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Abstract

Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently

recognized challenge to cancer treatment. Because of the dispersion of initial cell states

within a clonal tumor cell population, a perturbation imparted by a cytocidal drug only kills a

fraction of cells. Due to dynamic instability of cellular states the cells not killed are pushed by

the treatment into a variety of functional states, including a “stem-like state” that confers

resistance to treatment and regenerative capacity. This immanent stress-induced stemness

competes against cell death in response to the same perturbation and may explain the near-

inevitable recurrence after any treatment. This double-edged-sword mechanism of treat-

ment complements the selection of preexisting resistant cells in explaining post-treatment

progression. Unlike selection, the induction of a resistant state has not been systematically

analyzed as an immanent cause of relapse. Here, we present a generic elementary model

and analytical examination of this intrinsic limitation to therapy. We show how the relative

proclivity towards cell death versus transition into a stem-like state, as a function of drug

dose, establishes either a window of opportunity for containing tumors or the inevitability of

progression following therapy. The model considers measurable cell behaviors independent

of specific molecular pathways and provides a new theoretical framework for optimizing

therapy dosing and scheduling as cancer treatment paradigms move from “maximal toler-

ated dose,” which may promote therapy induced-stemness, to repeated “minimally effective

doses” (as in adaptive therapies), which contain the tumor and avoid therapy-induced

progression.

Author summary

Advance in the war on cancer is concentrated at one single front: more efficient killing of

tumor cells, including by targeted or immuno-therapy. However, cells are hard-wired to

activate regenerative or protective programs in response to near-lethal stress. Thus, cancer

cells not killed during treatment are still stressed and often enter a stem-like state. This
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“double-edged-sword” effect (conflict between killing and strengthening by treatment)

establishes an intrinsic limit to all cell-killing therapies. To optimize therapy a mathemati-

cal framework considering key quantitative parameters of treatment is necessary to pre-

dict which way the double-edged-sword will cut. Here we present an analytical model that

define the parameter regimes in which tumor eradication either can or fundamentally

cannot be achieved, but containment can be maximized.

Introduction

The single major cause of treatment failure in cancer therapy is the emergence of a treatment-

resistant tumor that drives recurrence. Other than in the case of some early-stage tumors, it is

tacitly accepted that relapse is inevitable during the course of drug treatment. This assumption

has translated into the unquestioned practice of quantifying the efficacy of all treatments by

how long one extends the time period between diagnosis and either progression, in the form

of a clinical relapse, or death [1]. The former metric defines a progression-free survival (PFS)

time, which quantifies not the prevention of progression, but a delay, as evident in the propor-

tional hazard model [2]. Treatment success is therefore measured as a “shift to the right” of the

decaying Kaplan-Meier curve, which represents the fraction of progression-free surviving

patients in the treated cohort compared to that of the control group. The hence derived exten-

sion of median PFS time (or loosely equivalent, of the median time to progression, or TTP)

has become a de facto measure for success of a therapy [3].

In theoretical and in vitro experimental models of post-treatment regrowth of a tumor cell

population, the “recovery time” in which the surviving tumor cells regrow to reach the popula-

tion threshold present at the onset of treatment is a biological characteristic of the tissue. It can

be considered the equivalent of the clinical TTP [4].

Recurrence, or tumor cell regrowth after treatment, is generally thought to be the result of

selection in a process of Darwinian somatic evolution: Given sufficient genetic variability in a

sufficiently large initial (pretreatment) cell population, it is considered statistically certain

(possibly as a result of increased mutation rate in cancer cells) that the population contains

cells carrying genomic mutations that confer drug-resistance and stem-like traits [5–8]. A sin-

gle cell with such a mutation will survive the treatment and clonally expand, thus driving the

tumor regrowth under treatment.

This genetic explanation implicitly acknowledges de facto inevitability of relapse for a cer-

tain set of parameters including mutation rate, cell population size and selection pressure [5, 6,

8, 9]. In addition, elimination of drug-sensitive cells by treatment releases drug-resistant cells

from spatial and nutritional constraints and facilitates their proliferation, thereby creating an

apparent causal link between treatment and recurrence [4, 10–13].

In recent years, non-genetic cell phenotype plasticity and the resulting cell population het-

erogeneity has been recognized as a source of the resistant cell phenotype, which could under-

lie recurrence without implication of genetic mutations [8, 14–19]. Extensive phenotypic

heterogeneity within a population of cells is generated by the variability of an individual cell’s

biochemical state. Such non-genetic variability emanates, in part, from the ability of the cell’s

gene regulatory network to produce a diversity of stable gene expression patterns (attractors),

resulting in multistability within a single clonal, isogenic population. Gene expression noise

stochastically disperses individual cells in gene expression space, allowing them to occupy a

range of these stable cell states. Because such stochasticity of gene expression causes
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continuous phenotype switching and equilibration of phenotypes, this type of heterogeneity is

not subject to the rule of extinction of a phenotype, as is the case with genetic mutation.

