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Abstract: Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used
in the treatment of various types of tumors. However, cisplatin has several serious adverse effects,
such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable
of preventing cisplatin-induced neurotoxicity. Methylene blue (MB) and AzurB (AzB) are able to
neutralize the neurotoxicity caused by cisplatin by protecting nerve cells as a result of the activation
of the Ntf2 signaling pathway. We have shown that cisplatin impairs learning in the Morris water
maze. This is due to an increase in the amount of mtDNA damage, a decrease in the expression of
most antioxidant genes, the main determinant of the induction of which is the Nrf2/ARE signaling
pathway, and genes involved in mitophagy regulation in the cortex. The expression of genes involved
in long-term potentiation was suppressed in the hippocampus of cisplatin-injected mice. MB in
most cases prevented cisplatin-induced impairment of learning and decrease of gene expression
in the cortex. AzB prevented the cisplatin-induced decrease of genes in the hippocampus. Also,
cisplatin induced disbalance in the gut microbiome, decreased levels of Actinotalea and Prevotella,
and increased levels of Streptococcus and Veillonella. MB and AzB also prevented cisplatin-induced
changes in the bacterial composition of the gut microbiome.

Keywords: cisplatin; methylene blue; azur B; cognitive impairment; mitophagy; oxidative stress;
gene expression; Nrf2/ARE

1. Introduction

In the treatment of oncological diseases, drugs that have a cytotoxic effect are used [1],
since they are capable of causing the death of tumor cells by intoxicating them and destroy-
ing intracellular structures [2]. One such drug that is widely used in clinical practice is
cisplatin [3].

The biological action of cisplatin is manifested by direct covalent binding of DNA
with the formation of intrastrand and interstrand crosslinks, which leads to a stop in
DNA replication and cell division, followed by apoptosis [4–6]. Mitochondria are actively
involved in many mechanisms of programmed cell death, damage to which not only leads
to energy deficiency but can also induce cell death [7], therefore, for normal functioning,
the cell must remove non-functional or damaged mitochondria. Cisplatin, in turn, can
cause the mitochondrial release of cytochrome C [8], leading to mitophagy [9].

In addition to high oncological activity, cisplatin also has very strong toxic properties
that affect many organs [10]. For example, this drug induces pathogenesis in the cells of
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the nervous system [11,12]. Neurotoxicity of cisplatin is associated with its action on DNA,
since cisplatin leads to molecular cross-linking of DNA in the cells of the nervous system,
as well as its ability to cause chronic inflammation in the brain [4,5]. Therefore, one of
the serious side effects associated with cancer treatment is the deterioration of cognitive
abilities in patients who have undergone chemotherapy [13]. Due to this, some researchers
use cisplatin as a chemical model for neurotoxicity [14–17].

Another serious side effect of cisplatin is an effect on the bacterial composition of the
gut microbiome. Cisplatin administration caused gut microbiota dysbiosis in mice [18],
led to the increased proportion of Bacteroidetes and reduced Firmicutes compared to
controls, and decreased Shannon alpha diversity [19]. Gastrointestinal mucositis also is a
cisplatin-induced serious side effect [20]. In recent years, accumulating data confirm that
bacterial composition gut microbiomes may modulate cognitive function via a microbiome-
gut–brain axis [21]. Cisplatin-induced dysbiosis leads to epithelial sloughing and mucosal
ulceration of villous tips [22]. Epithelial sloughing causes the depletion of the gut barrier
and may mediate chronic inflammation [23]. The inflammation may eventually spread
from peripheral tissue to the brain and can cause neuroinflammation, which is an important
causal mechanism in cognitive decline [24].

MB, (Figure 1A), due to its antioxidant properties, can potentially act as a neuro-
protective substance, protecting cells of the nervous system from the effects of oxygen
metabolites that induce the development of oxidative stress, thereby being a promising
drug in the treatment of neurodegenerative diseases. It can transfer electrons in the electron
transport chain from NADH and FADH2 directly to cytochrome C, bypassing complexes
I–III; thereby improving mitochondrial function with affected complexes [25]. It is known
that a low concentration can modulate the composition of the gut microbiome [26,27].
Correlation analysis showed that MB-induced changes in the bacterial composition of the
gut microbiome correlate with the improved cognitive phenotype of mice. Also, among
the thiosine dyes with neuroprotective properties, AzB (Figure 1B) can be distinguished,
which in its structure and mode of action is similar to MB, however, has been studied to a
lesser extent.

Figure 1. Chemical formulas of neuroprotective compounds: (A) methylene blue, (B) Azur B.

In this work, we explore the possibility of using MB and its structural analogue, AzB,
as neuroprotective substances that can potentially reduce the negative effect of cisplatin
on the cortex and hippocampus of the brain, as the main brain compartments responsible
for memory formation [28]. The effectiveness of the pharmacological intervention on the
cognitive functions of mice with cisplatin-induced memory impairment was evaluated in
conjunction with the study of mitochondrial functions of the brain and microbiome–gut–
brain axis.

2. Results
2.1. Open Field

When conducting the physiological test “Open Field”, eight different parameters were
examined (hole-poking, number of grooming acts, length of grooming time, number of
visits to the center, total time spent in the center, number of defecation acts, vertical activity,
and horizontal activity). Statistically significant differences were found only in the duration
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of grooming of mice, between groups treated with thiosine dyes (MB and AzB) (U test
p = 0.0086). Mice given AzB spent 80% less time grooming compared to mice given MB
(Table 1).

Table 1. Results of the physiological test “Open field”.

Group
Name

Hole-
Poking

Grooming
(Time)

Grooming
(Number)

Center
(Time)

Center
(Number) Rearing Defecation Horizontal

Activity

Control 1 ± 0.7 15 ± 6.4 4.25 ± 0.9 14 ± 8.4 5.25 ± 2.9 21 ± 2.9 1.5 ± 0.7 104.5 ± 30.5

Saline
injections 2.1 ± 0.7 28.4 ± 0.4 8.25 ± 0.9 7.9 ± 1.7 3.1 ± 0.5 20.75 ± 6.4 1 ± 0.3 73.6 ± 16.8

Cisplatin
injections 2.2 ± 0.8 17.9 ± 5.4 6.3 ± 1.3 2.3 ± 1.1 1.3 ± 0.6 6.8 ± 1.6 0.5 ± 0.4 50.3 ± 14.9

Cisplatin +
MB 2.5 ± 0.6 77.3 ± 30.1 7.5 ± 1.1 4.1 ± 2.3 1.5 ± 0.8 8.5 ± 2.7 0.4 ± 0.2 63.1 ± 9.8

Cisplatin +
AzB 1.5 ± 0.4 15 ± 2.1 ** 5.4 ± 0.5 4.75 ± 1.2 1.75 ± 0.4 7.75 ± 1.6 0.4 ± 0.4 54.1 ± 9.3

** p < 0.01 groups were compared using the U test. Differences are statistically significant between the Cisplatin +
MB and Cisplatin + AzB groups.

