging datasets were analyzed using OsiriX (version
5.7.1, OsiriX Imaging Software, Geneva, Switzerland). Co-
registered PET and CT images were resampled to 3mm slice
thickness and regions of interest (ROIs) drawnmanually on fused
PET/CT images along the common carotid and internal carotid
artery to encompass the region 0.9 cm proximal and 3 cm distal
to the carotid bifurcation as per established methodology (15).
ROIs were then transferred onto co-registered PET to produce
standardized uptake values of the maximum uptake within the
ROI (SUVmax). To compensate for blood pooling, the tissue SUV
was adjusted for venous SUV – the average of mid-luminal ROIs
in the jugular vein over five contiguous 3mm slices without
evidence of spill-over from neighboring structures – to give the
maximum target-to-background ratio (TBRmax); a measure of
radiotracer uptake validated for use in vascular PET imaging (17).

TBRmax for culprit and non-culprit carotid arteries were
compared for the most diseased segment (MDS) and whole vessel
(WV). The MDS considers the most diseased 9mm of the artery
(based on tracer uptake) and represents the mean of the TBRmax

of the ROIs in three contiguous axial slices where the central
ROI constitutes the point of highest tracer uptake in the artery as
per previous methodology (15). The WV is the median of tracer
uptake across all 14 axial slices of the artery. An experienced
reader (MMC) performed reproducibility and quality assurance
by repeating ROIs in 20% of the FDG-PET/CTs.

MRI Protocol
Participants had brain imaging performed within 2 weeks of
stroke using a 3-tesla whole body magnetic resonance imaging
(MRI) scanner (MR750, GE Healthcare, Waukesha, WI) with
a 12-channel head, neck, and spine coil with a brachial plexus
attachment. Sequences included T1, T2, DWI, fluid-attenuated
inversion recovery (FLAIR), and gradient echo sequences.
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Assessment of Cerebral Small Vessel
Disease
The extent of WMH was measured both semi-quantitatively
and quantitatively. Semi-quantitative measures were taken from
the FLAIR sequence using the scoring system proposed by
Fazekas et al. (20) and later modified by Pantoni et al. (21). The
Fazekas score has been dichotomized previously (22), and in
this study we dichotomized global (whole brain) periventricular
and deep white matter hyperintensities according to no/mild or
moderate/severe leukoaraiosis [using the visual scale described
by Pantoni et al. (21)] given that the majority of our cohort
showed some small vessel disease.

Quantitative measurement of WMHs was performed by
measuring WMHs in the hemisphere contralateral to the acute
stroke and multiplying by two. Measurement was conducted
using semi-automatic ROI marking using Jim Imaging Software
(version 7.0, Xinapse Systems Ltd., Essex, United Kingdom).

MRI interpretation was performed by two experienced readers
for all scans (NRE and JW). Intra-class correlation coefficients for
inter-rater reliability were calculated subsequently.

Inflammatory Biomarker
Venous blood was drawn at the time of FDG-PET/CT
for high-sensitivity C-reactive protein (hsCRP) as a marker
of inflammation.

Statistical Analysis
Continuous data was tested for normality using the Shapiro-
Wilk method. Parametric data was reported as mean ± standard
deviation (SD) and non-parametric data reported as median
and inter-quartile range (IQR). Unpaired groups were compared
using t-testing (parametric readings) or Wilcoxon rank sum
testing (non-parametric readings). Comparison between culprit
and contralateral non-culprit arteries in the same individual used
equivalent paired testing. Associations were tested using two-
tailed Spearman’s rho correlation (non-parametric or ordinal
data) or Pearson’s correlation coefficient (parametric data).

Multivariable analysis (logistic regression and linear
regression) initially included all variables considered in
univariable analysis (age, sex, smoking status, diabetes mellitus,
hypertension, pre-stroke statin, pre-stroke antiplatelet,
cardiovascular history), with goodness of fit optimized
subsequently with backwards elimination of variables to
achieve the lowest Akaike information criteria.

Tracer uptake was compared across stenosis categories
(“1–29%,” “30–49,” “50–69%,” “70–89%,” “90–99%”) in both
symptomatic and asymptomatic arteries using Kruskal-Wallis
one-way ANOVA testing (for non-parametric data).

The cut-off for statistical significance was set at P = 0.05.
Data was analyzed using R (version 3.6.1, 2019, R Foundation for
Statistical Computing, Vienna, Austria).

Data Availability
The corresponding author had full access to all the data in
the study and takes responsibility for its integrity and the data
analysis. The full anonymized dataset is available upon reasonable
request from the corresponding author.

TABLE 1 | Clinical characteristics of study cohort (n = 26).

