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Coordinated regulation of gene expression levels across a series of experimental conditions provides valuable
information about the functions of correlated transcripts. The consideration of gene expression correlation over a time
or tissue dimension has proved valuable in predicting gene function. Here, we consider correlations over a genetic
dimension. In addition to identifying coregulated genes, the genetic dimension also supplies us with information
about the genomic locations of putative regulatory loci. We calculated correlations among approximately 45,000
expression traits derived from 60 individuals in an F, sample segregating for obesity and diabetes. By combining the
correlation results with linkage mapping information, we were able to identify regulatory networks, make functional
predictions for uncharacterized genes, and characterize novel members of known pathways. We found evidence of
coordinate regulation of 174 G protein-coupled receptor protein signaling pathway expression traits. Of the 174 traits,
50 had their major LOD peak within 10 cM of a locus on Chromosome 2, and 81 others had a secondary peak in this
region. We also characterized a Riken cDNA clone that showed strong correlation with stearoyl-CoA desaturase 1
expression. Experimental validation confirmed that this clone is involved in the regulation of lipid metabolism. We
conclude that trait correlation combined with linkage mapping can reveal regulatory networks that would otherwise
be missed if we studied only mRNA traits with statistically significant linkages in this small cross. The combined
analysis is more sensitive compared with linkage mapping alone.
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colleagues [3] generated microarray expression data for nearly
40,000 mRNAs in 55 mouse tissues and found that coordinated

Introduction

Biological systems are tightly controlled such that the expression across a tissue dimension can contribute to the

concentrations of components are precisely balanced in an prediction of gene function. Although extremely informative,

active blOIOgl.Cal pathway. The balanc.es are malr‘ltalned m these approaches do not establish lines of causation among
part by coordinately regulated expression levels of the genes
involved in the biological processes. Thus, genes that are

coregulated across various physiologic conditions are likely to

correlated mRNAs and therefore cannot provide the origin of
a particular gene regulatory network.

.. . . . Genetics establishes a one-way line of causation between
have similar functions. This creates a context by which the Y

function of unannotated genes can be predicted.

One of the greatest challenges to biologists today is to
functionally characterize genes identified by the genome
sequencing projects. Traditionally, gene functions are in-
ferred based on similarities in primary sequences, functional
domains, or structures of encoded proteins [1]. In contrast to
these qualitative approaches, we and others are using
quantitative methods to predict gene function and discover
gene regulatory networks [2,3].

Eisen and colleagues [4] were among the first to use
microarray gene expression profiles for gene function
prediction. They used hierarchical clustering algorithms to
analyze time-course gene expression profiles of budding yeast
and human fibroblasts and found that grouping of transcripts
with similar profiles across a time dimension could accurately
identify genes of similar function. Recently, Zhang and
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genotype and phenotype. Brem et al. [5] used microarray data
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Synopsis

In order to annotate gene function and identify potential members
of regulatory networks, the authors explore correlation of expression
profiles across a genetic dimension, namely genotypes segregating
in a panel of 60 F, mice derived from a cross used to explore
diabetes in obese mice. They first identified 6,016 seed transcripts
for which they observe that the gene expression is linked to a
particular region of the genome. Then they searched for transcripts
whose expression is highly correlated with the seed transcripts and
tested for enrichment of common biological functions among the
lists of correlated transcripts. They found and explored the
properties of 1,341 sets of transcripts that share a particular “gene
ontology” term. Thirty-eight seeds in the G protein—coupled
receptor protein signaling pathway were correlated with 174
transcripts, all of which are also annotated as G protein-coupled
receptor protein signaling pathway and 131 of which share a
regulatory locus on Chromosome 2. The authors note many of these
findings would have been missed by simple expression quantitative
trait loci analysis without the correlation step. The approach was
used to identify a common set of genes involved in lipid
metabolism.

as phenotypes for genetic mapping in a segregating yeast
sample. This approach has inspired the mapping of expres-
sion quantitative trait loci (¢QTL) in mammalian species [6-
12]. Each study identified c¢is and trans traits. A cis trait is one
that genetically maps to the physical location of the gene
encoding its mRNA, suggesting that variation at the locus is
responsible for the heritable changes in gene expression. A
trans trait maps to a region distinct from its physical location
and thus implies the location of a potential regulator acting
in trans. Theoretically, when multiple traits map together in
trans (i.e., overlapping eQTL peaks within an approximately
10-cM region), we can hypothesize that they are coregulated
by a common regulator encoded by a gene locus underlying
the eQTL. Unfortunately, in practice, because mRNAs are
typically regulated by multiple factors, individual frans-acting
eQTL exert a relatively weak genetic signal and are difficult
to detect in a small sample size. This limits the power to
detect metabolic regulators.

Schadt et al. [9] surveyed 23,574 genes using Rosetta
oligonucleotide arrays. More recent studies used Affymetrix
U74A arrays, or RAE230A arrays, which covered about one
third of all the transcripts [7,8,11]. The transcripts chosen for
measurement were biased toward known genes. Here, we
measured the expression levels of the transcripts on the
Affymetrix MOE430 Set arrays, which include many genes of
unknown function.