2.2. Morris Water Maze
2.2.1. Distance

Cisplatin injections and thiazine dyes did not affect the distance that mice swam
on the 6th day of the experiment and the 12th day of the experiment. During direct
training swimming, statistically, significant differences were found for the N quadrant.
Mice injected with cisplatin swam 49% more distance compared to mice injected with
saline (U test p = 0.036). Differences were also found between mice injected with cisplatin
and mice treated with MB. Cisplatin-treated mice swam more by 47% (U test p = 0.034).
Differences were when starting from the SE quadrant, and mice injected with cisplatin
swam 59% more than mice injected with saline (U test p = 0.011). Differences were shown
for mice treated with MB and mice treated with cisplatin injections alone when starting
with NW. Cisplatin mice swam a greater distance in search of a platform by 46% (U test
p = 0.02) (Figure 2).

During reversal training, the differences were when starting from the S quadrant.
Mice given only cisplatin injections swam a greater distance compared to mice given saline
injections by 41% (U test p = 0.0049) and mice given AzB by 38% (U test p = 0.001). When
run from the W platform, statistically significant results were found between mice injected
with cisplatin and mice treated with MB. Mice that consumed MB spent 51% less distance
searching for the platform (U test p = 0.0073) (Figure 2).

2.2.2. Time

Cisplatin injections and thiazine dyes did not affect the time the mice spent searching
for the platform on day 6 of the experiment and day 12 of the experiment. Mice that
received cisplatin injections spent more time learning to swim than mice that received
saline injections. This pattern was observed when starting from each quadrant (44% more
when starting from N, 5% more when starting from E, 65% more when starting from SE,
23% more when starting from NW, 69% more when run with S (U test p = 0.00043), 34%
more when run with W, 18% more when run with NW, 34% more when running with SE.
However, U test showed no statistically significant difference for all quadrants except S
(Figure 3).
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Figure 2. The Morris water maze. Distance in the (A) acquisition, (B) reversal learning. The results
expressed as means ± SEM. Control n = 4, Saline = 7, Cisplatin = 6, Cisplatin+ MB = 8, Cisplatin+
AzB = 8. * p < 0.05, ** p < 0.01, *** p < 0.001, groups were compared using the U test.

The use of thiazine drugs affected the time during learning, usually during reverse
learning. There were differences when starting mice from the S quadrant. MB-treated mice
spent 30% less time than mice treated with cisplatin injections alone (U test p = 0.0053) and
mice treated with AzB spent 44% less time than mice treated with cisplatin injections alone
(U test p = 0.00001). Differences were found when starting mice from the W quadrant. Mice
treated with AzB spent half as much time searching for the platform as mice treated with
cisplatin injections only (U test p = 0.0074) (Figure 3).

2.3. Gene Expression Level

In the cortex, cisplatin injections cause a sharp decrease in the expression of p62, Pink1,
Mtor (all p < 0.05). The use of MB and AzB prevented the decrease in the expression of
these genes in the cortex. In addition, MB caused an increase in Nfe2l2 and Bdnf gene
expression relative to control and cisplatin-injected mice (all p < 0.05). AzB induced an
increase in Akt1 and Bdnf gene expression relative to control and cisplatin-injected mice (all
p < 0.05) (Figure 4). In mice injected with cisplatin, there was a decrease in the expression
of several antioxidant genes such as Gclc, Prdx3, Txnr2, Sod2 (all p < 0.05) in the cortex. MB
and AzB prevented the cisplatin-induced decrease in the expression of Gclc, Prdx3, Sod2 in
the cortex (all p < 0.05). AzB induced an increase in Gpx expression relative to control and
cisplatin-injected mice (all p < 0.05) (Figure 5).
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Figure 3. The Morris water maze. Time in the (A) acquisition, (B) reversal learning. The results ex-
pressed as means± SEM. Control n = 4, Saline = 7, Cisplatin= 6, Cisplatin+ MB = 8, Cisplatin+ AzB = 8.
** p < 0.01, *** p < 0.001, groups were compared using the U test.

Figure 4. Expression of transcriptional factors in the (A) cortex, (B) hippocampus. The results
expressed as means ± SEM. Control n = 11, Cisplatin = 6, Cisplatin + MB = 8, Cisplatin + AzB = 8.
* p < 0.05, comparison of control group and treated groups using Tukey’s post-hoc test.
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Figure 5. Expression of antioxidants in the (A) cortex, (B) hippocampus. The results expressed as
means ± SEM. Control n = 11, Cisplatin= 6, Cisplatin + MB = 8, Cisplatin + AzB = 8. * p < 0.05,
comparison of the control group and treated groups using Tukey’s post-hoc test.

In the hippocampus, cisplatin caused a decrease in the expression of Akt1, Bdnf (all
p < 0.05). AzB increased p62 gene expression relative to control and cisplatin-injected mice
(all p < 0.05) (Figure 4). At the same time, AzB induced a decrease in the expression of
the Nfe2l2, Akt1, Bdnf genes relative to the control in the hippocampus (all p < 0.05). MB
induced a decrease in the expression of Pink1, Akt1, Bdnf genes relative to the control in
the hippocampus (all p < 0.05) (Figure 4). Injections of cisplatin into the hippocampus
induced a decrease in the expression of Gpx, Prdx3, Sod2 (all p < 0.05). AzB therapy
prevented the cisplatin-induced decrease in Sod2 expression (p < 0.05) and also increased
Gclc expression (p < 0.05). MB did not interfere with the cisplatin-induced decrease in
antioxidant gene expression; on the contrary, it reduced Gpx expression relative to control
and cisplatin-injected mice (all p < 0.05) (Figure 5).

2.4. The Amount of mtDNA Damage

When performing calculations to study damage to the mtDNA cortex, statistically
significant differences were found for the 2nd long fragments (F(3,108) = 3.846, p = 0.012)
between mice that consumed AzB and the control group (30% more in control mice; post
hoc Tukey test p = 0.031) and mice injected with cisplatin (37% more in mice injected
with cisplatin; post hoc Tukey test p = 0.023). Differences were observed for the 8th long
fragment (F(3, 108) = 2.4492, p = 0.068) between control and mice injected with cisplatin
(28% greater in mice injected with cisplatin; post hoc Tukey test p = 0.047). For the 9th
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long fragments (F(3, 108) = 2.039, p = 0.113), differences were between mice injected with
cisplatin and mice treated with MB (35% greater in mice injected with cisplatin; post hoc
Tukey test p = 0.094). When summing mtDNA damage for all long fragments (F(3, 668)
= 4.089, p = 0.007), significant differences were found between the control group of mice
and mice injected with cisplatin (21% more in mice injected with cisplatin; post hoc Tukey
test p = 0.014); for mice treated with MB and mice treated with injections of cisplatin (21%
more in mice treated with injections of cisplatin; post hoc Tukey test p = 0.023); for mice
treated with AzB and the group receiving cisplatin injections (25% more for mice treated
with cisplatin injections; post hoc Tukey test p = 0.006) (Figure 6).