Mean age (years) 74.8 (SD 9.7)

Men 18 (69.2%)

Median BMI 26 (IQR 3.9)

Smoking history (current or ex-smokers) 17 (65.4%)

Diabetes mellitus 4 (15.4%)

Hypertension 17 (65.4%)

Pre-stroke statin 9 (34.6%)

Pre-stroke antiplatelet 8 (30.8%)

Cardiovascular history (previous ischemic heart disease/

myocardial infarction)

8 (30.8%)

Median National Institutes of Health Stroke Scale (NIHSS) 4.5 (IQR 10.75)

Thrombolysed 6 (23.1%)

Modal degree of symptomatic stenosis 70–89%

RESULTS

Study Population
Of the 31 participants recruited to the ICARUSS study, 28
underwent FDG-PET/CT (of the three recruited who did not
undergo scanning: two deteriorated clinically, becoming too
unwell to continue in the study, and one was unable to complete
imaging due to claustrophobia).

Of this 28, 26 had imaging suitable for analysis (one
participant had an uninterpretable PET scan and one
subject declined MRI). All participants had bilateral carotid
atherosclerosis. Eight (30.8%) participants had co-existent
coronary artery disease, and four (15.4%) had a clinical diagnosis
of peripheral arterial disease. Clinical characteristics are shown
in Table 1.

All acute infarcts were cortical in their distribution, consistent
with probable artery-to-artery embolization. Reflecting this, in all
cases the carotid pathology was felt by the clinical team to be the
causative etiology for the acute infarct. The median DWI lesion
volume was 3.36ml (IQR 14.4 ml).

PET Tracer Uptake in Culprit and
Non-culprit Atherosclerotic Plaque
FDG uptake was significantly higher in the culprit artery than
in the contralateral non-culprit carotid artery for both the MDS
[median TBRmax (IQR) 2.08 (0.52) vs. 1.89 (0.40), respectively,
P < 0.001] and WV measures of uptake [median TBRmax

(IQR) 1.92 (0.41) vs. 1.71 (0.31), respectively, P < 0.001]. No
relationship was observed between FDG MDS TBRmax and the
degree of luminal stenosis (P = 0.91). There was a moderate
association between hsCRP and non-culprit WV TBRmax (rs =
0.50, P = 0.02). Inter-rater reliability of FDG reads was 0.93.

Chronic Small Vessel Disease
Of the 26 participants, 15 (57.7%) had no/mild leukoaraiosis,
11 (42.3%) had moderate/severe leukoaraiosis. The pattern
of disease was predominantly peri-ventricular. The median
WMH volume was 3.11ml (IQR 7.43ml). The group with
moderate/severe leukoaraiosis were older than those with
no/mild leukoaraiosis (mean age 79.4 ± 9.7 vs. 71.5 ± 8.5 years,
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TABLE 2 | Comparison of dichotomized groups of small vessel disease severity.

No/Mild

leukoaraiosis

(n = 15)

Moderate/Severe

leukoaraiosis

(n = 11)

Significance

Mean age (SD) (years) 71.5 (± 8.5) 79.4 (± 9.7) P = 0.04

Number of males (%) 11 (73.3%) 7 (63.3%) P = 0.60

Mean BMI (SD) 26.0 (± 4.2) 28.3 (± 5.3) P = 0.26

Current/former smoker

(%)

10 (66.7%) 7 (63.3%) P = 0.87

Diabetes mellitus (%) 1 (6.7%) 3 (27.3%) P = 0.15

Hypertension (%) 11 (73.3%) 6 (54.5%) P = 0.32

Pre-stroke statin (%) 7 (46.7%) 2 (18.2%) P = 0.13

Pre-stroke antiplatelet (%) 5 (33.3%) 3 (27.3%) P = 0.74

History of cardiovascular

disease (%)

5 (33.3%) 3 (27.3%) P = 0.74

Total cholesterol 4.55 (± 1.3) 4.5 (± 0.88) P = 0.91

Median NIHSS (IQR) 5 (12) 4 (8) P = 0.70

Thrombolysed 2 (13.3%) 4 (36.4%) P = 0.17

Modal degree of

symptomatic artery

stenosis

70–89% 70–89%

Maximum stenosis in

symptomatic artery

CCA 1 (6.7%) 1 (9.1%)

ICA 14 (93.3%) 10 (90.9%) P = 0.82

Modal degree of

asymptomatic artery

stenosis

30–49% 30–49%

Maximum stenosis in

asymptomatic artery:

CCA 3 (20%) 2 (18.2%)

ICA 12 (80%) 9 (81.8%) P = 0.90

Mean

onset-to-FDG-PET/CT

(SD) (days)

9.2 (± 4.8) 8.9 (± 4.7) P = 0.88

P = 0.04), otherwise there were no other significant differences
in clinical characteristics between the cohorts (Table 2).