We studied an Fy segregating for obesity and diabetes to
expose key components of gene regulatory networks. To this

Figure 1. Expression QTL in the (B6 X BTBR) Fz-ob/ob Cross
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end, we combined correlation analysis with linkage mapping.
Rather than considering correlation across a time or tissue
dimension, we evaluated correlation across a genetic dimen-
sion, as created by a segregating Fo sample. An Fs represents an
allelic block permutation. Our combined approach increases
the power to identify metabolic regulatory networks.

Results

We generated an Fo-0b/ob sample from the C57BL/6] (B6) and
BTBR founder strains. The B6 and BTBR strains, when made
obese, differ in diabetes susceptibility [13]; B6-0b/ob mice are
diabetes resistant, whereas BTBR-0b/0b mice develop severe
diabetes. The Fy mice were genotyped for 194 markers (average
marker interval of approximately 10 cM). A subset of 60 mice
was chosen using a selective phenotyping algorithm developed
in our group [14]. From each liver, 45,037 expression measure-
ments were obtained using the Affymetrix MOE430 micro-
arrays. According to the December 2004 gene annotation
table, 14,487 (32.2%) of the transcripts have unique RefSeq
protein identifiers, and 16,466 (36.6 %) have been annotated to
at least one Gene Ontology (GO) Biological Process (BP).
Altogether, about two thirds of the transcripts that we
measured were not annotated in either of these two sources.

Mapping of Metabolic Regulatory Loci

After processing the Affymetrix CEL files with Robust
Multi-array Average (RMA) [15], we used interval mapping to
screen the 45,037 traits. Transcripts with LOD scores of 3.4 or
greater at one or more locations in the genome were
recorded as mapping transcripts. Use of this LOD threshold
roughly corresponds to a genomewide type I error rate of
0.08 [16] and a false discovery rate (FDR) of 0.48 (see Materials
and Methods). The high FDR is not surprising, considering
that adjustments for multiple tests across transcripts have not
been made [17]. We nevertheless keep this LOD threshold
since we consider this step as only an initial screen; the
threshold reduces the computational burden significantly
while maintaining a high true-positive rate. This procedure
yielded 6,016 mapping transcripts.

We plotted the mapping locations of these expression traits
against their physical locations (Figure 1A). Of the 6,016
mapping transcripts, 723 were classified as cis (the diagonal
spots in Figure 1A) and the rest were classified as trans. The cis
traits are listed in Table S1. Rearrangement of Figure 1A
using hierarchical clustering of the LOD profiles enabled us
to identify the putative locations of metabolic regulators
(Figure 1B). We identified 15 regions with the highest number
of mapping transcripts, and for each region, we tested the list
of mapping traits for enrichment in a common functional
annotation, using the GO database and a Hypergeometric
calculation. For each region, we examined up to 50 GO terms,

(A) Expression QTL that regulate gene expression in the (B6 X BTBR) F,-0b/0b cross. The physical locations of the transcripts are organized on the y-axis.
The chromosome regions (x-axis) to which those transcripts are mapped were obtained using the scanone function in the R/qtl package with 5-cM
intervals. The gray scale reflects the strength of the linkage signals (LOD scores greater than 8 are scaled to 8). Transcripts appearing on the diagonal are
inferred to be cis-regulated. The chromosomes were concatenated to form a 2,300-Mb genome, starting from Chromosome 1 and ending with

Chromosome 19.

(B) Global display of mapping patterns of linkage clusters. The y-axis shows the 6,016 mapping transcripts. The x-axis shows the physical locations to
which these transcripts map. The transcripts are grouped based on the hierarchical clustering of linkage mapping patterns across the genome. Darker
areas indicate the regions to which traits are comapped or coregulated. The boxes correspond to the hot spots on Chromosomes 2, 10, and 13. The gray
scale reflects the strength of the linkage signals (LOD scores greater than 8 are scaled to 8).

DOI: 10.1371/journal.pgen.0020006.g001
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Figure 2. Coordinate Regulation of Genes for GPCR Protein Signaling Pathways
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(A) GPCR protein signaling pathway genes show coordinated changes across the 60 F, mice. The rescaled expression levels of 174 distinct transcripts (y-
axis) that belong to the GPCR pathway. The x-axis displays the 60 F, mice. The plot shows that the subset of GPCR traits identified by our trait
correlation-GO analysis has vertical patterns that indicate coordinate expression across the 60 F, mice (P = 1e10* by permutation test).

(B) Histogram of pairwise correlation coefficients of GPCR traits identified with different seeds.

(C) Scaled expression levels of traits from one realization of the permuted lists. Thirty-eight lists of correlated traits were randomly sampled from a total
of 1,341 correlated trait lists. The list sizes were adjusted to match those of the GPCR lists. The expression values were scaled to have mean intensity =0

and variance = 1, as in the GPCR list in Figure 2A.
DOI: 10.1371/journal.pgen.0020006.9g002

each of which involved more than ten genes. A region is said not shown). However, when we followed up and examined all
to be enriched for a particular GO term if the resulting eQTLs that have similar maximum LOD positions (whether
Hypergeometric P-value is <0.01. Using these criteria, we statistically significant or not), we found clear evidence of
found modest functional enrichment in each region (results enrichment (Figure 3B). We performed the same procedure
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Figure 3. An Expression Quantitative Trait Locus on Chromosome 2
Regulates Many GPCR Protein Pathway Genes

(A) Comapping of GPCR pathway traits to loci on Chromosome 2. The
figure shows the peaks on Chromosome 2 versus LOD score for 174
GPCR protein signaling pathway traits. The closed circles correspond to
38 seed traits.

