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Abstract: MET alterations, including MET exon 14 skipping variants, MET amplification,

MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and
acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They
represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor
types. However, the detection of MET alterations is challenging due to the complexity of

MET alterations and the diversity of platform technologies. Therefore, techniques with high
sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such
hindrances and aid in biomarker-guided therapies. The current review emphasizes the role
of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the
development of resistance to targeted therapies. Moreover, our review provides an overview
of and recommendations on the selection of various cross-platform technologies for the
detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET
fusion. Furthermore, challenges and hurdles underlying these common detection platforms

are discussed.
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Introduction

MET (mesenchymal-epithelial transition factor)
is a widely expressed tyrosine kinase receptor that
binds with the natural ligand hepatocyte growth
factor (HGF) and plays a vital role in embryogen-
esis, cell growth, cell differentiation, and angio-
genesis.! MET activation negatively affects
tyrosine kinase inhibitors (TKIs) effectiveness
due to the intertwining between the MET and
receptor tyrosine kinase (RTK) [epidermal
growth factor receptor (EGFR)] signaling path-
ways.? Dysregulation of the HGF-MET axis
potentially arises by a variety of mechanisms,
including mutational activation, such as exon 14
splice site alteration, exon 14 ubiquitination site
mutation, kinase domain mutation, extracellular
domain mutation, and amplification of the MET
proto-oncogene or gene copy number (GCN)
gain due to polysomy or focal amplification? or by
overexpression that occurs either due to

alteration in transcription factors [erythroblast
Transformation specific (Ets) and specificity pro-
tein 1 (Spl)] or by transcriptional upregulation
due to hypoxia-inducible factor activation and
downregulation of repressor microRNAs (miR-1,
miR-34, and miR-449a).# These dysregulations
lead to malignant transformation (tumor growth,
invasion, metastasis, and angiogenesis) through
alterations in downstream cellular signaling path-
ways (Ras, PI3K/Akt, STAT3, and NF-«B).> A
schematic illustration of the normal MET signal-
ing pathway and various mechanisms underlying
aberrant MET signaling pathways is represented
in Figure 1.

In view of this pivotal role of MET in tissue
remodeling and morphogenesis, scholars in sev-
eral studies have reported that MET alterations,
particularly MET exon 14 skipping variants, MET
amplification, MET overexpression, and MET
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fusion, play a key role in pathogenesis and altera-
tion in sensitivity to targeted therapies and con-
tribute to the development of acquired tumor cell
resistance to treatment with EGFR-targeting
TKIs in different cancer types.® A few anti-MET-
TKIs have been developed for MET-directed tar-
geted therapies, such as tepotinib and capmatinib,
which have been approved in the United States
and Japan, respectively, and savolitinib, which
was approved by the National Medical Products
Administration of China in June 2021,7-° as well
as glumetinib, which has been approved in China
in March 2023. In view of the importance of
MET gene alterations in cancer pathogenesis and
therapy, the detection of MET abnormities has
become increasingly important in clinical practice
to guide patient selection for targeted therapy,
and testing for MET exon 14 skipping variants
and amplifications has already been recom-
mended by the NCCN guidelines in treatment-
naive and TKI-resistant non-small-cell lung
cancer (NSCLC) patients, respectively.!® This
review will summarize the present situation and
future of MET alteration detection technology,
especially exon 14 skipping, amplification testing,
and overexpression testing, to provide a land-
scape of MET alteration-associated detection and
targeted therapy updates.

(Continued)
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MET exon 14 skipping variants in cancers

A diverse range of variations involving the kinase
domain, exon 14, intronic splice site, and SEMA
domain can occur within MET (Figure 1).
Furthermore, a splicing variant in MET leading
to loss of MET exon 14 emerged as a biomarker
and offers a potential therapeutic target in several
cancer types.!! Therefore, robust approaches for
the detection of such skipping events in MET
exon 14 are critical in the clinical management of
cancers, specifically NSCLCs, and other cancers
harboring MET exon 14 skipping variants.? The
prevalence of MET exon 14-skipping variants is
widely reported in lung cancer, with a frequency
of 0.9-4%.12 Among all cancers, the prevalence
of MET exon 14 skipping variants is widely
reported in NSCLCs, and the most widely used
platform for the detection of this variant includes
next-generation sequencing (NGS) followed by
reverse transcription polymerase chain reaction
(RT-PCR). A summarization of prevalence and
prognosis is presented in Table 1.