Multiple logistic regression showed FDG uptake to be
independently associated with severity of leukoaraiosis, for
both plaque and average whole vessel and in both culprit
and contralateral non-culprit arteries (Table 3; Figure 1). The
strongest associations were for the non-culprit artery, in
particular the WV uptake [adjusted OR 6.18 (95% confidence
interval 2.1–18.2), P < 0.01]. This model also suggests a lower
odds of moderate/severe leukoaraiosis in individuals taking
statins and increased odds of more severe small vessel disease
with increasing age. The effects of diabetes and smoking were
inconsistent (Table 3).

Quantitative measures of WMH produced a similar pattern.
On univariable analysis, there was no relationship between
culprit carotid MDS or WV TBRmax (rs = 0.30, P = 0.14 and
rs = 0.20, P = 0.34, respectively). In contrast, there was a trend
of increasing strength of association betweenWMH volume with

median non-culprit MDS TBRmax (rs = 0.39, P = 0.05), and the
WV TBRmax of the non-culprit carotid (rs = 0.50, P = 0.01).

Linear regression of WMH volume, adjusting for
cardiovascular risk factors, broadly supported the findings
in the semi-quantitative analysis. Again, FDG TBRmax was
independently associated with increased WMH volumes for
diffuse measures of atheroma inflammation (non-culprit artery
readings and the median whole vessel uptake in the culprit
carotid), but not when considering the focal uptake in the culprit
plaque (Table 4). Furthermore, this analysis also indicated a
consistent independent positive association between age and
WMH volume, and a negative association between statin use
and WMH volume, in-keeping with the results observed in the
semi-quantitative analysis. There were no significant interactions
between these variables.

Inter-rater reproducibility of Fazekas scoring had an ICC of
0.91 across all scans. Inter-rater reproducibility ofWMHvolumes
had an ICC of 0.99.

DISCUSSION

Our study is novel in relating the presence of leukoaraiosis
to the physiological activity within systemic atherosclerosis
measured using PET, rather than simply the degree of anatomical
luminal stenosis. We demonstrate an independent association
between atheroinflammation within carotid atherosclerosis and
the severity of small vessel disease.

This relationship, and the strength of the regression models
themselves, was stronger when considering the contralateral
non-culprit artery rather than the culprit artery. The non-
culprit artery is likely more representative of the overall burden
of systemic atheroinflammation, in effect acting as a disease
“barometer,” as suggested by the correlation between neighboring
arterial regions demonstrated by Rudd et al. (23). In contrast,
the most diseased segment of the culprit symptomatic artery
represents a region with potentially disproportionate uptake – a
peak focus of inflammation possibly accentuated by the rupture
itself – that may not be reflective of the global burden of
atheroinflammation throughout the body. Supporting this, our
results indicate more diffuse measures of FDG uptake in the
culprit artery (i.e., the WV) are similar to those from the
non-culprit artery. Given that WMHs represent chronic disease
developing over a longer time course than acute stroke, it
is therefore likely that the non-culprit artery gives a better
representation of the long-term pathophysiology to which the
brain has been exposed.

A possible mechanism linking atheroinflammation and SVD
is the action of matrix metalloproteinases (MMPs), which may
act locally and systemically. A single vulnerable plaque may
rupture through MMP-mediated disruption of the fibrous cap
(1, 24), but the elevated plasma concentrations (particularly
of MMP-9) seen in atherosclerosis may also have important
systemic effects (25, 26). MMP-9 is implicated in blood-brain
barrier dysfunction (27–29), where increased permeability may
promote the development of leukoaraiosis (30, 31). Previous
studies have demonstrated an association between FDG uptake
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TABLE 3 | Multiple logistic regression for moderate/severe leukoaraiosis severity for focal (MDS) and whole vessel (WV) FDG uptake in culprit and non-culprit carotid

arteries.

Culprit artery Non-culprit artery

MDS TBRmax Adjusted R2

= 0.48 (P < 0.01)

MDS TBRmax Adjusted R2

= 0.62 (P < 0.001)

OR (95% CI) Significance OR (95% CI) Significance

FDG uptake 2.14 (1.07–4.28) P = 0.04 FDG uptake 3.98 (1.84–8.59) P < 0.01

Age 1.03 (1.01–1.05) P < 0.01 Smoking 5.55 (1.23–25.0) P = 0.04

Pre-stroke statin 0.64 (0.46–0.89) P = 0.02 Age 1.03 (1.02–1.05) P < 0.001

Smoking 2.96 (0.66–13.32) P = 0.17 Pre-stroke statin 0.71 (0.54–0.93) P = 0.02

WV TBRmax Adjusted R2

= 0.49 (P < 0.001)

WV TBRmax Adjusted R2

= 0.57 (P < 0.001)

OR (95% CI) Significance OR (95% CI) Significance

FDG uptake 1.52 (1.06–2.17) P = 0.03 FDG uptake 6.18 (2.10–18.2) P < 0.01

Age 1.03 (1.01–1.05) P < 0.01 Age 1.03 (1.01–1.05) P < 0.01

Pre-stroke statin 0.63 (0.46–0.86) P < 0.01 Pre-stroke statin 0.72 (0.53–0.97) P = 0.04

Diabetes 2.15 (1.41–3.28) P < 0.01

Smoking 8.34 (1.14–61.0) P = 0.05

FDG uptake refers to per unit increase in the stipulated TBRmax .