(B) Comapping of GPCR pathway traits. The figure shows the magnitude
(y-axis) versus location of LOD peaks (x-axis is scaled by cM) for 174 GPCR
protein signaling pathway traits. The closed circles correspond to the 38
seed traits. The interval mapping LOD profiles for all 38 seeds are
included in Figure S2.

DOI: 10.1371/journal.pgen.0020006.g003

on randomized data, preserving the correlation structure
among the traits. This enrichment test did not reveal results
as significant as were observed in the original data.

Combining Mapping and Correlation Analysis Improves
Sensitivity to Detect Regulatory Loci

We developed a strategy to explore metabolic regulatory
networks on a genomewide scale that incorporates correlated
traits that by themselves do not show statistically significant
linkage. Considering each of the 6,016 mapping transcripts as
a “seed,” we computed the Pearson correlation coefficients (r)
across the 60 Fo mice for the 45,037 expression measurements
and constructed a list of traits having r > 0.7 (FDR =

@ PLoS Genetics | www.plosgenetics.org
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1.5261076). We then tested for enrichment of any GO BP.
Among the 6,016 seed transcripts, 1,341 produced lists of
traits enriched for at least one GO term. The lists identified
by the seed traits and GO terms are given in Table S2.

Among all of the lists from the 1,341 seed transcripts, we
identified 862 unique GO BP terms (15,726 in total). We traced
back the lists of correlated traits that are enriched for each
unique GO term and concatenated all such lists. Different
seeds may have identified overlapping traits enriched for the
same GO term. These redundant copies of traits were
removed after concatenation. By doing so, we associated a
collection of distinct traits with each of the 862 unique GO
terms. The full archive of lists is available in Table S3.

To illustrate how a gene mapping approach alone is
insufficient, consider a locus on Chromosome 2 that regulates
in {rans multiple ion transport genes (Figure 1B, box),
including six genes encoding subunits of the mitochondrial
F, or Fy ATPase of the proton channel of the electron
transport system. It is known that there are 24 other ATP
synthase subunits in the genome. None of the 24 expression
traits exceeded the LOD threshold of 3.4, but many of them
shared the linkage peak on Chromosome 2 (Figure S1). These
results exposed a limitation of eQTL mapping; without
inspection of the list of correlated trans traits, biological
inference, and reconsideration of the 24 statistically insignif-
icant LOD profiles, we would have missed evidence for
coregulation of an entire family of mitochondprial respiratory
genes. To automate this procedure, we consider augmenting
eQTL mapping with trait correlation analysis.

A Regulator Locus for G Protein-Coupled Receptor Genes

Using the correlation analysis described above, we identi-
fied 38 seeds that are in the G protein-coupled receptor
(GPCR) protein signaling pathway and found 174 distinct
traits correlated with these 38 seeds. Dramatically, all 174
traits were annotated as belonging to the GPCR protein
signaling pathway GO term (Table S4). We created a heat plot
to visualize the correlation patterns across multiple lists for
this pathway by first rescaling the logs intensity values of each
trait across all the 60 Fy mice so that the mean = 0 and
variance = 1. This rescaling step is necessary because some
genes are overexpressed across all the Fo mice and others are
underexpressed, which fails to reveal the coordinate regu-
lation pattern across traits. We plotted the rescaled expres-
sion levels of the transcripts across the 60 Fo mice (Figure 2A).
A striking feature of Figure 2A is the monochromatic
columns, which reflect the coordinate changes in gene
expression across the genetic dimension represented by the
Fy sample. The traits from different seeds are not all highly
correlated with each other (Figure 2B). However, the fact that
they are enriched for the same GO term implies that they are
coordinately regulated.

To ensure that the vertical patterns that were preserved
across multiple lists were indeed functionally relevant, we
randomly sampled 38 lists from the total of 1,341 lists and
adjusted the sizes to be the same as those of the GPCR lists.
We concatenated traits from those 38 randomly sampled lists.
The vertical patterns shown in Figure 2A are no longer
evident (Figure 2C). This was repeated 10,000 times. The
vertical patterns in Figure 2A were shown to be statistically
significant (P = 1el0™"; see Materials and Methods).

It is important to note that many of the traits correlated to
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Inheritance of Gene Expression in Diabetes

60 F2 animals

Figure 4. Lipid Metabolism Pathway Genes Show Coordinated Expression across the F, Mice

The rescaled expression levels of 184 distinct transcripts (y-axis) that belong to the lipid metabolism pathway are shown for each of the 60 F, mice (x-
axis). Plot shows that the subset of lipid metabolism traits identified by our trait correlation-GO analysis has preserved vertical patterns (P =4e10~* by

permutation test).
DOI: 10.1371/journal.pgen.0020006.9004

seed traits did not show significant linkage across the 60 Fo
mice and would have been overlooked by linkage mapping
alone. When we mapped the GPCR seed with the most
significant linkage, we discovered that the expression levels of
this GPCR gene were influenced by a regulatory locus on
Chromosome 2 at 30 cM, between D2Mit297 and D2Mit9
(Figure 3A). Of the 174 traits, 50 had their major LOD peak
within 10 ¢M of this locus, and 81 others had a secondary
peak in this region (Figure 3A). While many of these LOD
scores do not exceed our significance threshold, the strong
agreement suggests that most are driven by this same
regulator or closely linked regulators, thus comprising a
regulatory network. The LOD profiles for the 38 seed traits
are shown in Figure S2. There appeared to be secondary
regulators on Chromosomes 10 and 13 (Figure 3B). Similar