Race

Asian
(Chinese)
Asian and
Western
White,
Non-Hispanic

Disease stage
Stage |-V
Stage

-1V

Stage

-1V

Stage

-1V

Stage llIA-IV
Stage

-1V

Type of cancer
NSCLC

Table 1. Summarization on prevalence and prognosis of MET exon14 skipping variants.

Study group
Lietal'?

Yu et al.4
Vuong et al.’®
Awad et al.1®
Lung etal.'?
Okuda et al."®
Pruis et al.??
Heist et al.20
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Detection of MET exon 14 skipping variants
Genome-wide sequencing revealed heterogenic
forms of MET exon 14 variants at the DNA level,
thereby making it challenging to detect either by
amplification  refractory  mutation  system
(ARMS)-PCR or by DNA NGS panels; instead,
RNA-based testing can further improve testing
accuracy.!® Furthermore, limited reports are
available on the comparison of these detection
platforms.

DNA-based NGS. A detailed methodology of
NGS is represented in Figure 2(c). Generally,
two types of NGS-based assays, namely, ampli-
con-based and hybrid capture-based NGS plat-
forms differing in DNA enrichment methods, are
used in clinical settings.?> The major limitation
associated with routinely used commercially
available amplicon-based NGS panels for detec-
tion of MET exon 14 skipping variants includes
the frequent emergence of new regions to be cov-
ered that lead to allelic dropouts and sequencing
errors.?6 Earlier, Davies er al. compared ampli-
con-mediated DNA-based NGS oversus RNA-
based NGS in NSCLC tumor samples for MET
exon 14 skipping variants and reported that
among 286 samples tested by both assays, RNA-
based testing detected 10 positive samples, 6 of
which were not detected by the DNA-based
assay. Further examination revealed that genomic
deletion involving primer binding sequences was
the likely cause of false negatives reported and
led to the further conclusion that amplicon
DNA-based NGS misses the detection of a sub-
stantial fraction of MET exon 14 alterations as
they are located outside the amplified regions.??
However, amplicon-based NGS has the advan-
tage of improved capture of targets and sequenc-
ing of difficult regions with shorter turnaround
time when compared to hybrid-based NGS.3The
pitfalls associated with amplicon-based NGS can
be addressed with the adoption of hybrid-based
NGS, where it not only allows the identification
of hotspot mutations but also interrogates entire
coding sequences of oncogenes, tumor suppres-
sor genes, and introns of selected genes that are
involved in gene fusions and further allows the
assessment of copy number alterations.?® Fur-
thermore, if the designed algorithm and probe/
bait sufficiently cover the region of interest,
DNA-based assays using hybrid capture-medi-
ated target enrichment are less likely to produce
false-negative results. This is exemplified by the

studies from Frampton er al. and Awad ez al.,
where a wide variety of MET exon 14 skipping
variants, including large deletions, were success-
fully detected by employing hybrid-based NGS
assays.%1¢ Furthermore, a hybrid-based approach
enables corrections for some of the sequencing
bias and allele dropout issues associated with
amplicon-based NGS assay.2® Although the
depth of coverage of genes of interest in both
platforms was high, hybrid-based NGS, with its
noteworthy advantage, outperforms amplicon-
based NGS.?

RNA-based NGS or RT-PCR. MET exon 14 vari-
ants can also be detected at the RNA level. Li ez
al. conducted a study that involved the compari-
son of DNA- and RNA-based NGS for the detec-
tion of MET exon 14 skipping variants in
pulmonary sarcomatoid carcinomas (PSCs) and
reported a concordance of 96.1% between these
platforms and concluded that RNA-based
sequencing was the most accurate because some
somatic variants not covering MET exon 14
splice sites might also induce skipping.!? Fur-
thermore, DNA sequencing cannot confirm the
absence of the exon, as modifications such as
splicing occur post-translationally.2? At this junc-
ture, RNA-based NGS platforms have the poten-
tial to complement DNA-based NGS platforms
where RNA sequencing permits the direct recog-
nition of the loss of exon 14 transcription.?’ In a
study, Jurkiewicz et al. compared the perfor-
mance of DNA wversus RNA-based NGS assays
for the detection of MET-ex14 skipping variants
in 644 lung adenocarcinoma samples and con-
cluded that DNA-based NGS panels can poten-
tially miss MET-ex14 skipping when the primers
do not target both the 3’ and 5’ splice sites of
introns 13 and 14, respectively.3??2 Furthermore,
due to the diverse nature of MET exon 14 splice
site alterations, interpreting variants that truly
result in exon 14 skipping is challenging, and this
becomes more strenuous when these alterations
are located in deeper introns; since RNA-based
platform involves sequencing mRNA that is
devoid of introns, this kind of challenge can be
avoided.??