FIGURE 1 | Carotid FDG uptake according to leukoaraiosis severity. Left: (A):

axial FLAIR showing no/mild leukoaraiosis (white arrow) with (C): associated

low carotid FDG uptake (brown arrows); Right: (B): axial FLAIR showing

moderate/severe leukoaraiosis (red arrow) with (D): higher associated carotid

FDG uptake (blue arrows). Both FDG-PET/CT images are set to the same

scale, with the scale bar showing FDG SUV.

and serum MMP-9 concentrations (23, 32). A 12-week course
of atorvastatin 40 mg/day resulted in significant reductions in
both atheroma TBR and MMP-9, with a moderate correlation

between the reduction in plaque TBR and reduction in MMP-
9 concentration (33). These relationships, and those between
MMP-9 levels and blood-brain barrier dysfunction (27–29), and
between blood-brain barrier permeability and the development
of leukoaraiosis (30, 31, 34), indicate an association between
the chronic atheroinflammation within carotid plaques and the
development of leukoaraiosis.

Our finding that FDG uptake did not relate to the
degree of luminal stenosis may explain the previously-
reported inconsistent findings in the association between
leukoaraiosis and the degree of stenosis (14), where plaques
with similar degrees of stenosis may have different levels of
atheroinflammation. The positive associations between SVD
and increased IMT or presence of plaque are in-keeping with
this hypothesis, as they may represent an earlier stage of
atherogenesis (and one more associated with inflammation) than
the degree of stenosis, where there may be more variability in
plaque activity from highly inflamed early atheroma to older
quiescent plaques.

Previous work has reported inconsistent associations between
leukoaraiosis and a range of vascular risk factors (35). A
notable exception is age, which most studies have found
to be independently associated with the development of
WMHs (13, 36). Our findings support this. Furthermore,
the independent association of statin therapy with reduced
SVD is potentially consistent with the pleiotropic effects of
statins and hence relevant to the inflammatory hypothesis.
The role of statins in WMH progression remains a subject of
debate: in the PROSPER study there was no effect on WMH
progression with pravastatin, though this cohort had low rates
of atherosclerosis (37). In contrast, progression of confluent
WMHs was found to be reduced by the use of pre-stroke
statin therapy (38).
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TABLE 4 | Linear regression for white matter hyperintensity volume (mL) for focal (MDS) and whole vessel (WV) FDG uptake in culprit and non-culprit carotid arteries.

Culprit artery Non-culprit artery

MDS TBRmax Adjusted R2
= 0.49

(P < 0.01)

MDS TBRmax Adjusted R2
= 0.59

(P < 0.001)

Beta coefficient Adjusted

significance

Beta coefficient Adjusted

significance

TBRmax 3.53 P = 0.08 TBRmax 9.38 P < 0.01

Age 0.50 P < 0.01 Age 0.50 P < 0.001

Pre-stroke statin −12.6 P < 0.01 Pre-stroke statin −9.03 P = 0.02

Pre-stroke antiplatelet 6.05 P = 0.15 Pre-stroke antiplatelet 5.69 P = 0.12

WV TBRmax Adjusted R2
= 0.

(P < 0.001)

WV TBRmax Adjusted R2
= 0.62

(P < 0.001)

Beta coefficient Adjusted

significance

Beta coefficient Adjusted

significance

TBRmax 8.91 P < 0.01 TBRmax 14.33 P < 0.01

Age 0.52 P < 0.001 Age 0.48 P < 0.001

Pre-stroke statin −11.54 P < 0.01 Pre-stroke statin −8.86 P = 0.01

Pre-stroke antiplatelet 6.69 P = 0.07 Pre-stroke antiplatelet 6.33 P = 0.08

Limitations and Future Work
Although the high sensitivity of PET enables detection of
subtle physiological changes, allowing statistically significant
differences to be detected despite small sample sizes, the
limited size of our study means that further validation
through replication in a larger cohort or meta-analysis would
be advantageous.