Figure 6. Copy number of mtDNA in the (A) cortex, (B) hippocampus. The results expressed as means
± SEM. Control n = 11, Cisplatin = 6, Cisplatin + MB = 8, Cisplatin + AzB = 8. * p < 0.05, ** p < 0.01,
*** p < 0.001 comparison of the control group and treated groups using Tukey’s post-hoc test.

When calculating the amount of hippocampal mtDNA damage, differences were
found for the 1st long fragment (F(3, 48) = 3.152, p = 0.033) between mice injected with
cisplatin and mice that consumed AzB (55% more in mice fed AzB; Tukey’s post hoc test
p = 0.022). For the 3rd long fragment (F(3, 48) = 2.319, p = 0.087) differences were observed
between the control group and the MB group (85% more in the control group; post hoc
Tukey test p = 0.088). Differences were found for long fragment 7 (F(3, 48) = 3.023, p = 0.039)
between mice treated with MB and mice treated with cisplatin injections (70.5% more in
mice treated with cisplatin injections; post hoc Tukey test p = 0.055), as well as between
mice that received AzB (69.5% more in mice fed AzB; post hoc Tukey test p = 0.073). For
9 long fragments (F(3, 48) = 7.504, p = 0.0003), differences were between cisplatin-injected
and control mice (84% greater in control mice; post hoc Tukey test p = 0.016), as well
as mice treated with AzB (88% more in mice treated with AzB; post hoc Tukey test
p = 0.0006). Differences were between mice treated with MB and AzB (71% greater for AzB;
Tukey’s post hoc test = 0.009). When mtDNA damage was summed for all long fragments
(F(3, 308) = 5.424, p = 0.001), significant differences were found between mice from the con-
trol group and mice treated with MB (46% more in control; post hoc Tukey’s test p = 0.004)
and between mice treated with thiosine dyes (48% more in mice treated with AzB; post hoc
Tukey’s test p = 0.0025) (Figure 6).
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2.5. Bacterial Composition of the Gut Microbiome

Cisplatin intake affects the bacterial composition of the gut microbiome. As a result of
the analysis, we found a change in the number of Actinotalea (class Actinobacteria) (F(4, 18)
= 3.759, p = 0.022). Cisplatin injections reduce Actinotalea levels 15-fold (post hoc Tukey’s
test, p < 0.05). MB and AzB pre-treatment did not prevent cisplatin-induced changes in the
Actinotalea abundance. There is a change in the level of Prevotella (class Bacteroidia) (F(4, 18)
= 2.599, p = 0.074). Cisplatin injections reduce Prevotella levels four-fold (post hoc Tukey’s
test, p = 0.057). The level of Prevotella in the MB and AzB-treated group was similar to
saline-injected mice (Figure 7).

Figure 7. The content of predominant bacteria in the gut microbiome. (A) Actinotalea, (B) Prevotella,
(C) Streptococcus, (D) Veillonella. * p < 0.05 comparison of the control group and treated groups using
Tukey’s post-hoc test.

There are changes in the level of Streptococcus (class Bacilli, phylum Firmicutes) (F(4, 18)
= 3.119, p = 0.041). On the contrary, cisplatin injections lead to an increase of Streptococcus
abundance 3.4-fold compared to saline-injected mice (post hoc Tukey’s test, p < 0.05). MB
and AzB pre-treatment prevent the increase of Streptococcus level. Post hoc Tukey’s test
showed p = 0.052 during comparison of MB-treated and cisplatin-injected-only mice, and
p = 0.097 during comparison of AzB-treated and cisplatin-injected-only mice. Similar
changes were noted for the Veillonella (class Negativicutes, phylum Firmicutes) (F(4, 18) = 3.937,
p = 0.018). Cisplatin injections lead to an increase of Veillonella level 3.6-fold compared to
saline-injected mice (post hoc Tukey’s test, p < 0.05). Only AzB pre-treatment prevented
Veillonella level increasing (post hoc Tukey’s test, p = 0.054), not MB (post hoc Tukey’s test,
p = 0.138) (Figure 7).
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3. Discussion

LTM is a vast store of knowledge and a record of prior events [29]. LTM is supported
by stronger and more stable neuronal connections compared with short-term memory
and working memory [30]. The process of strengthening these connections that results
in the LTM formation is long-term potentiation (LTP), which takes place mostly in the
hippocampus [31]. LTP impairments are involved in various pathologies associated with
the deterioration of cognitive functions, including dementia, neurodegenerative diseases,
and age-related senility [32]. Several cytotoxic compounds including cisplatin may facilitate
impairment of LTP. Cisplatin-induced cognitive impairment was documented in animals
models using Morris water maze [33–40], Y-maze test [33,41–44], T-maze [45–47], and
novel object recognition test [9,48–51], including in humans in the treatment of oncological
diseases using chemotherapy using cisplatin as a chemostatic [12,52–55].

We have shown that cisplatin does not impair memory on trial days, but there was
an increase in the duration of the platform search and the distance the mouse traveled in
search of the platform on training days. That is, we can conclude that cisplatin still had a
depressing effect on the LTM of mice. It can be assumed that this is due to the inhibition of
signaling pathways that are involved in the formation of LTM. LTP is a complex process
that requires the production of large amounts of proteins. mTORC1 (mammalian target
of rapamycin complex 1) activation in dendrites promotes proteins synthesis, which is
necessary for neurogenesis and LTP formation [56]. The mTORC1 is regulated by the
PI3K/AKT signaling pathway. PI3K is a protein, which catalyzes phosphatidylinositol
4,5-bisphosphate (PIP2) conversion into phosphatidylinositol 3,4,5-trisphosphate (PIP3).
This process is essential for the downstream phosphorylation of PDK1 (phosphoinositide-
dependent kinase 1) and AKT (protein kinase B, PKB) [57]. In turn, the PI3K-mTORC1
signaling is activated via BDNF (brain-derived neurotrophic factor) binding [58]. We found
that cisplatin causes a decrease in the expression of the Mtor gene in the cortex, and of the
Akt1 and Bdnf genes in the hippocampus. Thus, we may suggest that the cisplatin-induced
decrease in LTP is associated with molecular mechanisms of signal transduction through
the BDNF-PI3K-mTORC1 axis. Data from other studies demonstrate a decrease in Bdnf
gene expression [59].