The resulting phenotypic diversity of the isogenic cell population is, while also probabilistic,

more prevalent than that generated by genetic mutations and it produces distinct, robust,

recurrent, and biologically relevant phenotypic sub-states in clonal cell populations [20–22].

Such sub-states include mesenchymal, persister, or stem-like states, etc., as single-cell RNAseq

now amply reveals [19, 23–30]. Some of these states can confer resistance and are sufficiently

robust to be inherited across several cell generations [22, 31]. In this manner, non-genetic

probabilistic variation can also drive Darwinian selection of resistant cells, at least for a num-

ber of cell generations.

While both genetic and non-genetic variation arise in a probabilistic manner, there is a key

difference. Because non-genetic variant attractor states are the result of regulatory mecha-

nisms, they can also be directly induced by environmental signals. Such instruction to change

gene expression programs in a directed manner by an external input via a deterministic (or

strongly biased probabilistic) control, as opposed to selection of an undirected probabilistic

internal change, plays a dominant role in a tumor’s acquisition of stem-like drug-resistant cells

at short time scales (days) compared to the clonal expansion of rare mutant clones [9]. Such

regulated change of cell state may be part of a robust, evolved cellular defense mechanism

against cellular toxins [32].

A growing body of evidence suggests that emergence of stem-like and therapy-resistant

cells along with the associated changes in gene expression are induced (as opposed to selected)

by the cytotoxic stress of treatment [29, 33, 34]. In other words, there is a causal biological

mechanism linking treatment to stress to the stem-like phenotype. The recurring appearance

of stem-cell-like gene expression programs, or “stemness,” the speed of response and involve-

ment of canonical signaling pathways that confer multidrug resistance (such as Wnt signaling-

mediated upregulation of the ABC membrane pumps) collectively support the idea of stress-

induced activation of preexisting xenobiotic resistance programs in cells by treatment [35–37].

Therefore, any cytocidal treatment may be a double-edge sword: while a one fraction of

cells in the heterogeneous population is killed, another fraction of cells is induced by treatment

stress to enter a stem-like or more resistant persister state—planting the seed for recurrence [8,

38]. Drug-induced resistance thus poses an intrinsic limit to curability of tumors under any

treatment that involves cell stress, as is the case with chemotherapy, target-selected therapy or

radiation. The role of somatic Darwinian evolution in recurrence relative to that of non-

genetic cell state transitions has been analyzed using mathematical models in order to mini-

mize selection pressure during treatment [4, 5, 39–41]. However, the intrinsic limit that

induced resistance places on therapy has only recently been systematically evaluated [39].

Here we analyze a most elementary, generic, mathematical model for the conflicting pro-

cesses that are inherent to cancer therapy: treatment-induced cell death and treatment-

induced transition from a drug-sensitive phenotype to a drug-resistant (stem-like) one. Under

this formulation, recurrence is “wired-into” the population dynamics and, depending on

quantitative details, can become manifest. Over a relevant parameter space of an ordinary dif-

ferential equation (ODE) model, we analytically evaluate the activity profiles of a drug in

inducing cell death vs. transition to the resistant state. We quantify how these features of treat-

ment relate to the intrinsic inevitability of recurrence, measured as TTP. We thus provide a

formal survey of the consequence of the core process of non-genetic induction of resistance by

treatment, irrespective of the ensuing selection and micro-environmental influences.

We find that depending on the relative susceptibilities for cell death versus induction of the

resistant state there can be a non-monotonic dependence of TTP on drug dose, such that

beyond a narrow optimal dose, the induction of resistance dominates and increasing treatment
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intensity will drastically shorten TTP. Thus, knowledge of the measurable propensities of cells

to die or activate resistance mechanisms as a function of dose is critical information for opti-

mizing therapy. Our focus on treatment-induced non-genetic tumor cell state change comple-

ments the evolutionary framework, fills a conceptual gap to help explain why it is so hard to

cure advanced cancer and can be used for modeling scheduling to avoid treatment-associated

progression as sought by adaptive therapy [11].