RNA-based RT-PCR can also be wused for
MET-ex14 skipping detection and shows good
concordance with RNA-based NGS.12 Although
NGS is rapid in comparison to traditional Sanger
sequencing, it is still too expensive to be affordable
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by small laboratories or an individual.?* By con-
trast, RT-PCR is easy to perform, more wide-
spread, and has a shorter turnaround time.
RT-gqPCR is usually designed in the MET exon 13
and 15 region primers for the detection of specific
amplification products. This method has a high
accuracy in detecting MET 14 variants but it can
miss some special and rare forms of MET varia-
tions. Meanwhile, RNA-based analysis is highly
reliant on the quality of RNA, which can be sub-
optimal in some clinical samples.2’” RNA-based
testing is not part of the routine workflow in many
molecular detection laboratories, as acquiring suf-
ficient RNA material remains a large obstacle in
contrast to DNA acquisition. Therefore, when
RNA quality is at risk, an alternative is DNA-
based NGS, where DNA is less difficult to obtain
and less vulnerable to degradation.

Targeted therapies for MET exon 14

skipping variants

The constant discovery of actionable activating vari-
ants has led to targeted therapies with new-genera-
tion TKIs and improved overall survival and time to
progress.2® Among all reviewed literature, NSCLC
lung cancer accounts for almost all. Earlier, a phase
I PROFILE 1001 study reported the efficacy of cri-
zotinib [median progression-free survival (mPFS)
7.3months and overall response rate (ORR) of
32%] in advanced-stage NSCLC patients harbor-
ing MET exon 14 alterations, and these results led
to the inclusion of crizotinib in the NCCN guide-
lines. With this breakthrough, several highly selec-
tive MET inhibitors, such as tepotinib, capmatinib,
savolitinib, and glumetinib, have been tested in
patients with MET exon 14-altered NSCLC and
found to be more potent than crizotinib.35

Tepotinib was developed for the treatment of
solid tumors and demonstrated promising clini-
cal efficacy and safety profiles in patients with
advanced NSCLC with a confirmed MET exon
14 skipping variant in the multinational phase II
VISION study.3% In March 2020, it was approved
for use in Japan for this indication and was sub-
sequently approved by the FDA on 3 February
2021. Capmatinib was developed for the treat-
ment of lung cancer, inhibiting cancer cell growth
driven by the mutant MET variant, including

exon 14 skipping. In May 2020, capmatinib
received its first global approval for the treatment
of adults with metastatic NSCLC with MET
exon l4-skipping variants as detected by an
FDA-approved test.8 Savolitinib was developed
for the treatment of NSCLC, gastric cancer,
colorectal cancer, and papillary and clear cell
renal cell carcinoma. Based on the results of a
pivotal phase II trial, savolitinib yielded promis-
ing activity and had an acceptable safety profile
in patients with NSCLC/pulmonary sarcomatoid
carcinoma and was recently approved in June
2021 in China for the treatment of metastatic
NSCLC with MET exon 14-skipping alterations
in patients who have progressed after or who are
unable to tolerate platinum-based chemother-
apy, conditional on the results of a phase III
trial.3” Glumetinib was developed for the treat-
ment of lung cancer and showed durable antitu-
mor activity with manageable toxicity in patients
with locally advanced or metastatic MET ex14-
positive NSCLC in the phase II GLORY study.38
In March 2023, it was approved in China for this
indication.

Furthermore, reports from several clinical stud-
ies cannot be compared directly due to different
populations and inclusion criteria in the clinical
efficacy of several MET-TKI inhibitors, includ-
ing tepotinib3® [independent review committee
(IRC): ORR 57.3% (treatment naive), 45.0%
(pretreated),*® capmatinib (ORR: 44% (pre-
treated) and ORR: 68.3% (treatment naive)33,
mPFS 12.5m (treatment naive), 5.5m (pre-
treated); mOS 25.5m (treatment naive), not
reported (pretreated))],*! and savolitinib [phase
IIIb study, IRC: ORR 58.6% (treatment naive),
mPFS 13.8m (treatment naive)%?; phase II
study(36% PSC and 21% CNS metastases):
TRES set: ORR 49.2%, FAS set: mPFS 6.9m,
mOS 12.5m; in PSC, mPFS 5.5m, mOS
10.6 m; other NSCLC (non-PSC), mPFS 7.0 m,
mOS 17.3m*3] and glumetinib38 (BIRC: overall
ORR 66%, mPFS 8.5m, mOS 17.3m; in treat-
ment-naive patients: ORR 71%, mPFS 11.7m)
in patients harboring MET exon 14 skipping
variants in NSCLC. A summarization of MET
exon 14 skipping variant targeted therapy out-
comes in advanced NSCLC is represented in
Table 2.
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MET signaling pathway as a mechanism of FEZZ | o & =~ o~ & v ¢ ~
resistance to targeted EGFR therapies.48
Reports from several studies have indicated §
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NGS, and ddPCR.? As the magnitude of MET
amplification is a continuous variable, determining
the cutoff for MET positivity is more challenging.?
At present, no consensus exists on the most appro-
priate diagnostic cutoff point for MET amplifica-
tion.”> Different detection platforms for MET
amplification testing exist and have ineligible dis-
parities in terms of sensitivity and specificity.