Related to this, some caution must be exercised when
interpreting the regression analyses given the relatively small
sample size. The use of the Akaike information criteria in
backwards elimination to optimize best-fit ensures that the
selected models explain the greatest amount of variation using
the fewest number of independent variables, hence reducing the
risk of overadjustment bias. In our linear and logistic models,
the consistent inclusion of age and pre-stroke statin in such
optimized models is biologically plausible and supported by the
existing literature as discussed above. Their presence is likely
to be on the causal pathway, thereby reducing overadjustment
bias further. Although the final models typically include three
to four covariables for the study size of 26 participants, and
hence not meet the “rule of ten” for the ratio of outcomes to
variables, such a rule of thumb has been argued to be either
too conservative or potentially of limited evidence basis (39, 40).
However, further replication and validation in larger studies to
accommodate more variables will be advantageous to reduce
further the risk of overadjustment bias.

We did not measure MMPs in this study, though the
association between FDG uptake and MMP-9 has been reported
previously (23). Future studies measuring MMPs and other
inflammatory biomarkers may further elucidate the mechanistic
link underlying associations observed here.

In this study, we considered only carotid atherosclerosis. The
overall burden of systemic atheroinflammation will reflect the
totality of disease in other arterial territories (including coronary

arteries, aorta, and peripheral arterial disease). However,
previous work has demonstrated that atheroinflammation is
strongly associated across neighboring arterial territories, and
consequently the carotids (particularly the diffuse measure of
uptake in the non-culprit artery, WV TBRmax) may serve as good
surrogates of systemic atheroinflammation (23). Furthermore,
we found a moderate association between the non-culprit WV
TBRmax and serum hsCRP, suggesting that the carotid uptake
is a reasonable reflection of systemic inflammation. Future
work considering the global burden of atheroinflammation
for the individual, incorporating atheroinflammation across
coronary, aortic, and peripheral arterial disease, as well as
comparison against healthy controls would help elucidate this
relationship further.

Although highly sensitive, FDG uptake is non-specific.
Although the measures taken here improve its specificity for
inflammation, replication using newer radiotracers with higher
specificity for inflammatory cells, such as 68Ga-DOTATATE (19),
would help characterize this relationship.

To elucidate the mechanisms underlying the associations
observed in this study, future work should consider a range
of biomarkers of systemic inflammation, and imaging of BBB
integrity alongside carotid and brain imaging.

CONCLUSION

The observed association between carotid atheroinflammation
and the presence of more severe small vessel disease has
implications for our understanding of the neurovascular
interface and may have future influence on how we manage
“asymptomatic” atherosclerosis, with atheroinflammation
treated more aggressively with anti-inflammatory agents.
Canakinumab (a monoclonal antibody targeting interleukin-1β)
has shown promise for reducing cardiovascular outcomes after
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myocardial infarction (41), whilst colchicine has also been found
to reduce cardiovascular outcomes in those with coronary artery
disease (42, 43). Evidence for the benefit of such agents related
specifically to carotid atherosclerosis is currently lacking (44),
though the Colchicine for Prevention of Vascular Inflammation
in Non-cardio Embolic Stroke (CONVINCE) study will consider
the use of colchicine in a stroke setting. Such therapeutic
approaches targeting systemic atheroinflammation may have an
important role for reducing the burden of chronic small vessel
disease and its clinical sequelae.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Nottingham One Research Ethics Committee,
14/EM/0128. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

NE, AP, MG, JR, and EW participated in study design. NE, JT,
JW, MC, and AP participated in data acquisition and analysis.
NE performed the statistical analysis and drafted the manuscript.

All authors participated in interpretation of the data and critical
revision of the manuscript. All authors contributed to the article
and approved the submitted version.

FUNDING

The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication
of this article: NE was supported by a Research Training
Fellowship from The Dunhill Medical Trust (grant number
RTF44/0114), and an Academic Clinical Lectureship from
the National Institute of Health Research. JT is supported
by a Wellcome Trust Clinical Research Career Development
Fellowship (211100/Z/18/Z). MC is supported by Royal
College of Surgeons of England and British Heart Foundation
(BHF) fellowships (FS/16/29/31957). JR is supported by
the BHF; Engineering and Physical Sciences Research
Council; Wellcome Trust; and Higher Education Funding
Council for England. JR and EW are supported by the
Cambridge National Institute for Health Research Biomedical
Research Center.

ACKNOWLEDGMENTS

The authors thank Professor Hugh Markus (University
of Cambridge) for his advice regarding imaging analysis
and interpretation.