Mitochondrial dysfunction may be another reason for the cisplatin-induced decrease
in LTP. We found that the amount of mtDNA damage in cisplatin-treated mice is increased
in the cortex but not in the hippocampus. Also in the hippocampus, cisplatin significantly
reduced the level of expression of genes that are responsible for mitophagy (Pink1 and p62).
Mitophagy is the selective degradation of mitochondria by autophagy. Mitophagy can
promote the elimination of damaged or stressed mitochondria. This process is essential
for cellular health [60]. Mitophagy dysregulation is one of the processes, which leads
to memory dysfunction under various neurodegenerative pathologies and aging [61].
Cisplatin induces mitochondrial degradation and damages mitochondrial DNA [9].

Another link in the chain of mitochondrial dysfunctions may be disorders in the
antioxidant defense of the brain. The expression of most antioxidant genes was strongly
reduced in both brain regions studied in cisplatin-treated mice. In general, cisplatin reduces
the level of expression of genes of the antioxidant system [62].

The introduction of cisplatin caused a state of microbial imbalance in the body. Cis-
platin reduces the level of bacteria of the genus Actinotalea, which belong to the class
Actinobacteria. These bacteria can produce acetate, which has great inhibitory activity
against pathogenic species that cause infections caused by ingestion of substances harmful
to the body [63]. They are associated with anti-inflammatory properties, reduce intestinal
permeability, intestinal lipopolysaccharide levels, and improve intestinal mucosal barrier
properties in mice [64]. Cisplatin also caused a reduction in the level of Prevotella (Bac-
teroidia class). These bacteria contribute to the improvement of glucose metabolism, which
is stimulated by the intake of prebiotics, and Prevotella can have an immunomodulatory
effect on the body [65,66]. In contrast, cisplatin increased the number of Streptococcus (class
Bacilli). These bacteria are found in the normal intestinal microflora, however, with an
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increase in their level, a pathogenetic effect is observed associated with the production of
toxins: hemolysin, streptolysin, streptokinase A and B, hyaluronidase, deoxyribonucle-
ase [67]. The number of Veillonella (class Negativicutes) also increased. Bacteria of the genus
Veillonella have been found in high numbers in the microbiome of organisms suffering from
depression and therefore cognitive impairment [68].

Thus, the negative effect of cisplatin on the cognitive abilities of mice is complex.
It is associated with neurogenesis dysfunction, mitochondrial dysfunctions, which are
manifested in mtDNA damage, reduced expression of antioxidants and genes responsible
for mitophagy, as well as disorders of intestinal microbiome homeostasis, which can lead
to increased inflammatory processes. To prevent these dysfunctions, we used MB.

Although MB was used in medicine for over 120 years [69], the neuroprotective
effect of MB began to be studied in the late 1970s when it was shown that MB produced
a significant retrograde enhancement of learning [70]. Later, it has been shown that MB
treatment during the memory-consolidation period restored the memory retention impaired
by the inhibition of cytochrome oxidase [71]. MB improved cognitive function in 15-month-
old mice in Morris water maze. In particular, MB increased the values of short-term
memory and caused a decrease in the distance that mice spent searching for the platform
during the learning phase for LTM estimation [27]. The randomized, double-blinded,
placebo-controlled clinical trial showed that MB administration increased response in the
bilateral insular cortex during a psychomotor vigilance task and was also associated with a
7% increase in correct responses during memory retrieval [72]. In this study we did not find
statistically significant improvement of LTM values, although there is a tendency to decrease
the time distance for the search of the platform both for acquisition and reversal trials.
Statistically significant improvements to these values were obtained during the learning
stage of the experiment, where there were more measurements compared with trials.

We can assume that the therapeutic effect of MB on LTM is associated with the
activation of the Nrf2/ARE signaling pathway [32], because MB treatment led to an increase
of Nfe2l2 gene expression. There are several mechanisms that MB can lead to the activation
of Nrf2. MB can accept electrons from NADH and perform alternative electron transport in
the electron-transport chain [73]. This leads to a shift in the NAD+/NADH equilibrium
toward NAD+. This leads to the activation of AMP-activated protein kinase (AMPK),
which can activate the Nrf2 [74]. It is well-known that the Nrf2/ARE pathway is a major
determinant of phase II gene induction, mainly antioxidant enzymes [75]. We showed that
MB prevented the cisplatin-induced decrease in most antioxidant gene expression in the
cortex. The effect of MB is not so clear-cut in the hippocampus.

There is crosstalk between Nrf2/ARE signalling and mitophagy crosstalk. The p62
protein is a selective mitophagy receptor for the degradation of ubiquitinated substrates [76].
There is evidence that p62 can positively regulate the Nrf2/ARE signal pathway by binding
to KEAP1 (Nrf2 negative regulator). However, Nrf2 up-regulates p62 expression. Thereby,
a regulatory loop is formed between two important signaling pathways [76]. Also, Nrf2
regulates the expression of Pink1. PINK1 is necessary for activation of PARKIN, which
can ubiquitinate several proteins on the outer mitochondrial membrane, which triggers
mitophagy [77]. MB treatment increased expression of p62 and Pink1 in the cortex compared
with cisplatin-treated mice, not in the hippocampus.

It is supposed that the Nrf2/ARE signal pathway may have a direct impact on synaptic
plasticity [32]. Nrf2/ARE signaling is closely associated with the PI3K/AKT signaling
pathway [78]. The promoter of the Mtor gene has an ARE sequence, therefore Nrf2 may
have a direct impact on the Mtor expression [79]. Bdnf is also an Nrf2-targeted gene [80]. We
observed MB-related prevention of cisplatin-induced decrease in Mtor and Bdnf expression
in the cortex. In this regard, we can assume that the cognitive improvements that were
caused by MB are also associated with the positive regulation of synaptic plasticity through
the BDNF-PI3K-mTORC1 axis.

It is known that in organisms MB is metabolized to yield the N-demethylated metabo-
lites, AzB as major metabolite and azure A as secondary metabolite [81]. While AzB is
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structurally similar to MB, it differs for the ionization state of the oxidized form [82]. For
biological efficiency, it is probably of advantage that, in contrast to oxidized MB, oxidized
AzB can assume a neutral quinoneimine form that readily diffuses through membranes [69].
There is evidence that AzB as well as MB suppresses the expression of App and Bace1, which
are responsible for Tau aggregation and the development of Alzheimer’s disease [83] and
inhibit caspases [84]. AzB is also effective in inhibiting the pro-inflammatory cytokine,
tumor necrosis factor (TNFα, Tumor necrosis factor-alpha) [85]. It has been shown that AzB
can be used as an antidote for cyanide poisoning, even at lower concentrations than MB.
The concentration of AzB 4 mg/kg on the therapeutic effect corresponds to the concentra-
tion of 20 mg/kg MB [86]. AzB is a more potent reversible inhibitor of monoamine oxidase
(MAO) than MB, which makes it a promising antidepressant and anxiolytic drug [82].