evidence was suggested by inspecting the chromosome
regions as shown in the boxes in Figure 1B. We picked out
all transcripts, whether or not they have LOD scores exceed-
ing 3.4, that share the same LOD peaks on the regions of
Chromosome 2, 10, or 13 and tested for BP GO enrichment.
We found GPCR protein signaling pathway in the enriched
list with very small P-values. In short, we found that trait
correlation combined with linkage mapping can reveal
regulatory networks that would otherwise be missed if we
studied only mRNA traits with statistically significant linkages
in this small cross. The combined analysis is more sensitive
compared with linkage mapping only.

A Regulator Locus of Lipid Metabolism Genes
The strategy given above can be applied to many metabolic
pathways. We found evidence of a regulatory pathway

Table 1. Top 20 Gene Expression Traits Correlated with Scd7 Are All Lipid Metabolism Genes

Probe Gene Description Correlation Chr® Position 2-QTL D2Mit263 D5Mit240
Set ID Symbol (Mb) Fit®

1415965_at  Scd1 Stearoyl-coenzyme A desaturase 1 1.000 19 44 0.000  0.003 0.005
1415964 _at  Scd1 Stearoyl-coenzyme A desaturase 1 0.921 19 44 0.000 0.003 0.049
1441881_x_at 3110032G18Rik RIKEN cDNA 3110032G18 gene 0.884 5 123 0.000 0.000 0.125
1422432_at  Dbi Diazepam binding inhibitor 0.830 1 120 0.000 0.014 0.008
1417963_at  Pltp Phospholipid transfer protein 0.825 2 165 0.001  0.084 0.008
1456424 _s_at Pltp Phospholipid transfer protein 0.823 2 165 0.000 0.029 0.004
1417404_at  Elovl6 ELOVL family member 6, elongation of long-chain fatty acids (yeast) 0.806 3 130 0.003 0.119 0.011
1415840_at  Elovl5 ELOVL family member 5, elongation of long-chain fatty acids (yeast) 0.792 9 78 0.000 0.081 0.003
1423828_at  Fasn Fatty acid synthase 0.791 11 121 0.001  0.038 0.024
1422185_a_at Dial Diaphorase 1 (NADH) 0.789 15 84 0.010 0.035 0.097
1430307_a_at Mod1 Malic enzyme, supernatant 0.773 13 61 0.018  0.071 0.081
1437211_x_at Elovl5 ELOVL family member 5, elongation of long-chain fatty acids (yeast) 0.766 9 78 0.001  0.007 0.045
1417403_at  Elovl6 ELOVL family member 6, elongation of long-chain fatty acids (yeast) 0.756 3 130 0.008 0.122 0.022
1419499_at  Gpam Glycerol-3-phosphate acyltransferase, mitochondrial 0.743 19 54 0.001  0.044 0.018
1455976_x_at Dbi Diazepam binding inhibitor 0.742 1 120 0.000  0.005 0.099
1428714 _at Pgrmc2 Progesterone receptor membrane component 2 0.742 3 41 0.010 0.004 0.794
1451457_at  Sc5d Sterol-C5-desaturase (fungal ERG3, delta-5-desaturase) homolog 0.741 9 42 0.014 0.039 0.091

(S. cerevisae)
1425303_at Gck Glucokinase 0.738 1 6 0.002  0.021 0.075
1426264 _at  Dlat Dihydrolipoamide S-acetyltransferase (E2 component of pyruvate 0.735 9 51 0.003  0.051 0.041
dehydrogenase complex)
1428082_at  Acsl5 Acyl-CoA synthetase long-chain family member 5 0.734 19 55 0.007  0.043 0.080

?Physical location of the gene encoding the mRNA.
bp-values for overall fit of two-QTL model and type 3—adjusted test for each QTL.
DOI: 10.1371/journal.pgen.0020006.t001
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Figure 5. Regulation of Riken32G18 Inversely Parallels the Regulation of
Lipogenic Genes

(A) Metabolic regulation of Riken32G18. Expression of lipogenic genes
and Riken32G18 in adipose tissues of lean versus obese mice.

(B) Expression of lipogenic genes and Riken32G18 in livers of lean versus
obese mice.

(C) Expression of LXRo target genes and Riken32G18 in mouse livers
treated with LXRa agonist T0901317.

DOI: 10.1371/journal.pgen.0020006.g005

controlling lipid metabolism (Figure 4; P = 4e10~Y. These
expression patterns were combined from lists using 71
different seeds. As was the case for the GPCR transcripts,
these show evidence of coregulation across the 60 Fy mice.

We have previously studied eQTL for stearoyl-CoA
desaturase-1 (Scdl) [2], an important gene for lipid metabo-
lism and insulin sensitivity [18,19]. When we used Scdl
expression as a seed, the traits that were most closely
correlated with Scdl were clearly enriched in lipid metabo-
lism genes (Table S5).