Materials and methods

Dynamical model of tumor growth

We consider an ODE model that describes the population dynamics of cancer cells that inter-

convert between two distinct cell states: drug-sensitive and drug-resistant. Let x(t) = [x1(t),
x2(t)]T denote the population state vector, where x1(t) is the number of sensitive cells, and x2(t)
is the number of resistant cells. Following the formulation given by Zhou et al., the sizes of

these two populations are governed by the following linear ODE (Fig 1) [42]:

dx
dt
¼ Ax; A ¼

bS � dS � kSR kRS

kSR bR � dR � kRS

" #

ð1Þ

We analyze this model of ongoing treatment with the assumption that treatment acts by

raising the per capita death rate of cancer cells. Herein, the parameter bS (bR) denotes the fixed

division rate of sensitive (resistant) cells, whereas dS (dR) denotes the total death of sensitive

(resistant) cells undergoing drug treatment. The parameter kSR denotes the transition rate at

which sensitive cells become resistant, and kRS is the transition rate at which resistant cells

become sensitive. All of these parameters are strictly positive and depend in a particular way

from the drug dose as discussed below.

We use TTP—the time it takes for the tumor to surpass its pretreatment population size—

as a quantitative measure of recurrence under drug treatment. In this model, we denote TTP

by tP, which is defined as

tP ¼ infft > 0 jNðtÞ > Nð0Þg ð2Þ

where N(t) = x1(t) + x2(t) is the total number of cells in the tumor (Fig 1). The goal of this

model is to understand how tP depends on the model parameters.

Stability analysis. Aside from the degenerate case in which one eigenvalue of A is zero,

the only fixed point of the ODE in Eq 1 is the point x = 0: extinction of all cancer cells. The

eigenvalues λ1,2 of A determine the local stability of this fixed point, whereas the eigenvectors

v(1,2) of A give the primary directions of growth and/or decay in state space. For this model, we

can derive general conditions on the growth and transition rates under which the origin is an

unstable node, a stable node, or a saddle point (Table A in S1 Text). Under appropriate initial

conditions, these three cases correspond to unchecked tumor growth, tumor extinction, and

tumor regression followed by regrowth. The last scenario provides the simplest mathematical

conception for the relapse phenomenon.

The saddle point nature of the extinction state suggests that the dynamics are ultimately dif-

ficult to control and contain. It also points to a marked “turning point” for each trajectory: if

the initial tumor population is “close enough” to the stable manifold, the trajectory will first

move towards the origin before being repelled away along the unstable manifold, indicating

the difficulty to eradicate the tumor (S1–S4 Figs). We can think of this behavior as temporary
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control of tumor size before the inevitable progression. S3 Eq in S1 Text tells us that it is possi-

ble to control tumor regrowth wherever the relative fitness of the sensitive phenotype is suffi-

ciently large.

The extinction state is a saddle point whenever the ratio (bS − dS)/(bR − dR) is greater than the

ratio
ðbS � dS � kSRÞ

kRS
(S3 Eq in S1 Text). That is, temporary control of the tumor size is possible when

the relative fitness of the sensitive phenotype is sufficiently large. The constant bS − dS − kSR is

the net flux of the drug-sensitive population per unit density of drug-sensitive cells, and the con-

stant kRS is the flux into the drug-sensitive population per unit density of drug-resistant cells.

The latter parameter, sometimes referred to as the “backflow rate,” is useful in characterizing

how the pool of drug-resistant cells allows the drug-sensitive population to avoid extinction dur-

ing chemotherapy [42].

Time to progression. The behavior of TTP as a function of drug dose is closely related to

the saddle point dynamics of the system. For one, to have tP> 0, the total population must

decrease initially before recovering to its initial value, which is typically only observed when

the origin is a saddle point. Moreover, under the saddle point dynamics, t = tP is the unique

non-zero time point for which N(t) = N(0).

Even with a closed expression for N(t), solving the expression N(tP) = N(0) for tP is not gen-

erally possible as it involves the sum of distinct exponential terms. Instead, we can approximate

tP by decomposing the saddle point dynamics into the distinct stages of population decrease

(remission) and increase (regrowth). By definition of TTP, the total population N(t) is under-

going regrowth at time t = tP, i.e., N0(tP)> 0. The theory of linear dynamical systems tells us

that the exact solution N(t) is given by a linear combination of the exponential terms el1t and

el2t, where λ1,2 are the eigenvalues of A (S5 Eq in S1 Text). In the case of a saddle point, where

λ1 > 0 and λ2 < 0, the tumor population regrowth is necessarily driven by the exponential

term corresponding to the positive eigenvalue λ1. Therefore, at time tP, we may assume that

the total population is well approximated by this exponential term: NðtPÞ � el1tP . Under this

Fig 1. Levels of parameterization in the dynamical model of tumor growth. At the “highest” (i.e., most general) level, there are the rate constants that

govern the growth and state transition dynamics of the cancer cell population. One level down, we introduce drug treatment into the model by assuming

that the rate constants dS, dR, and kSR are logistic functions of drug dose m. The parameters that determine the shape of these dose-response curves—the

pharmacodynamic constants, e.g., EC50—form the “lowest” (i.e., most specific) level of the model parameters.