Our data indirectly confirm the anxiolytic properties of AzB. Cisplatin-treated mice
that received AzB spent 80% less time grooming compared to mice that received MB
(Table 1), since it is well known that mouse grooming is a reliable anxiety marker [87].
The AzB-related improvements in cognitive ability are broadly comparable to MB-related
improvements. Although, AzB-treated mice had 22% more distance compared with MB-
treated mice for reaching the platform during the acquisition trial and 22% more during
the reversal trial. Differences are statistically insignificant. Only during starting from one
position (S) did AzB-treated mice search the platform earlier than cisplatin-injected mice,
while MB-treated mice searched the platform early while starting from three positions (N;
NW; W). Simultaneously, AzB had only 5% more time to search the platform compared with
MB-treated mice during the acquisition trial and 1,6% more during the reversal trial. On
the contrary, AzB-treated mice found the platform faster than cisplatin-injected mice when
starting from two positions (S; W), while for MB-treated mice it was only when starting from
one position (S). So, these data may indicate the same protective effect of both substances
on the cognitive functions during the cisplatin-induced disturbance. Effect of AzB on the
gene expression in the cortex comparable with the effect of MB. In the hippocampus, AzB
increased expression in the p62 compared with control and cisplatin-injected mice and
Pink1 compared with MB-treated mice. In the hippocampus, AzB increased expression of
Gpx and Sod2, unlike MB. This effect may be caused by structural features, which allow
AzB to penetrate the blood–brain barrier better than MB [69].

Both AzB and MB affect the bacterial composition of the gut microbiome similarly.
These compounds increased the level of Prevotella and decreased the level of Streptococcus
and Veillonella compared with cisplatin-treated mice. To a certain extent, the AzB effect
was more pronounced than the MB effect. Analysis of distance-based clustering based
on mice microbial structure showed that the control group, saline-injected mice, most
of MB and AzB-treated mice clustered in groups with low Euclidean distance, while all
cisplatin-injected mice are outside these groups (as an exception, there isone saline-injected
and one AzB-treated mouse in the outside group) (Figure 8). These data may suggest that
cisplatin causes significant changes in the structure of the bacterial composition of the gut
microbiome. These changes did not occur in the group of mice that received AzB and MB,
so these mice clustered in groups with the control mice.
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Figure 8. Cluster analysis.

4. Materials and Methods
4.1. Animals

Three-month-old mice (C57Bl/6 strain) were used in the experiment. Mice were
obtained from Stolbovaya Nursery (Settlement Stolbovaya; Moscow region, Russia) and
kept under standard conditions of vivarium at t = 25 ◦C, relative humidity of at least
40%, and a 12-h light/dark cycle, mice had access to food and water without restrictions.
Experimenter obtained randomly encoded mice for the blinded study of the conducting
behavioral tests.

4.2. Design of Experiment

Mice were divided into five groups: the first group was the control (mice received
only food and water), the second group was injected with saline at a dose of 2 mg/kg/day,
the third group was exposed to cisplatin in the form of intraperitoneal injections at a dose
of 2 mg /kg/day, the fourth group received injections of cisplatin (2 mg/kg/day) and
oral MB at a dosage of 15 mg/kg/day, mice from group 5 received injections of cisplatin
(2 mg/kg/day) and took AzB at a dosage of 15 mg/kg/day.

The experiment was carried out for three weeks. The mice received cisplatin injections
during the first week, and the mice received thiosine dyes throughout the experiment. At
the end of the administration of cisplatin injections to mice, physiological tests were carried
out to assess the cognitive and behavioral functions of the animals, namely the Open Field
test and the Morris water maze. After that, the mice were sacrificed by the rules established
by the ethical commission of the Voronezh State University (Section of Animal Care and
Use, 94 protocol 42-03 of 8 October 2020). The hippocampus and the cerebral cortex were
removed from the experimental animals for the molecular part of the experiment, namely
the isolation of nucleic acids (Figure 9).
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Figure 9. Design of experiment.

4.3. The “Open Field” Test

The animal was placed in an open space (arena), where it was kept for 5 min. The
arena is a square wooden box, the open field of which is marked with lines to determine the
position of the animal. A new environment can elicit two types of responses: exploratory
behavior aimed at familiarizing the animal with the environment, and defensive behavior
when fear arises. In this experiment, we evaluated such indicators as the level of interest in
“minks” (artificial holes at the bottom of the box), the number of grooming acts, the length
of the grooming time, the number of exits to the center, the total time spent in the center,
the number of defecation acts, vertical activity, and horizontal activity.

4.4. The “Morris Water Maze” Test

To assess the cognitive abilities of mice, we conducted a physiological test: “Morris
Water Maze”. It consisted of the fact that we had to evaluate the ability of mice to navigate
in space by remembering the location of a stationary object-platform, which was hidden
under a layer of colored water so that the mice could not see it. To do this, we allotted
five training days and one control day (for direct and reverse training). The mouse was
launched from fixed points of the poolside into the water (during training, four attempts
were given and one attempt on the control day of the launch), while the mouse had to orient
itself and find the platform by climbing onto it. As a result, to observe the improvement
or deterioration of the LTM (long-term memory) of mice, we used parameters such as
time (the time the mouse spent searching for the platform) and distance (the distance the
mouse swam). The difference between direct and reverse learning was that the platform in
the process of reverse learning was located opposite to how it was exposed during direct
learning (Table 2).

4.5. Gene Expression Level Assessment

Isolation of total RNA was carried out using the commercial ExtractRNA kit according
to the attached protocol. Reverse transcription was performed using an “Eppendorf
Mastercycler personal” instrument. Quantitative PCR analysis was performed on a “Bio-
Rad CFX96TM Real-Time System, Hercules, CA, USA” instrument. The reaction mixture
(volume 20 µL) included: Encyclo polymerase (0.4 µL), 10 × Encyclo Buffer (2 µL), dNTP
(0.4 µL) (Evrogen, Moscow, Russia), 20× SYBR Green Master Mix (1 µL) (BioDye, Moscow,
Russia), 1 µL of a mixture of forward and reverse primers.

General denaturation was carried out at 95 ◦C for 3 min; denaturation at the beginning
of the cycle 95 ◦C 30 s; primer annealing 61 ◦C 30 s, elongation 72 ◦C 30 s; the number
of cycles 38; total elongation 72◦ 5 s; melting curve from 65 ◦C to 95 ◦C. Quantitatively
normalized gene expression was expressed in relative fluorescence units (RFU).