The traits that are highly correlated also map to the same
genomic locations, even though their respective genes are in
separate locations (i.e., they are being regulated in trans).
Major QTL peaks for most of the 20 lipid metabolism traits
were found on Chromosomes 2 (D2Mit263) and 5 (D5Mit240);
to a lesser extent, they were found by loci on several other
chromosomes. We found strong evidence that these two loci
are jointly predictive for all 20 traits (Table 1).

Two genes that ranked high in Table 1, RIKEN ¢DNA
3110032G18 (Riken32G18 hereafter; r = 0.868) and diazepam
binding inhibitor (r = 0.816), did not seem to have obvious
functional relevance with Scdl. We used this opportunity to
test the predictive power of trait correlations.

Diazepam Binding Inhibitor Is Functionally Related to Scd1

The correlation between diazepam binding inhibitor (Dbi)
and Scdl is stronger than that for the classic lipid biosyn-
thesis genes such as fatty acid synthase, malic enzyme, and
fatty acyl-CoA ligase. Interval mapping of the expression
levels of Dbi and Scdl showed highly similar patterns (data
not shown), suggesting that they are regulated by common
loci. To understand the biological basis for the predicted
coregulation, we first sought to use in silico approaches to

@ PLoS Genetics | www.plosgenetics.org 0057
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investigate this gene. The Dbi gene symbol is synonymous
with acyl-CoA binding protein (Acbp). ACBP is a 10-kDa
cytosolic protein that binds long-chain fatty acyl-CoAs and
has a high affinity for oleoyl-CoA, the product of the SCD1
reaction [20]. Our data analysis predicts that a common
regulator maintains a fixed ratio of mRNA for SCD1 and for
a protein that binds its product, oleoyl-CoA. Recently, Dbi
was reported to be regulated by sterol regulatory element
binding protein-lc (SREBP-1c), a known master regulator of
lipogenic enzymes [21]. Perhaps one or more of the
regulators we have mapped are coactivators or corepressors
of SREBP-1¢, analogous to PPARY coactivator-1f [22]. Thus,
the prediction from our trait correlation analysis that Dbi is
functionally related to Scdl was confirmed by recently
published experimental data.

Prediction of Riken32G18 as a Putative Lipid Metabolism
Gene

The mRNA most closely correlated to Scdl is Riken32GIS8,
which maps to the same location on Chromosome 2 as Scdl
expression but with almost twice the LOD score. Notably,
Riken32G18 is physically located on Chromosome 5 and Sedl
is on Chromosome 19; thus, the two genes are likely
coregulated in {rans by the Chromosome 2 locus.

We hypothesized that Riken32GI18 plays a role in lipid
metabolism with a close functional relationship with Scdl.
There is no information available from the online resources to
functionally link Riken32G18 to Scdl or to lipid metabolism. In
order to test its functional relationship with lipid metabolism,
we asked if Riken32G18 expression is responsive to conditions
that regulate expression of lipid metabolism genes.

From our previous results, we know that lipogenic genes
are expressed at a lower level in 0bbb adipose tissue than in
lean adipose tissue [23]. Whereas Scdl and fatty acid synthase
(Fas) were expressed at a lower level in oblbb adipose tissue,
Riken32G18 expression was higher in obese adipose tissue.
Thus, Riken32G18 appeared to be regulated reciprocally with
lipogenic genes (Figure 5A). In contrast to adipose tissue,
lipogenic genes are more highly expressed in livers of ob/ob
mice than in lean mice [24]. Again, Riken32G18 was regulated
in the opposite direction; i.e., its expression was reduced in
ob/ob liver (Figure 5B). Finally, liver-X-receptor (LXR) o
activation increases genes in fatty acid metabolism in the
liver. Once again, Riken32G18 expression was down-regulated
by LXRa activation (Figure 5C). We conclude that Ri-
ken32GI18 is very likely a novel gene involved in lipid
metabolism. It is coregulated with lipid metabolism genes
across the 60 Fy mice and reciprocally regulated with such
genes across physiologic conditions.

Discussion

Macromolecules and metabolites in cells interact with one
another across a critical concentration range. The functional
concentration must be within boundaries defined by the
kinetics and thermodynamics of these interactions. One way
cells can maintain the critical concentration range for
molecules within a pathway is to maintain them under the
control of a common regulatory system. A well-characterized
example is the regulation of lipogenic enzymes by SREBP-1c,
a master regulator of virtually all enzymes critical to fatty acid
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synthesis [25]. Pathways that feed into lipogenesis are also
coregulated with lipogenic enzymes.

Whereas Eisen et al. [4] studied gene expression correlation
over a time dimension and Zhang et al. [3] studied gene
expression correlation over a tissue dimension, we performed
our studies over a genetic dimension. In addition to
identifying coregulated genes, the genetic dimension also
supplies us with information about the genomic location of
putative regulatory loci. Our method involved a two-step
approach. First, we applied a genomewide linkage analysis to
identify mapping transcripts using a liberal filter to ensure a
high true-positive rate. In the second step, we performed trait
correlation analysis, using seeds within linkage groups.

Our approach revealed biologically meaningful relation-
ships among the traits. In particular, we found that traits that
are correlated over a genetic dimension are frequently
enriched for a physiologically meaningful biological function.
For example, we found a gene whose expression was highly
correlated with those of lipid metabolism genes and with Sed!
expression as a seed trait. The prediction that this gene is
involved in lipid metabolism was borne out by recent studies
showing that this protein binds to oleoyl-CoA, the product of
the SCD1 reaction. Moreover, the eQTL for this gene maps to
the same location on distal Chromosome 2 as did other lipid
metabolism eQTL.