Fluorescence in situ hybridization (FISH). FISH is
a cytogenetic technique used for obtaining spatial
genomic and quantification of nucleic acids in the
cellular environment and has emerged as the gold
standard technique for the detection of chromo-
somal abnormalities.”®

In the FISH assay, MET copy number increases
can be defined either by Cappuzzo criteria or by
University of Colorado Cancer Center (UCCCQC)
criteria, which calculate the ratio of MET to chro-
mosome enumerating probe against chromosome
7 (CEP?7). The Cappuzzo et al. criteria define MET
amplification as a mean of five or more copies of
MET vper cell (MET gene copy number (GCN)
=5).77 Furthermore, other alternate definitions
suggest a MET GCN of =678 and a MET GCN of
=15.7 However, the determination of GCN can-
not differentiate between MET focal amplification
and polysomy, and this limitation is overcome by
the UCCC approach involving the calculation of
the MET-t0o-CEPY7 ratio that adjusts the number of
chromosomes present, thereby differentiating
selective MET focal amplifications and chromo-
somal duplication. In general, a MET to CEP7
ratio=2.0 defines MET focal amplification.”
However, several other studies categorized the
degree of MET focal amplification into low (=1.8—
=<2.2), intermediate (>2.2-<5), and high (=5).7>

The FISH technique is advantageous in the detec-
tion of MET amplification in light of its compara-
ble performance characteristics and potential for
cost-effectiveness and limited complexity in test-
ing when compared with NGS. Furthermore,
FISH offers direct visualization of the tested sam-
ples, which was not possible by NGS, and another
added benefit of this technique is that it represents
a suitable technology for the detection of intratu-
moral heterogeneity within tissue samples.
Although FISH is the current gold standard for
MET amplification testing, the prevalence of MET
amplification detected by FISH is variable in the
literature, which is likely attributable to a lack of
standardization of technique and/or patient selec-
tion criteria and different cutoffs for defining MET

positivity.®3 In addition, the main limitation of
FISH is that it can only be applied to tissue sam-
ples, while tissue feasibility is low in advanced
NSCLC patients, especially patients who pro-
gressed on previous TKIs.

Next-generation sequencing. Similar to the FISH
assay, there is no consensus on a single definition
of MET amplification, and the cutoff for MET
amplification varies across different NGS plat-
forms.8° Hybrid capture-based NGS is known to
be more accurate in assessing copy number varia-
tion in MET and other genes, as it interrogates
broader regions of the genome and removes
sequence replicates. By contrast, amplicon-based
NGS covers a limited genomic territory, and
sequence replicates cannot be removed, affecting
sequence coverage depth.> NGS can be used to
analyze both tissue and plasma ctDNA or other
bodily fluids, which will facilitate biomarker testing
extensively. However, certain technical limitations,
including sample selection, low tumor cell fraction,
and low DNA quality of tumor samples can
increase background noise, hindering the accurate
analysis of copy number gain/loss.8° As reported in
the TATTON study, where osimertinib (3rd
EGFR-TKI) and savolitinib (MET-TKI) com-
bined therapy in NSCLC patients with MET-
amplified EGFR-TKI resistance demonstrated
encouraging antitumor activity, FISH positivity
was defined centrally as either focal amplification
(MET:CEP7 ratio=2) or polysomy (gene copy
number=5 if MET:CEP7 <2), while tissue NGS
from Foundation Medicine showed higher posi-
tive-percent agreement (PPA, also known as sensi-
tivity) for FISH focal amplification (88%) but
lower PPA for FISH polysomy (4%). Similarly, a
comparison of ctDNA NGS with FISH yielded
negative-percent agreement (NPA) of 90% and a
modest PPA of only 25%.% Various factors affect
the sensitivity of ctDNA detection by NGS, such
as sequencing depth, threshold of bioinformatic
analysis, and techniques to enrich tumor-derived
signals and reduce background noise. The high
specificity and low sensitivity of the currently avail-
able NGS assay indicate that copy number varia-
tion (CNV) detection by NGS needs to be
optimized, and retesting with FISH should be con-
sidered to avoid missing MET amplification; while
NGS may serve as an alternative selection for
MET polysomy with higher sensitivity and speci-
ficity and guide the clinical treatment.8!