The primer sequences were as follows (Table 3):
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Table 2. Scheme of Morris water maze experiment for study of reference memory with indication of
starting point and goal platform.

Acquisition. Start Located in the SW

Day Trial 1 Trial 2 Trial 3 Trial 4

1 N E SE NW

2 SE N NW E

3 NW SE E N

4 E NW N SE

5 N SE E NW

6 (Probe) NE - - -

Reversal. Start located in the NE

Day Trial 1 Trial 2 Trial 3 Trial 4

1 S W NW SE

2 NW S SE W

3 SE NW W S

4 W SE S NW

5 S NW W SE

6 (Probe) SW - - -

Table 3. Primers that were used to analyze gene expression.

Gene Accession Number Primers Sequence (5′–3′)

Nfe2l2 NM_010902.4 Forward = CTCTCTGAACTCCTGGACGG
Reserve = GGGTCTCCGTAAATGGAAG

Bdnf NM_007540.4 Forward = AAGGACGCGGACTTGTACAC
Reserve = CGCTAATACTGTCACACACGC

Mtor NM_020009.2 Forward = AGATAAGCTCACTGGTCGGG
Reserve = GTGGTTTTCCAGGCCTCAGT

Akt1 NM_009652.3 Forward = TGATCAAGATGACAGCATGGAGTG
Reserve = GATGATCCATGCGGGGCTT

Gclc NM_010295.2 Forward = GCAGCTTTGGGTCGCAAGTAG
Reserve = TGGGTCTCTTCCCAGCTCAGT

Gpx NM_008160.6 Forward = AGTCCACCGTGTATGCCTTCT
Reserve = GAGACGCGACATTCTCAATGA

Sod2 NM_013671.3 Forward = CAGACCTGCCTTACGACTATGG
Reserve = CTCGGTGGCGTTGAGATTGTT

P62 U17961.1 Forward = GCCAGAGGAACAGATGGAGT
Reserve = TCCGATTCTGGCATCTGTAG

Prdx3 NM_007452.2 Forward = TGGCTTGATCGTAGGGGACT
Reserve = GTGGTTTGGGCCACATGAAC

Txnr2 NM_013711.3 Forward = GATCCGGTGGCCTAGCTTG
Reserve = TCGGGGAGAAGGTTCCACAT

Pink1 NM_026880.2 Forward = GAGCAGACTCCCAGTTCTCG
Reserve = GTCCCACTCCACAAGGATGT

Gapdh (reference) NM_001289726.1 Forward = GGCTCCCTAGGCCCCTCCTG
Reserve = TCCCAACTCGGCCCCCAACA

18s (reference) NR_003278.3 Forward = CGGCTACCACATCCAAGGAA
Reserve = GCTGGAATTACTGTGGCT
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4.6. Measurement of mtDNA Damage

The amount of mtDNA damage was estimated by quantitative long-range PCR. Each
PCR reaction contained 1× of Encyclo polymerase, 1× Encyclo buffer, 0.2 mM of each dNTP
(all Evrogen, Moscow, Russia), 1× SYBR GreenMasterMix (BioDye, Moscow, Russia), and a
mix of forward and reverse primers in a total volume of 20 µL. qPCR cycling conditions
were: initial denaturation at 95 ◦C for 3 min; 35 cycles: denaturation 95 ◦C for 30 s, primer
annealing at 59 ◦C for 30 s, and elongation at 72 ◦C for 270 s.

The primers were designed previously. The amount of mtDNA damage was calculated
per 10,000 bp according to Equation:

mtDNA damage=1 − (2−(∆long−∆short)) × 10,000/fragment length (1)

where ∆ long = Cq control − Cq experiment for the long fragment and ∆ short = Cq control
− cq experiment for the short fragment.

Primers for long mtDNA fragments were selected using the BLAST program.
The primer sequences were as follows (Table 4):

Table 4. Primers that were used to analyse measurement of mtDNA damage (Accession number for
mtDNA Mus musculus NC_005089.1).

mtDNAFragments Primers Sequence (5′–3′)

1 long Forward = TAAATTTCGTGCCAGCCACC
Reserve = ATGCTACCTTTGCACGGTCA

2 long Forward = ACGAGGGTCCAACTGTCTCTTA
Reserve = CCGGCTGCGTATTCTACGTT

3 long Forward = CTAGCAGAAACAAACCGGGC
Reserve = TTAGGGCTTTGAAGGCTCGC

4 long Forward = TCATTCTTCTACTATCCCCAATCC
Reserve = TGGTTTGGGAGATTGGTTGATG

5 long Forward = CCCCAATCCCTCCTTCCAAC
Reserve = GGTGGGGAGTAGCTCCTTCTT

6 long Forward = AAGAAGGAGCTACTCCCCACC
Reserve = GTTGACACGTTTTACGCCGA

short (reference) Forward = ACGAGGGTCCAACTGTCTCTTA
Reserve = AGCTCCATAGGGTCTTCTCGT

4.7. Assessing the Bacterial Composition of the Gut Microbiome

To analyze the microbiome of mice, we performed targeted sequencing of the 16S rRNA
gene on the Ion Torrent PGM platform. For the most complete subsequent phylogenetic
analysis, the sequence of the V3 hypervariable region of the 16S rRNA gene was chosen,
which we limited to the universal primers 337F and 518R. Targeted amplification was
performed using the 5× ScreenMix-HS Master Mix kit (Evrogen, Moscow, Russia) in the
following regime: 94 ◦C for 4 min; 37 cycles of 94 ◦C for 30 s; 53 ◦C for 30 s; and 72 ◦C for
30 s; and final elongation at 72 ◦C for 5 min.

After PCR, amplicons were purified on AMPureXP magnetic beads (Beckman Coulter,
Brea, CA, USA). The NEB-Next Fast DNA Library Prep Kit (New England Biolabs, Ipswich,
MA, USA) was used to prepare the libraries following the sample preparation protocol.
After barcodes were attached to the libraries and their quality was checked, we proceeded
to the stage of emulsion PCR on the OneTouch 2 system (Thermo Fisher Scientific, Madi-
son, WI, USA). Sequencing was performed with the Ion PGM Hi-Q View Sequencing Kit
(Thermo Fisher Scientific, Madison, WI, USA) using the Ion Torrent PGM system.