REFERENCES

1. Libby P. The molecular mechanisms of the thrombotic
complications of atherosclerosis. J Intern Med. (2008) 263:517–
27. doi: 10.1111/j.1365-2796.2008.01965.x

2. Dweck MR, Maurovich-Horvat P, Leiner T, Cosyns B, Fayad ZA, Gijsen FJH,
et al. Contemporary rationale for non-invasive imaging of adverse coronary
plaque features to identify the vulnerable patient: a position paper from the
european society of cardiology working group on atherosclerosis and vascular
biology and the european association of cardiovascular imaging. Eur Heart J
Cardiovasc Imag. (2020) 21:1177–83. doi: 10.1093/ehjci/jeaa201

3. Chróinín DN, Marnane M, Akijian L, Merwick Á, Fallon E, Horgan
G, et al. Serum lipids associated with inflammation-related PET-
FDG uptake in symptomatic carotid plaque. Neurology. (2014)
82:1693–9. doi: 10.1212/WNL.0000000000000408

4. Kaida H, Tahara N, Tahara A, Honda A, Nitta Y, Igata S, et al. Positive
correlation between malondialdehyde-modified low-density lipoprotein
cholesterol and vascular inflammation evaluated by 18F-FDG PET/CT.
Atherosclerosis. (2014) 237:404–9. doi: 10.1016/j.atherosclerosis.2014.10.001

5. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F FDG uptake in the
large arteries: a correlation study with the atherogenic risk factors. Semin Nucl

Med. (2002) 32:70–6. doi: 10.1053/snuc.2002.29279
6. Lee SJ, On YK, Lee EJ, Choi JY, Kim BT, Lee KH. Reversal of vascular 18F-FDG

uptake with plasma high-density lipoprotein elevation by atherogenic risk
reduction. J Nucl Med. (2008) 49:1277–82. doi: 10.2967/jnumed.108.052233

7. Srinivasan V, Braidy N, Chan EKW, Xu Y-H, Chan DKY. Genetic
and environmental factors in vascular dementia: an update of blood
brain barrier dysfunction. Clin Exp Pharmacol Physiol. (2016) 43:515–
21. doi: 10.1111/1440-1681.12558

8. Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, et al. Brain
inflammation is induced by co-morbidities and risk factors for stroke. Brain
Behav Immun. (2011) 25:1113–22. doi: 10.1016/j.bbi.2011.02.008

9. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain
Behav Immun. (2017) 60:1–12. doi: 10.1016/j.bbi.2016.03.010

10. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small
vessel disease: insights from neuroimaging. Lancet Neurol. (2013) 12:483–
97. doi: 10.1016/S1474-4422(13)70060-7

11. Debette S, Markus HS. The clinical importance of white matter
hyperintensities on brain magnetic resonance imaging: systematic review and
meta-analysis. BMJ. (2010) 341:c3666. doi: 10.1136/bmj.c3666

12. Arsava EM, Rahman R, Rosand J, Lu J, Smith EE, Rost NS, et al. Severity
of leukoaraiosis correlates with clinical outcome after ischemic stroke.
Neurology. (2009) 72:1403–10. doi: 10.1212/WNL.0b013e3181a18823

13. van Swieten JC, Kappelle LJ, Algra A, van Latum JC, Koudstaal PJ,
van Gijn J. Hypodensity of the cerebral white matter in patients with
transient ischemic attack or minor stroke: influence on the rate of
subsequent stroke. Dutch TIA Trial Study Group. Ann Neurol. (1992) 32:177–
83. doi: 10.1002/ana.410320209

14. Liao SQ, Li JC, Zhang M, Wang YJ, Li BH, Yin YW, et al.
The association between leukoaraiosis and carotid atherosclerosis:
a systematic review and meta-analysis. Int J Neurosci. (2015)
125:493–500. doi: 10.3109/00207454.2014.949703

15. Evans NR, Tarkin JM, Chowdhury MM, Le EPV, Coughlin PA, Rudd JHF,
et al. Dual-tracer positron-emission tomography for identification of culprit
carotid plaques and pathophysiology in vivo. Circ Cardiovasc Imag. (2020)
13:e009539. doi: 10.1161/CIRCIMAGING.119.009539

16. Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA.
PET imaging of the neurovascular interface in cerebrovascular disease. Nat
Rev Neurol. (2017) 13:676–88. doi: 10.1038/nrneurol.2017.129

17. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury
RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography
imaging provides a noninvasive measure of carotid plaque inflammation
in patients. J Am Coll Cardiol. (2006) 48:1818–24. doi: 10.1016/j.jacc.2006.
05.076