The distal region of Chromosome 2 containing the cluster
of lipid metabolism traits is quite interesting as several QTL
for obesity and related traits have been mapped to this region
[13,26-30]. Furthermore, Estrada-Smith et al. [31] have used
congenic mouse lines derived from B6 and CAST/Ei strains to
identify a 17-Mb region of distal Chromosome 2 that
regulates plasma levels of triglycerides. This region directly
overlaps with the location of our fatty acid metabolism
cluster and our fasting plasma insulin locus.

We also found an entirely unannotated gene highly
correlated with lipid metabolism genes. Analysis of tissues
from obese animals or animals treated with an LXRo agonist
revealed that this gene is regulated inversely under these
physiologic conditions with lipid metabolism genes, provid-
ing evidence that it participates in lipid metabolism or
perhaps is a negative regulator of lipid metabolism.

Another example of coordinated expression was the GPCR
protein signaling pathway genes. Here, we found that all of
the 174 transcripts that were highly correlated with 38 GPCR
seeds encoded GPCR pathway proteins and most mapped to
the same locus on Chromosome 2. Fewer than 10% of the
transcripts are olfactory receptors. Among the other corre-
lating genes are gamma-aminobutyric acid (GABA) receptor
signaling pathway genes, neuropeptide signaling pathway
genes, and cAMP signaling genes (Table S6).

The GPCR protein signaling pathway cluster overlaps with
a region on proximal Chromosome 2 that was narrowed
down to an 8-Mb region regulating body weight differences in
the B6 and BTBR strains [32] and a 10-Mb region underlying
obesity-related traits in the B6 and CASTI/Ei strains [31].
Several of the GPCRs in the cluster are related to obesity
traits in mice when mutated or overexpressed [33-36], and
others have been proposed as candidate genes for human
obesity [37-39] (Figure S3A). An additional subset of the
GPCR cluster represents GABA receptor subunits (Figure
S3B). Alterations in the GABA system are related to the
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obesity phenotype seen in obese (fa/fa) Zucker rats [40] and
humans with Prader-Willi syndrome [41,42].

Although we have focused our own analysis on lipid
metabolism, our database, which is available through WebQTL
(www.genenetwork.org) [43], can provide insights into the
regulation of metabolic pathways expressed in the liver. A
researcher can start with a particular mRNA of interest as a
seed trait and quickly identify genes whose expression is highly
correlated with the seed trait. By looking for overlapping loci
that control the expression of the seed and additional genes of
interest, a regulatory pathway can be hypothesized.

The particular implementation of the approach can and
should be study specific. For example, there are a number of
thresholds that must be determined, each affecting the
number of transcripts considered and the overall FDR. The
level of tolerable FDR depends on a number of factors. We
accepted a very high FDR in our first stage of transcript
mapping as we desired only a mild filtering of the data to
reduce the computational burden. We have recently devel-
oped statistical methods that provide better control of FDR
for eQTL mapping [17]. These could be used if a more
stringent filtering was desired at this stage. A more
conservative filtering in the second stage was used here by
imposing a relatively high threshold for the correlation
coefficient. Although a correlation coefficient threshold as
low as 0.4 would still correspond to an acceptable FDR of
0.05, we chose the more conservative 0.7. We have reported
stage-specific FDRs as they were used to guide our analysis.
However, we note that the FDR associated with the entire
procedure is not known. Indeed, it is an extremely difficult
problem to precisely define, not to mention determine,
overall FDR for studies involving multiple types of data and
multiple analysis methods. Doing so remains an open
question of importance to both statisticians and biologists.

In summary, here we used two complementary approaches.
First, we started with single QTL mapping to obtain seeds.
Second, we used the seeds to obtain correlated traits. Finally,
we confirmed genetic architecture for the correlated traits.
As we have argued, the combined approach is more sensitive
to retrieve biologically meaningful information from the data
set. If we just did QTL mapping, those traits with non-
significant LOD scores would have been missed. If we just
performed correlation analysis, we would have lost the
causation information that comes from the genetic linkage
analysis. Our approach provides an important organizing
step in the analysis of expression networks. It yields sets of
related traits that can be further analyzed using multiple trait
mapping [44] and causal networks [45], as these methods are
most effective after screening to obtain a modest number of
closely related traits. Moreover, our approach increases the
power to formally uncover members of gene expression
networks.

Materials and Methods

Animals. The power of a genetic mapping study depends on the
heritability of the trait, the number of individuals included in the
analysis, and the genetic dissimilarity among them. In this study, we
selected 60 (B6 X BTBR) Fo-0b/0b mice (29 males and 31 females) based
on the selective phenotyping algorithm that we developed [14]. The
algorithm selects a subset of Fy individuals from a mapping panel
based on genotype data. The selection achieves substantial improve-
ments in sensitivity compared to a random sample of the same size
[14]. The 60 mice used in this study were a subset of F, mice
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segregating for phenotypes associated with obesity and diabetes [13].
The F; mice used to generate the Fy sample were all derived from
crosses in which the B6 parent was male and the BTBR parent was
female. The framework map consists of 194 microsatellite markers,
with an average spacing of 10 cM.