The resulting sequences were converted from BAM format to FASTQ format for each
read. Bioinformatics data analysis was performed using the R programming language in
the R-studio environment. All read preprocessing, such as demultiplexing, filtering, and
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quality control was performed using VSEARCH v.2.8.2 software. The search for operational
taxonomic units of the OTU and the creation of the OTU table were performed using the
UNOISE2 algorithm. Reads were filtered using the maximum expected error cutoff of
1.0. Species-level taxonomy was assigned using 100% identity with amplicon sequence
variants using the SILVA database version 132 (https://www.arb-silva.de, accessed on
26 December 2021). Taxonomic identification was carried out using the DADA2 package.
The DADA2 package provides a built-in implementation of the Naive Bayes classifier
method for this purpose.

4.8. Statistical Analysis

Statistical analysis was performed using Statistica 10 (StatSoft. Inc., Tulsa, OK, USA).
The results were expressed as means ± SEM. The results of the physiological tests were
analyzed by nonparametric U test. For calculation of normalized expression and copy
number of mtDNA, standard Bio-Rad CFX Manager 3.1 (Bio-Rad Laboratories, Hercules,
CA, USA) software was used.

5. Conclusions

In the course of our study, we showed the pathogenic effect of cisplatin on the cells of
the nervous system. The inhibitory effect of cisplatin was demonstrated on the deterioration
of the cognitive abilities of experimental animals, which was found in the course of physi-
ological tests. Also, cisplatin reduced the level of expression of genes of the antioxidant
system in the hippocampus and cortex. We have shown that cisplatin induces mitophagy
due to mtDNA damage. Cisplatin also influenced the composition of the intestinal mi-
crobiome. We also showed the neuroprotective effect of MB and AzB; they prevented the
destructive effects caused by cisplatin, the level of antioxidant system genes in the cortex
and hippocampus, and also normalized the composition of the intestinal microbiome of
mice. During our study, we noticed that AzB did not affect cognitive parameters, unlike
MB, which improved the cognitive abilities of animals. In this regard, MB and AzB are inter-
esting for careful study as drugs that can help people who have undergone chemotherapy
to restore their level of cognitive functions, as well as drugs that prevent the deterioration
of brain cells.
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14. Akman, T.; Akman, L.; Erbaş, O.; Terek, M.C.; Taskiran, D.; Ozsaran, A. The Preventive Effect of Oxytocin to Cisplatin-Induced

Neurotoxicity: An Experimental Rat Model. BioMed Res. Int. 2015, 2015, 167235. [CrossRef]
15. Vindya, N.S.; Mohamad, A.; Razdan, R. Allantoin attenuates deficits of behavioural and motor nerve conduction in an animal

model of cisplatin-induced neurotoxicity in rats. Anim. Model Exp. Med. 2019, 2, 114–120.
16. Almutairi, M.M.; Alanazi, W.; Alshammari, M.A.; Alotaibi, M.R.; Alhoshani, A.R.; Al-Rejaie, S.S.; Hafez, M.M.; Al-Shabanah, O.A.

Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC Complement. Altern. Med. 2017, 17, 472.
[CrossRef]

17. Sharawy, N.; Rashed, L.; Youakim, M.F. Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced
peripheral neurotoxicity model. Exp. Toxicol. Pathol. 2015, 67, 315–322. [CrossRef]

18. Gong, S.; Feng, Y.; Zeng, Y.; Zhang, H.; Pan, M.; He, F.; Wu, R.; Chen, J.; Lu, J.; Zhang, S.; et al. Gut microbiota accelerates
cisplatin-induced acute liver injury associated with robust inflammation and oxidative stress in mice. J. Transl. Med. 2021, 19, 147.
[CrossRef]

19. Chambers, L.M.; Esakov, E.; Braley, C.; Sangwan, N.; Vargas, R.; Rose, P.; Lathia, J.; Michener, C.; Reizes, O. Cisplatin chemotherapy
impacts the gut microbiome in a preclinical murine model of epithelial ovarian cancer. Gynecol. Oncol. 2020, 159, 108. [CrossRef]

20. Wu, C.-H.; Ko, J.-L.; Liao, J.-M.; Huang, S.-S.; Lin, M.-Y.; Lee, L.-H.; Chang, L.-Y.; Ou, C.-C. D-methionine alleviates cisplatin-
induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther. Adv. Med. Oncol. 2019,
11, 1021. [CrossRef]

21. Morais, L.H.; Schreiber, H.L.; Mazmanian, S.K. The gut microbiota-brain axis in behaviourand brain disorders. Nat. Rev. Microbiol.
2021, 19, 241–255. [CrossRef]

22. Rebillard, A.; Rioux-Leclercq, N.; Muller, C.; Bellaud, P.; Jouan, F.; Meurette, O.; Jouan, E.; Vernhet, L.; Le Quément, C.; Carpinteiro,
A.; et al. Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene 2008, 27, 6590–6595.
[CrossRef] [PubMed]

23. Patankar, J.V.; Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol.
Hepatol. 2020, 17, 543–556. [CrossRef] [PubMed]

24. Solas, M.; I Milagro, F.; Ramírez, M.J.; Martínez, J.A. Inflammation and gut-brain axis link obesity to cognitive dysfunction:
Plausible pharmacological interventions. Curr. Opin. Pharmacol. 2017, 37, 87–92. [CrossRef] [PubMed]

25. Tucker, D.; Lu, Y.; Zhang, Q. From Mitochondrial Function to Neuroprotection—an Emerging Role for Methylene Blue. Mol.
Neurobiol. 2017, 55, 5137–5153. [CrossRef]

26. Gureev, A.P.; Syromyatnikov, M.Y.; Ignatyeva, D.A.; Valuyskikh, V.V.; Solodskikh, S.A.; Panevina, A.V.; Gryaznova, M.V.; Kokina,
A.V.; Popov, V.N. Effect of long-term methylene blue treatment on the composition of mouse gut microbiome and its relationship
with the cognitive abilities of mice. PLoS ONE 2020, 15, e0241784. [CrossRef]

http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000522451
http://doi.org/10.1186/s40169-018-0212-7
http://www.ncbi.nlm.nih.gov/pubmed/30374795
http://doi.org/10.1016/j.ejphar.2014.07.025
http://www.ncbi.nlm.nih.gov/pubmed/25058905
http://doi.org/10.1038/222385a0
http://www.ncbi.nlm.nih.gov/pubmed/5782119
http://doi.org/10.1021/bi973176v
http://www.ncbi.nlm.nih.gov/pubmed/9649303
http://doi.org/10.1016/S0167-4781(02)00535-3
http://doi.org/10.1111/j.1432-1033.2004.04084.x
http://doi.org/10.3791/2773
http://doi.org/10.1016/j.freeradbiomed.2016.11.046
http://doi.org/10.1021/acs.chemrestox.9b00204
http://doi.org/10.1016/j.fct.2019.111079
http://doi.org/10.17116/jnevro201411412184-88
http://doi.org/10.1016/j.expneurol.2019.113118
http://doi.org/10.1155/2015/167235
http://doi.org/10.1186/s12906-017-1976-9
http://doi.org/10.1016/j.etp.2015.02.003
http://doi.org/10.1186/s12967-021-02814-5
http://doi.org/10.1016/j.ygyno.2020.05.112
http://doi.org/10.1177/1758835918821021
http://doi.org/10.1038/s41579-020-00460-0
http://doi.org/10.1038/onc.2008.257
http://www.ncbi.nlm.nih.gov/pubmed/18679423
http://doi.org/10.1038/s41575-020-0326-4
http://www.ncbi.nlm.nih.gov/pubmed/32651553
http://doi.org/10.1016/j.coph.2017.10.005
http://www.ncbi.nlm.nih.gov/pubmed/29107872
http://doi.org/10.1007/s12035-017-0712-2
http://doi.org/10.1371/journal.pone.0241784