Although plasma ctDNA testing of MET amplifica-
tion is challenging, it is a direction for future
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development to fulfill the clinical needs given that
plasma specimens are dominant in late-phase
patients. In addition, plasma harvested from periph-
eral blood is less invasive and can reflect the disease
progression dynamically while avoiding tumor het-
erogenicity in single surgery or biopsy samples.82

Polymerase chain reaction. MET amplifications
can be detected by employing a PCR technique
specifically (RT-PCR). Similar to FISH and NGS,
the cutoff for defining MET amplification positiv-
ity was not standardized.®?> A comparison of the
basic principle and procedure involved in differ-
ent PCR techniques is represented in Figure 2(a).
The major limitation associated with RT-PCR is
that the success relies on the RNA quality in the
specimen tested. Inadequate fixation or pro-
longed ischemia of tissue leads to false-negative
results. These limitations were outweighed by the
introduction of droplet digital PCR (ddPCR),
which has high sensitivity and accuracy levels for
absolute representation of a given nucleic acid
sequence. Droplet digital PCR enables the abso-
lute quantification of nucleic acids present in the
sample by partitioning the sample into indepen-
dent PCR subreactions where each partition con-
tains a few or no target sequences and is subjected
to PCR wherein the fraction of amplification pos-
itive partitions is used to quantify the concentra-
tion of the target sequence with a statistically
defined accuracy using Poisson’s statistics.83

The performance of ddPCR for MET amplifica-
tion testing is not well characterized compared to
FISH and NGS.8 However, the consistency
between ddPCR and FISH is reported in some
small sample studies for assay analytical validation
of developed ddPCR methodology; the sensitivity
and specificity of tissue ddPCR and FISH are
both 100%, while the sensitivity and specificity of
tissue and blood ddPCR are 66.67% and 98.86%,
respectively.8> Given that insufficient tissue can be
retrieved after resistance to EGFR-TKIs, further
studies to confirm the testing capability of blood
ddPCR as an alternative detection tool for MET
amplification is needed in the future.

Targeted therapies for MET amplification

The prevalence of acquired MET amplification is
enriched gradually after lines of EGFR-TKI treat-
ment. In lung cancer, MET amplification
occurred in 1-4% of treatment-naive patients,
while the prevalence increased to 5—22% after
first- and second-generation TKI treatment and

5-50% after third-generation TKI osimertinib
treatment.8¢ The amplification of MET occurred
independently of the EGFR T790M mutation
and was clinically relevant to gefitinib and erlo-
tinib resistance.5°

There are several MET-TKIs in development for
MET amplification-positive NSCLC patients,
such as crizotinib, tepotinib, capmatinib, and
savolitinib, and criteria for patient inclusion are
mainly based on FISH and immunohistochemis-
try THC). The cutoff for MET amplification pos-
itivity varies among studies®® Furthermore, it is
evident from the literature that patients harboring
higher MET GCN achieve better clinical out-
comes from the targeted therapy.

For de novo MET amplification NSCLC, in a phase
I PROFILE 1001 study in which NSCLC patients
were stratified based on the degree of MET amplifi-
cation and the activity of crizotinib examined in
relation to the level of MET amplification, there was
a high amplification group (MET-t0-CEP7 ratio = 4)
with reported ORR of 38.1% and median PFS of
6.7months compared with a low amplification
group (MET-t0-CEP7 ratio=1.8 to <2.2) with
ORR of 33.3% and median PFS of 1.8 months and
an intermediate amplification group (MET-to-CEP7
ratio > 2.2 to <4) with ORR of 14.3% and median
PFS of 1.9months.8” Earlier, the results of the
GEOMETRY mono-1 study demonstrated the effi-
cacy and safety of capmatinib in patients with high-
level (GCN) =10 compared with low-(GCN <4)
or mid-level (GCN 4-5 or 6-9) MET-amplified
advanced NSCLC. Patients with GCN=10 treat-
ment-naive and/or receiving 1 or 2 lines of therapy
exhibited better ORRs of 40% and 29%, respec-
tively.3> It seems that high amplification status is
associated with better response to MET-TKIs com-
pared to low amplification status given the current
evidence. Recently, the results from the VIKTORY
umbrella trial showed that savolitinib monotherapy
exhibited an ORR 0of 50% (10/20) in a subset of gas-
tric cancer patients harboring MET amplifications,
and further genomic analysis revealed that patients
with MET GCN>10 (by tissue NGS) had high
response rates to savolitinib [ORR 70% (7/10)] and
concluded that the subset of patients with MET
amplifications achieved the largest absolute decrease
in tumor burden.83 Furthermore, despite there
existing evidence of MET inhibition by foretinib,
Shah et al. reported disappointing results for
foretinib, which might be due to disparities in the
selection of the study population, study design, or
drug itself.8¢ Furthermore, a summarization of
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MET amplification targeted therapy outcomes by
MET copy number status across different cancer
types is represented in Table 4.