Frontiers in Neurology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 690935

https://doi.org/10.1111/j.1365-2796.2008.01965.x
https://doi.org/10.1093/ehjci/jeaa201
https://doi.org/10.1212/WNL.0000000000000408
https://doi.org/10.1016/j.atherosclerosis.2014.10.001
https://doi.org/10.1053/snuc.2002.29279
https://doi.org/10.2967/jnumed.108.052233
https://doi.org/10.1111/1440-1681.12558
https://doi.org/10.1016/j.bbi.2011.02.008
https://doi.org/10.1016/j.bbi.2016.03.010
https://doi.org/10.1016/S1474-4422(13)70060-7
https://doi.org/10.1136/bmj.c3666
https://doi.org/10.1212/WNL.0b013e3181a18823
https://doi.org/10.1002/ana.410320209
https://doi.org/10.3109/00207454.2014.949703
https://doi.org/10.1161/CIRCIMAGING.119.009539
https://doi.org/10.1038/nrneurol.2017.129
https://doi.org/10.1016/j.jacc.2006.05.076
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Evans et al. Carotid-Cerebrovascular Interface

18. North American Symptomatic Carotid Endarterectomy Trial Collaborators,
Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ,
et al. Beneficial effect of carotid endarterectomy in symptomatic
patients with high-grade carotid stenosis. N Engl J Med. (1991)
325:445–53. doi: 10.1056/NEJM199108153250701

19. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV,
et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET
compared to [18F]FDG PET imaging. J Am Coll Cardiol. (2017) 69:1774–
91. doi: 10.1016/j.jacc.2017.01.060

20. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal
abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J

Roentgenol. (1987) 149:351–6. doi: 10.2214/ajr.149.2.351
21. Pantoni L, Basile AM, Pracucci G, Asplund K, Bogousslavsky J, Chabriat

H, et al. Impact of age-related cerebral white matter changes on the
transition to disability – the LADIS study: rationale, design and methodology.
Neuroepidemiology. (2005) 24:51–62. doi: 10.1159/000081050

22. Takami T, Yamano S, Okada S, Sakuma M, Morimoto T, Hashimoto H, et al.
Major risk factors for the appearance of white-matter lesions on MRI in
hypertensive patients with controlled blood pressure.Vasc Health RiskManag.

(2012) 8:169–76. doi: 10.2147/VHRM.S30507
23. Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V,

et al. Relationships among regional arterial inflammation, calcification, risk
factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission
tomography/computed tomography imaging study. Circ Cardiovasc Imag.

(2009) 2:107–15. doi: 10.1161/CIRCIMAGING.108.811752
24. Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of

92-kD gelatinase in human coronary atherosclerotic lesions. Association of
active enzyme synthesis with unstable angina. Circulation. (1995) 91:2125–
31. doi: 10.1161/01.CIR.91.8.2125

25. Taurino M, Raffa S, Mastroddi M, Visco V, Rizzo L, Torrisi MR, et al.
Metalloproteinase expression in carotid plaque and its correlation with plasma
levels before and after carotid endarterectomy.Vasc Endovascular Surg. (2007)
41:516–21. doi: 10.1177/1538574407307405

26. Tayebjee MH, Tan KT, MacFadyen RJ, Lip GY. Abnormal circulating levels
of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven
peripheral arterial disease: relationship to disease severity. J InternMed. (2005)
257:110–6. doi: 10.1111/j.1365-2796.2004.01431.x

27. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD,
et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-
brain barrier breakdown and is proinflammatory after transient
focal cerebral ischemia. Am J Physiol Heart Circ Physiol. (2005)
289:H558–68. doi: 10.1152/ajpheart.01275.2004

28. Kumari R, Willing LB, Patel SD, Baskerville KA, Simpson IA. Increased
cerebral matrix metalloprotease-9 activity is associated with compromised
recovery in the diabetic db/db mouse following a stroke. J Neurochem. (2011)
119:1029–40. doi: 10.1111/j.1471-4159.2011.07487.x

29. Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, et al. Pre-ischemic
exercise reduces matrix metalloproteinase-9 expression and ameliorates
blood-brain barrier dysfunction in stroke. Neuroscience. (2008) 151:340–
51. doi: 10.1016/j.neuroscience.2007.10.006

30. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier
permeability is increased in normal-appearing white matter in patients
with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry. (2010)
81:192–7. doi: 10.1136/jnnp.2009.172072

31. HanyuH, Asano T, Tanaka Y, Iwamoto T, TakasakiM, Abe K. Increased blood-
brain barrier permeability in white matter lesions of binswanger’s disease
evaluated by contrast-enhanced MRI. Dement Geriatr Cogn Disord. (2002)
14:1–6. doi: 10.1159/000058326

32. Saito H, Kuroda S, Hirata K, Magota K, Shiga T, Tamaki N, et al.
Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and
inflamed carotid plaque. Cerebrovasc Dis. (2013) 35:370–7. doi: 10.1159/0003
48846

33. Wu YW, Kao HL, Huang CL, Chen MF, Lin LY, Wang YC, et al. The
effects of 3-month atorvastatin therapy on arterial inflammation, calcification,
abdominal adipose tissue and circulating biomarkers. Eur J Nucl Med Mol

Imag. (2012) 39:399–407. doi: 10.1007/s00259-011-1994-7
34. Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I.