Pharmaceuticals 2022, 15, 815 18 of 20

27. Sadovnikova, I.S.; Gureev, A.P.; Ignatyeva, D.A.; Gryaznova, M.V.; Chernyshova, E.V.; Krutskikh, E.P.; Novikova, A.G.; Popov,
V.N. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the
Modulation of Gut Microbiome. Pharmaceuticals 2021, 14, 607. [CrossRef]

28. Sekeres, M.J.; Winocur, G.; Moscovitch, M. The hippocampus and related neocortical structures in memory transformation.
Neurosci. Lett. 2018, 680, 39–53. [CrossRef]

29. Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338.
[CrossRef]

30. Wood, A.M.; Linley, P.A.; Maltby, J.; Kashdan, T.B.; Hurling, R. Using personal and psychological strengths leads to increases in
well-being over time: A longitudinal study and the development of the strengths use questionnaire. Personal. Individ. Differ. 2011,
50, 15–19. [CrossRef]

31. Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following
stimulation of the perforant path. J. Physiol. 1973, 232, 331–356. [CrossRef]

32. Gureev, A.P.; Popov, V.N.; Starkov, A.A. Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the
improvement of long-term potentiation. Exp. Neurol. 2020, 328, 113285. [CrossRef]

33. Zakria, M.; Ahmad, N.; Al Kury, L.T.; Alattar, A.; Uddin, Z.; Siraj, S.; Ullah, S.; Alshaman, R.; Khan, M.I.; Shah, F.A. Melatonin
rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects.
NeuroToxicology 2021, 87, 1–10. [CrossRef]

34. Shabani, M.; Larizadeh, M.H.; Parsania, S.; Hajali, V.; Shojaei, A. Evaluation of Destructive Effects of Exposure to Cisplatin During
Developmental Stage: No Profound Evidence for Sex Differences in Impaired Motor and Memory Performance. Int. J. Neurosci.
2012, 122, 439–448. [CrossRef]

35. Chen, C.; Zhang, H.; Xu, H.; Zheng, Y.; Wu, T.; Lian, Y. Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory
impairments. J. Ginseng. Res. 2019, 43, 499–507. [CrossRef]

36. Oz, M.; Atalik, K.E.N.; Yerlikaya, F.H.; Demir, E.A. Curcumin alleviates cisplatin-induced learning and memory impairments.
Neurobiol. Learn. Mem. 2015, 123, 43–49. [CrossRef]

37. Kandeil, M.A.; Gomaa, S.B.; Mahmoud, M.O. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in
rats: Behavioral testing. Heliyon 2020, 6, e04708. [CrossRef]

38. Shabani, M.; Nazeri, M.; Parsania, S.; Razavinasab, M.; Zangiabadi, N.; Esmaeilpour, K.; Abareghi, F. Walnut consumption
protects rats against cisplatin-induced neurotoxicity. NeuroToxicology 2012, 33, 1314–1321. [CrossRef]

39. Hosseinzadeh, M.; Alizadeh, A.; Heydari, P.; Kafami, M.; Hosseini, M.; Beheshti, F.; Marefati, N.; Ghanbarabadi, M. Effect of
vitamin E on cisplatin-induced memory impairment in male rats. Acta Neuropsychiatr. 2020, 33, 43–48. [CrossRef]

40. Hussien, M.; Yousef, M.I. Impact of ginseng on neurotoxicity induced by cisplatin in rats. Environ. Sci. Pollut. Res. Int. 2021, 1–13.
[CrossRef]

41. Ma, J.; Huo, X.; Jarpe, M.B.; Kavelaars, A.; Heijnen, C.J. Pharmacological inhibition of HDAC6 reverses cognitive impairment and
tau pathology as a result of cisplatin treatment. Acta Neuropathol. Commun. 2018, 6, 103. [CrossRef]

42. Chiu, G.S.; Boukelmoune, N.; Chiang, A.C.; Peng, B.; Rao, V.; Kingsley, C.; Liu, H.-L.; Kavelaars, A.; Kesler, S.R.; Heijnen, C.J.
Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice.
Oncotarget 2018, 9, 35581–35597. [CrossRef] [PubMed]

43. Wahdan, S.A.; Elsherbiny, D.A.; Azab, S.S.; El-Demerdash, E. Piceatannol ameliorates behavioural, biochemical and histological
aspects in cisplatin-induced peripheral neuropathy in rats. Basic Clin. Pharmacol. Toxicol. 2021, 129, 486–495. [CrossRef] [PubMed]

44. Chiu, G.S.; Maj, M.A.; Rizvi, S.; Dantzer, R.; Vichaya, E.G.; Laumet, G.; Kavelaars, A.; Heijnen, C.J. Pifithrin-µ Prevents
Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Res. 2017, 77, 742–752. [CrossRef]
[PubMed]

45. El-Deeb, O.S.; Soliman, G.M.; Elesawy, R.O. Linagliptin, the dipeptidyl peptidase-4 enzyme inhibitor, lessens CHOP and GRP78
biomarkers levels in cisplatin-induced neurobehavioral deficits: A possible restorative gateway. J. Biochem. Mol. Toxicol. 2020,
34, e22541. [CrossRef]

46. Salih, N.A.; Al-Baggou, B.K. Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice. Acta
Neurol. Belg. 2020, 120, 71–82. [CrossRef]

47. Borbélyová, V.; Renczés, E.; Chovanec, M.; Mego, M.; Celec, P. Transient effects of chemotherapy for testicular cancer on mouse
behaviour. Sci. Rep. 2020, 10, 10224. [CrossRef]

48. John, T.; Lomeli, N.; Bota, D.A. Systemic cisplatin exposure during infancy and adolescence causes impaired cognitive function in
adulthood. Behav. Brain Res. 2017, 319, 200–206. [CrossRef]
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