As shown in Table 4, the commonly used plat-
form for MET amplification testing and patient
screening is FISH, combined with the IHC plat-
form for some studies. The criteria for MET
amplification varied across studies, and a unified
cutoff has not yet been established. Both the
MET-t0-CEP7 ratio and MET GCN number
were used separately or combined. It seems that a
better response to MET-TKIs or combined ther-
apy occurs in patients with higher MET amplifi-
cation status.

MET overexpression

MET overexpression in cancers

MET overexpression can be caused by gene
amplification, gene mutation, transcriptional
enhancement [activation of specificity protein 1
(Spl), erythroblast transformation specific (Ets)],
or by post-transcriptional mechanisms that lead
to malignant transformations (Figure 1).4

The clinicopathological impacts of MET overex-
pression in various cancers have been investigated
in several studies. The prevalence of MET overex-
pression was reported to be 39.8%,1%0 33.7%,101
and 58.8%192 in cases of gallbladder carcinoma,
triple-negative breast cancer, and NSCLC,
respectively. However, the potential correlation of
MET overexpression with patient outcome is
inconsistent across tumors. Some of the studies
indicated that MET overexpression was signifi-
cantly related to shorter OS or PFS in bladder
cancer'® and glioblastoma multiforme,!%* while
some indicated no correlation to prognosis in
NSCLC!92 or lung adenocarcinomal!®> Thus, a
detailed understanding of the relationship between
MET overexpression and prognosis is still needed.

Detection of MET overexpression

MET overexpression can be analyzed using
immunohistochemistry (IHC), which provides a
semiquantitative information on MET expres-
sion.? The prevalence rate of MET overexpres-
sion is approximately 13.7—63.7% in al NSCLCs.
Among them, the prevalence rate of MET overex-
pression is approximately 30.4—37% in advanced
NSCLC after EGFR-TKI treatment. Different
scoring systems were used to quantify the level of

MET expression by IHC.1% In clinical trial set-
tings, the level of expression is quantified as a
clinical score (on a scale of 0-3+). The H-score
(range from 0-300) is another scoring system that
involves multiplying the percent of cells with
staining scores of 1+, 2+, and 3+ by their stain-
ing intensity score.!%? In general, an H-score = 200
denotes overexpression, and the specific cutoff
range varies among studies.!%8 Recently, a Chinese
expert consensus on MET immunohistochemis-
try detection and interpretation standards for
NSCLC has been proposed, aiming to improve
the quality of detecion and interpretation to fur-
ther guide the clinical treatment and studies.!%?

Some MET THC antibodies for MET overexpres-
sion testing are shown in Table 5, including SP44,
DI1Cl1, and 3077. At present, many domestic and
foreign antibodies for detecting MET amplification
have obtained domestic medical device product
status (recorded in the National Medical Products
Administration), involving multiple clone num-
bers. The staining performance of different anti-
bodies varies, and the interpretation criteria of
current clinical research combine the expression
intensity and percentage of relevant antibodies in
tumor cells at the same time.

Targeted therapies for MET overexpression

MET can be overexpressed in certain cancers har-
boring primary and/or secondary MET exon 14
alterations or MET amplifications,> and many
studies have indicated that MET overexpression
and gene amplification are prognostic survival fac-
tors for many cancers, including gastric carcino-
mas.!13 At this juncture, the results from several
clinical trials involving monotherapy with anti-
MET antibodies (onartuzumab, emibetuzumab),
anti-HGF  antibodies  (ficlatuzumab, rilotu-
mumab), TKIs (crizotinib, tivantinib, cabozan-
tinib), and other therapeutic agents suggest that
the overall activity of these monotherapies in
MET-overexpressing cancers is low, indicating
that MET overexpression is not consistently pre-
dictive of benefit from MET-directed therapies.!!4