Microarrays. Liver total RNA was extracted from frozen tissue
samples with RNAzol reagent (Tel-Test, Friendswood, Texas, United
States). Crude RNA samples were purified with RNeasy mini-columns
(Qiagen, Valencia, California, United States) before being subjected
to microarray and RT-PCR studies. The RNA samples were processed
according to the Affymetrix Expression Analysis Technical Manual. A
total of 60 MOE430A and MOE430B arrays were used to monitor the
expression levels of approximately 45,000 genes or ESTs. The data
were processed with MAS5.0 to generate cell intensity files.
Quantitative expression levels of all the transcripts were estimated
using the RMA algorithm for normalization [15].

Identifying transcripts with linkages. To identify traits that have
linkages in the 60 F, mice, we used standard interval mapping
implemented in R/qtl [46] to map each of the 45,037 unique probe
sets at 5-cM resolution. Transcripts with LOD scores of 3.4 or greater
at one or more locations in the genome were recorded as transcripts
with linkages, or “seeds.” Using maximum LOD of 3.4 or greater as a
threshold roughly corresponds to genomewide type I error rate of
0.08 [16]. We permuted the animal labels five times and for each
permutation ran R/qtl interval mapping on a 5-cM grid. The loci-
specific LOD scores from the five permutations were pooled together
to estimate empirical P-values These P-values were then used for
calculation of q-values and estimation of FDR [47]. The FDR
corresponding to a LOD score of 3.4 was 0.48. This resulted in
6,016 mapping traits. We found some regions of the genome with
strong sex-by-genotype interactions. The results reported here are in
regions with little or no evidence for such interactions.

Hierarchical clustering of the LOD score profiles. LOD score
profiles were obtained for each transcript using R/qtl interval
mapping with 5-cM intervals. This yielded, for each trait, 465 interval
mapping testing points in the entire genome. Treating each LOD
score profile as a point in the 465-dimensional space, we calculated
pairwise Euclidean distances between LOD score profiles and
performed hierarchical clustering based on those distances. Cluster-
ing the LOD profiles has the advantage that transcripts having similar
mapping patterns across the genome will be grouped together.

Expression correlation. Using each of the 6,016 transcripts as a
seed, Pearson correlation coefficients were calculated against the log-
transformed expression intensities (raw intensities were normalized
by RMA) of all the 45,037 transcripts in 60 Fo mice. We obtained a
6,016-by-45,037 matrix of correlation coefficients. For each seed, we
collected the traits with a correlation coefficient of 0.7 or greater,
which forms the list of correlated traits for that seed. For each pair of
transcripts, we computed its Pearson correlation together with the P-
value. We then computed the corresponding q-values to determine
the FDR [47]. A correlation of 0.7 corresponds to an FDR of 1.52¢107°.

Test for enrichment. Enriched functional groups, defined as GO
categories corresponding to BP, were identified from each list with P-
values computed from a Hypergeometric calculation, carried out
using a custom variant of “GOHyperG” in the “GOstats” package
(version 1.1.3; Bioconductor Core Team 2004; http://www.
bioconductor.org). Interpretation of these P-values is not straightfor-
ward since many dependent hypotheses are tested. Furthermore, the
Hypergeometric calculation tends to result in small P-values when
groups with few transcripts are considered. It has been suggested that
one consider only GO nodes with small P-values and a reasonable
number of genes (ten or more) [48]. For each list, we examined up to
50 GO terms, each of which involves more than ten genes and has a
Hypergeometric P-value of <0.01.

Creating the coordinated expression plot. From the lists of
correlated traits, we identified 15,726 BP GO terms in total, among
which 862 are unique. For each of the unique GO terms, we traced
back the lists of correlated traits that were enriched (P=0.01), and we
concatenated all such lists. To create the heat plot, we first
normalized the log intensity values of each trait across all the 60 Fy
mice to mean = 0 and variance = 1. This step is very important
because some traits were highly overexpressed or underexpressed
across all the Fy mice. We then plotted the rescaled expression values
of transcripts across the 60 Fy mice.

Permutation test for coordinated expression. We developed a
statistic to assess the extent of coordinate expression. We first
collapsed all the members in a list into a pseudo-member by taking
the average across the transcripts in that list. We then computed
pairwise correlations among the pseudo-members. The final measure
of coordinate expression was the average of those pairwise

@ PLoS Genetics | www.plosgenetics.org

Inheritance of Gene Expression in Diabetes

correlations. For a given GO term, we sampled the same number of
lists from the total of 1,341 lists 10,000 times and matched the list
sizes to those in the GO term of consideration. We computed the
statistic in each random sample. The empirical P-value was calculated
as the frequency of the samples where the statistic exceeded the one
calculated using the observed data. The P-value for GPCR protein
signaling pathway set was 161074, and it was 4el0~* for the lipid
metabolism set.

Genetic architecture of GO groups. Subsequent QTL analyses were
performed on traits within GO groups using one- and two-QTL scans
with R/qtl. Possible interacting effects of sex were examined and
found not to be significant for the GPCR and lipid metabolism groups
reported here (data not shown).

Real-time quantitative PCR for Riken32G18 and lipogenic genes.
First-strand ¢cDNA was synthesized from 1 pg of total RNA using
Super Script II Reverse Transcriptase (GIBCO BRL, San Diego,
California, United States) primed with a mixture of oligo-dT and
random hexamers. Reactions lacking the reverse transcriptase served
as a control for amplification of genomic DNA. Representative genes
encoding enzymes in lipid metabolism pathways were studied
together with Riken32GI18, including Scdl, Fas, and phospholipid
transfer protein (Pltp). The housekeeping gene B-actin was used as a
normalization control.