Increased blood-brain barrier permeability in type II diabetes demonstrated
by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry.

(2003) 74:70–6. doi: 10.1136/jnnp.74.1.70
35. Grueter BE, Schulz UG. Age-related cerebral white matter

disease (leukoaraiosis): a review. Postgrad Med J. (2012) 88:79–
87. doi: 10.1136/postgradmedj-2011-130307

36. Lindgren A, Roijer A, Rudling O, Norrving B, Larsson EM, Eskilsson J, et al.
Cerebral lesions on magnetic resonance imaging, heart disease, and vascular
risk factors in subjects without stroke. A population-based study. Stroke.
(1994) 25:929–34. doi: 10.1161/01.STR.25.5.929

37. ten Dam VH, van den Heuvel DM, van Buchem MA, Westendorp
RG, Bollen EL, Ford I, et al. Effect of pravastatin on cerebral
infarcts and white matter lesions. Neurology. (2005) 64:1807–
9. doi: 10.1212/01.WNL.0000161844.00797.73

38. Xiong Y, Wong A, Cavalieri M, Schmidt R, Chu WW, Liu X, et al.
Prestroke statins, progression of white matter hyperintensities, and cognitive
decline in stroke patients with confluent white matter hyperintensities.
Neurotherapeutics. (2014) 11:606–11. doi: 10.1007/s13311-014-0270-5

39. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per
variable in logistic and cox regression. Am J Epidemiol. (2007) 165:710–
8. doi: 10.1093/aje/kwk052

40. van Smeden M, de Groot JA, Moons KG, Collins GS, Altman DG,
Eijkemans MJ, et al. No rationale for 1 variable per 10 events criterion
for binary logistic regression analysis. BMC Med Res Methodol. (2016)
16:163. doi: 10.1186/s12874-016-0267-3

41. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C,
et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease.
N Engl J Med. (2017) 377:1119–31. doi: 10.1056/NEJMoa1707914

42. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al.
Colchicine in patients with chronic coronary disease. N Engl J Med. (2020)
383:1838–47. doi: 10.1056/NEJMoa2021372

43. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al.
Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl

J Med. (2019) 381:2497–505. doi: 10.1056/NEJMoa1912388
44. Coveney S, McCabe JJ, Murphy S, O’Donnell M, Kelly PJ. Anti-inflammatory

therapy for preventing stroke and other vascular events after ischaemic
stroke or transient ischaemic attack. Cochrane Database Syst Rev. (2020)
5:Cd012825. doi: 10.1002/14651858.CD012825

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Evans, Tarkin, Walsh, Chowdhury, Patterson, Graves, Rudd and

Warburton. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 690935

https://doi.org/10.1056/NEJM199108153250701
https://doi.org/10.1016/j.jacc.2017.01.060
https://doi.org/10.2214/ajr.149.2.351
https://doi.org/10.1159/000081050
https://doi.org/10.2147/VHRM.S30507
https://doi.org/10.1161/CIRCIMAGING.108.811752
https://doi.org/10.1161/01.CIR.91.8.2125
https://doi.org/10.1177/1538574407307405
https://doi.org/10.1111/j.1365-2796.2004.01431.x
https://doi.org/10.1152/ajpheart.01275.2004
https://doi.org/10.1111/j.1471-4159.2011.07487.x
https://doi.org/10.1016/j.neuroscience.2007.10.006
https://doi.org/10.1136/jnnp.2009.172072
https://doi.org/10.1159/000058326
https://doi.org/10.1159/000348846
https://doi.org/10.1007/s00259-011-1994-7
https://doi.org/10.1136/jnnp.74.1.70
https://doi.org/10.1136/postgradmedj-2011-130307
https://doi.org/10.1161/01.STR.25.5.929
https://doi.org/10.1212/01.WNL.0000161844.00797.73
https://doi.org/10.1007/s13311-014-0270-5
https://doi.org/10.1093/aje/kwk052
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1056/NEJMoa1707914
https://doi.org/10.1056/NEJMoa2021372
https://doi.org/10.1056/NEJMoa1912388
https://doi.org/10.1002/14651858.CD012825
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Carotid Atheroinflammation Is Associated With Cerebral Small Vessel Disease Severity
	Introduction
	Materials and Methods
	Participants
	PET/CT Protocol
	MRI Protocol
	Assessment of Cerebral Small Vessel Disease
	Inflammatory Biomarker
	Statistical Analysis
	Data Availability

	Results
	Study Population
	PET Tracer Uptake in Culprit and Non-culprit Atherosclerotic Plaque
	Chronic Small Vessel Disease

	Discussion
	Limitations and Future Work

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