By contrast, combination with EGFR-directed
therapies is effective. Wu ez al. conducted an
INSIGHT trial aiming to evaluate the efficacy and
safety of tepotinib plus gefitinib in NSCLC patients
harboring MET overexpression or MET amplifica-
tion and acquired resistance to previous EGFR
inhibitors and concluded that patients with MET
IHC3+ or MET amplifications showed a better
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response, where PFS and OS were longer with
tepotinib plus gefitinib (PFS 8.3months, OS
29.1months) than with chemotherapy (PFS
4.4months, OS 17.9months) in patients with
IHC3+ (=50% tumor cells with strong intensity)
MET overexpression, while the THC2+ (=50%
tumor cells with moderate intensity) subgroup
showed a poor response to combination therapy
with a MET inhibitor and EGFR inhibitor.11>
Overall, IHC is the only detection method for MET
expression in clinical trials. The cutoff for MET
expression varies across studies, and 50% of tumor
cells 2+/3+ are usually used as criteria. Among the
studies in Table 5, subgroup analysis suggested
that a higher percentage of tumor cell 3+ or the
same percentage with a higher staining score gener-
ally improved clinical outcomes. Therefore, given
the limited clinical studies and a small number of
patients, higher MET overexpression can reflect
better outcomes for MET-TKIs plus EGFR-TKIs
treatment in EGFR-resistant advanced NSCLC
patients harboring MET overexpression. More
studies and specific diagnostic criteria for MET
overexpression are required to identify patients
who can benefit more from combination therapy
with MET-TKIs and EGFR-TKIs in this setting.

Furthermore, MET overexpression is not a reliable
indicator of MET exon 14 alterations or MET
amplifications, and reports from several studies
have indicated the same where MET overexpres-
sion determined by IHC does not correlate with
MET amplification.!1® This difference in correla-
tion might be due to the inclusion of samples (fea-
turing a low level of amplification) that do not
result in considerable protein expression or protein
expression modulation by posttranscriptional and
posttranslational factors.? Therefore, patients har-
boring activating alterations in MET can be investi-
gated for the presence of MET overexpression, but
unfortunately, MET overexpression is not a reliable
indicator of MET amplifications/ MET exon 14
skipping variants.? Furthermore, a growing number
of clinical trials are in the pipeline to explore the
relationship between MET expression and MET
amplification; however, unifying guidelines for
standard scoring systems for IHC are required to
obtain consensus among different trials.

MET fusion

MET fusion in cancers
The MET fusion was first found in chemically
transformed osteosarcoma cell lines, which was

the TPR-MET fusion.? Thereafter, MET fusions
were identified in a variety of tumors over the
years, such as gastric cancers, lung adenocarci-
noma, thyroid carcinoma, hepatocellular carci-
noma, and glioma.3 Beyond TPR-MET, multiple
other fusions have been identified, including
PTPRZ1-MET, CLIP2-MET CAPZA2-MET,
ST7-MET, TRIM24-MET, KIF5B-MET,
RBPMS-MET, and EML4-MET, most of which
have been reported in case reports.!17-122 The
exact frequency of MET fusion in these cancers is
poorly defined; of them, glioma had the highest
proportion at 15%.123 As a result, MET fusions
and their therapeutic implications have been
largely ignored. MET fusions have rarely been
described in NSCLC, with an overall frequency
of approximately 0.29%, and half of the fusion
types are intragenic fusions.!?212¢ A large real-
world multicenter study for the Chinese popula-
tion detected putative MET fusions with a
prevalence of 0.15% in 79,803 solid tumors,
while the majority of them were lung cancer
patients (75.4%).1?5 It is worth considering that
some patients with MET fusion can benefit from
MET-TKI therapy.

Detection of MET fusion

Numerous assays can detect MET fusions,
including FISH, RT-PCR, and NGS. However,
complex/novel rearrangements may result in
inadequate FISH for detecting many MET
fusions.3 Therefore, NGS has become the increas-
ingly preferred assay in the clinic.

NGS with traditional amplicon-based enrichment
is less accurate in identifying gene fusions with
unknown partners, while a technique termed
anchored multiplex PCR (AMP) possibly
addresses this limitation.!2¢ In AMP, a ‘half-func-
tional’ NGS adapter is ligated to cDNA fragments
that are derived from input RNA, and then the
amplification between gene-specific primers and a
primer to the adapter leads to target enrichment.
As a result, the gene fusions of interest, even if
they involve a novel fusion partner, should be
detected.!?¢ Currently, targeted RNA-based NGS
(tRNA-seq) is increasingly being applied in molec-
ular detection for gene fusion in solid tumors,
which is efficient for the simultaneous detection of
actionable gene fusions, splice variants, single
nucleotide variants (SNVs), and indels.!?” RNA-
seq is not only a well-validated tool for detecting
gene fusions in fresh-frozen tumors but also in
formalin-fixed, paraffin-embedded (FFPE) tumor
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samples. It showed a sensitivity of 83.3% in clini-
cal FFPE specimens, with a negative prediction
value of 94.3%, and was regarded as a comple-
ment DNA-based NGS assay.128