LXRo agonist treatment of mice. BTBR male 7-wk-old mice were
fed a chow diet (Harlan 7001 4% fat rodent chow) supplemented with
DMSO vehicle or DMSO +T0901317 (0.025% by weight; Tularik, San
Francisco, California, United States) for 7 d. T0901317 is a non-
steroidal LXR agonist that has previously been shown to potently
transactivate LXR-regulated genes in mice [49]. After a 4-h fast, liver
samples were collected and frozen in liquid nitrogen.

Supporting Information

Figure S1. LOD Profiles of ATP Synthase Subunit mRNA Traits

The traits exhibiting a linkage peak on Chromosome 2 are grouped
together on top rows.

Found at DOIL: 10.1371/journal.pgen.0020006.sg001 (477 KB PDF).

Figure S2. LOD Profiles of 38 Seed Traits That Produce the 174
Correlated Traits Belonging to the GPCR Pathway

Found at DOI: 10.1371/journal.pgen.0020006.sg002 (495 KB PDF).

Figure S3. LOD Profiles of GPCR eQTL

(A) LOD profiles of GPCR protein signaling pathway mRNA traits
related to obesity. The LOD profiles were generated on WebQTL.
The empirical P-values are generated by permutation test (1,000
permutations); the lower line indicates suggestive linkage and the
upper line indicates significant linkage. The green line indicates
BTBR alleles increase the trait values; the red line indicates that B6
alleles increase the trait values.

(B) LOD profiles of GPCR protein signaling pathway mRNA traits
related to obesity, from the GABA receptor subunit family. The LOD
profiles were generated on WebQTL. The empirical P-values are
generated by permutation test (1,000 permutations); the lower line
indicates suggestive linkage and the upper line indicates significant
linkage. The green line indicates BTBR alleles increase the trait
values; the red line indicates that B6 alleles increase the trait values.

Found at DOIL: 10.1371/journal.pgen.0020006.sg003 (3.2 MB PDF).

Table S1. c¢is Traits Inferred by Using LOD Greater Than 3.4

Columns A, B, and C show the Affymetrix probe set IDs, gene names,
and the gene symbols of the cis traits. Columns D and E show the
physical chromosome and position (Mb) of the traits. Column F shows
the maximum LOD scores of the cis traits.

Found at DOIL: 10.1371/journal.pgen.0020006.st001 (46 KB TXT).

Table S2. Enriched GO Categories for Expression Traits That Are
Correlated with the Seed Traits

Using each of the 6,016 transcripts as a seed, Pearson correlation
coefficients were calculated against the log-transformed expression
intensities (raw intensities were normalized by RMA) of all of the
45,037 transcripts in the 60 Fo mice. For each seed, we collected the
traits with correlation coefficients of 0.7 or greater, which form the
list of correlated traits for that seed. Enriched functional groups,
defined as GO categories corresponding to BP, were identified from
each list with P-values computed using a custom variant of
“GOHyperG” in the “GOstats” package (Bioconductor Core Team
2004; http:/lwww.bioconductor.org). For each list, we examined up to
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50 GO terms, each of which involves more than ten genes and has a P-
value of <0.01. Column A contains the Affymetrix probe set
identifiers. Column B contains the names of the genes. Columns C
through AZ are the GO terms identified, and Columns BA through
CX are the identifiers of these GO terms.

Found at DOI: 10.1371/journal.pgen.0020006.5st002 (948 KB TXT).

Table S3. GO Enrichments of Traits That Are Correlated with Seed
Traits

From the lists of traits correlated with the seed traits in Table S2, we
identified 15,726 BP GO terms in total, among which 862 are unique.
For each of the unique GO terms, we traced back the lists of
correlated traits that were enriched (P = 0.01), and we concatenated
all such lists. Columns A and B show the GO category identifiers and
the names, respectively. Columns C and D show the probe set IDs and
gene names of the correlated traits. Column E shows whether (“T” or
“F”) the traits were annotated as belonging to the corresponding GO
terms in the public database.

Found at DOI: 10.1371/journal.pgen.0020006.st003 (8.3 MB TXT).

Table S4. Descriptions of the 174 GPCR Protein Signaling Pathway
Traits

Columns A, B, and C show the Affymetrix probe set IDs, gene
symbols, and gene titles of the 174 gene traits. Columns D and E show
the physical chromosomes and positions (Mb) of the 174 traits.
Columns F, G, and H show the chromosomes, positions (Mb), and
LOD scores of the maximum LOD peaks of those 174 traits.

Found at DOI: 10.1371/journal.pgen.0020006.st004 (12 KB TXT).

Table S5. Top 100 Traits Whose Expression Levels Are Correlated
with Those of SedI in the 60 Fo Mice

Column A shows the Affymetrix probe set IDs. Columns B and C show
the gene symbols and the titles of the genes. Columns D and E show
the genomic locations of these traits. Column F shows the Pearson
correlation coefficients. Column G shows the unadjusted P-values for
the correlations.

Found at DOI: 10.1371/journal.pgen.0020006.5t005 (7 KB TXT).
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