In NSCLC, sequentially combining DNA NGS
and RNA NGS was shown to be one of the most
efficient strategies for fusion detection; it was fea-
sible on small tissue samples and could drasti-
cally reduce the complexity and cost of molecular
workup.!?? Song er al.13° developed a convenient
single-tube, dual-template assay, and an inte-
grated bioinformatics pipeline for relevant vari-
ant calling, in which RNA was used for fusion
detection, whereas DNA was used for SNVs and
insertion and deletions (indels). This method
was considered to benefit not only most patients
carrying target fusion but also those with rare
variations.130 Wei er al.13! designed a lung-can-
cer-specific targeted all-in-one transcriptome-
based assay based on single primed enrichment
technology which covered gene loci that are
related to selecting optimal targeted therapy in
advanced NSCLC and could simultaneously
identify mutations, gene fusions, and exon skip-
ping events. This assay was shown to identify all
the expected mutations at the transcriptome level
and to reach an accuracy of close to 100%.13!

Targeted therapies for MET fusion

Precisely targeted therapy has been incredibly
underexplored in MET fusion-positive cancers.
Nevertheless, in recent years, there have been many
clinical case reports presenting the potential for
MET-TKI therapy. Among these, crizotinib (mon-
otherapy or combination therapy) has been
described as having surprising clinical responses in
patients with a variety of MET fusion-positive glio-
blastoma and lung adenocarcinomas, including the
gene fusion types CUX1-MET, HLA-DRBI1-MET,
CAVI-MET, ARLI-MET, PRKARIA-MET,
bringing substantial tumor shrinkage and associ-
ated relief of symptoms.!32-137 Blanc-Durand et
al.138 reported a patient with NSCLC with brain
metastasis harboring an HLA-DRBI-MET gene
fusion who successively received crizotinib and
cabozantinib and the selective inhibitor tepotinib
and experienced rapid responses associated with a
tremendous improvement in physical function dur-
ing each treatment cycle. The potential role of cap-
matinib was also reported in a patient with
chemotherapy-refractory metastatic cholangiocar-
cinoma harboring a CAPZA-2-MET fusion.!3°

Kang er al. 1% attempted to explain the potential
resistance mechanisms of MET inhibitors in
patients with de novo MET fusions and found that
secondary mutations D1228H/N or D1246N are
worth further exploration. Multiple clinical trials
are ongoing to evaluate the efficacy of MET-TKIs
in tumor patients with MET fusions
(NCT03993873,NCT02978261,NCT01639508,
and CTR20181664141),

Conclusion

The pivotal role of MET aberrations as a predic-
tive biomarker of drug response has been reported
in several clinical trials. Furthermore, several
MET inhibitors demonstrated clinically meaning-
ful efficacy in different cancers harboring MET
alterations. Therefore, MET exon 14 skipping
variant testing has gained prominence and has
already been recommended in guidelines where
capmatinib, tepotinib, and savolitinib have been
approved for the treatment of NSCLCs.
Furthermore, other small-molecule inhibitors,
including cabozantinib and crizotinib, are in the
pipeline. The literature suggests that assays such
as NGS (DNA based and RNA based) could be
a potential testing method in terms of sensitivity
and operational procedures for the detection of
MET alterations, specifically MET exon 14 skip-
ping variants, in both tissue samples and plasma
ctDNA, but may have limitations for CNV test-
ing. In addition, the FISH assay remains a robust
technique for MET amplification detection.
However, it can be used only for single-gene tests
and tissue samples, while NGS represents the
future trend of testing choice in multialteration
(MET exon 14 skipping variant, amplification,
and fusion) multigene analysis and in situations
of limitation to plasma samples. NGS seems to
be a promising testing option. ddPCR is being
developed for MET amplification testing, espe-
cially in blood. MET amplification and MET
overexpression are continuous variables, so clini-
cally meaningful cutoff points need to be stand-
ardized, particularly the cutoff for MET
overexpression. MET overexpression is an
emerging biomarker for MET-TKI treatment
since an increasing amount of clinical data have
been released to guide the treatment.
Furthermore, prospective studies involving a
wide range of cancer types and larger sample
sizes are required in this direction for definite
conclusions and to extend the spectrum of MET-
targeted therapy.
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