https://doi.org/10.1371/journal.pcbi.1010319.g001
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assumption, we can approximate TTP as follows (S8 Eq in S1 Text):

tP � t�P ≔
1

l1

ln
Nð0Þ

c1ðv
ð1Þ

1 þ vð1Þ2 Þ

" #

ð3Þ

Pharmacodynamic model of continuous therapy

To consider drug treatment, we assume that drug dose is constant throughout the course of

therapy (i.e., continuous therapy) and that the rate constants dS, dR, and kSR depend on the

amount of drug m present in the system, i.e., that chemotherapy reduces tumor burden by

increasing the death rate of cancer cells. At the same time, it increases the rate at which sensi-

tive cells become resistant, the basis for the “double-edged sword” effect of chemotherapy. In

mathematical terms, we introduce a secondary parameter m that denotes the drug dose, and

we assume that the primary parameters dS, dR, and kSR that capture tumor cell population

dynamics are increasing functions of m (Fig 1). Scaling m as percentage of the maximum toler-

ated dose (MTD), i.e., 0 ⩽m ⩽ 100, we next discuss the pharmacodynamics of cellular drug

response, i.e., functional forms for the dependence of the three primary parameters from m.

Using the commonly observed sigmoid shape of biological response curves, which reflect

the cumulative probabilistic response of individual cells in a heterogeneous population, we use

logistic functions to describe the rate constants dS(m), dR(m), and kSR(m) (Fig 1):

dSðmÞ ¼ dS þ
ES

1þexpð� rSðm� PSÞÞ

dRðmÞ ¼ dR þ
ER

1þexpð� rRðm� PRÞÞ

kSRðmÞ ¼ kþ
ESR

1þexpð� rSRðm� PSRÞÞ

8
>>>><

>>>>:

ð4Þ

We assume that kRS, the rate constant for the re-sensitization of resistant cells, does not change

with drug dose.

In the case of dS(m), each of the four parameters δS, ES, rS and PS determines the shape of

the logistic curve and describes a behavior affected by the drug. For this reason, we refer to

these parameters as the pharmacodynamic parameters associated with a given rate constant for

cell response. In particular, the parameters E, P, and r respectively determine the maximum

response (efficacy), EC50 (which is inversely related to potency), and saturation rates for each

of the above responses of the drug. For example, a drug with high efficacy and high potency to

kill sensitive cells is characterized by a high value for ES and a low value for PS.
Taken together, our model incorporates three levels of parameterization: first, the parame-

ters of the general linear population dynamics model are the rate constants bS, bR, etc. (Fig 1).

Second, some of these rate constants (e.g., kSR) depend on drug dose, which is represented by

the parameter m (Fig 1). And third, the way each of these rate constants depend on drug dose

is determined by their respective pharmacodynamic constants, as given in Eq 4 (Fig 1).

In drug development implicit pharmacodynamic parameters are empirically tuned to opti-

mize treatment outcome, which, in the case of our model, is tP. Teasing apart how the drug

dose m affects TTP as a function of the pharmacodynamic parameters is not a straightforward

problem because we do not have an explicit expression for tP. An exhaustive search of the

entire parameter space is impractical. Because drug-induced transition to the resistant state is

a hitherto unaccounted-for factor affecting recurrence, we start with a cursory analysis of how

tP changes when we vary the dose-response relationship of the sensitive-to-resistant transition

rate kSR(m).
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Results

Qualitative sensitivity analysis

Representative samples of the parameter space demonstrate the possible qualitatively distinct

treatment outcomes—tP as a function of drug dose—that depend on the pharmacodynamics

(i.e., rate of behavior as function of drug dose m) of drug-induced resistance relative to killing

(Fig 2). We define “drug resistance” by taking ER� ES: the drug’s cell-killing efficacy is lower

for the drug-resistant phenotype than it is for the drug-sensitive phenotype. Although drug-

resistance can be manifest in dampening the killing effect either by decreasing the drug

potency (or equivalently, increasing the EC50) or efficacy to kill cells (or a combination of

both), we do not vary this aspect of resistance. Instead, we model resistance as a lowering the

resistant cell death rate at MTD, which reflects a more profound effect on the cell state. To

incorporate the observed fitness cost of resistance in the absence of drug, we further assume

that bS> bR and δS = δR [4, 10, 43, 44].

Thus, we anchor the pharmacodynamics for killing of sensitive and resistant cells dS(m)

and dR(m) and vary the parameters that determine drug-induced transition to the resistant

state with respect to either EC50 (PSR) or efficacy (ESR) for the transition rate kSR(m) (S1 Table,

Fig 2). We consider these two parameters specifically because of the different effects that they

exert on the dose-response curve of a given drug. The efficacy of a drug, or the drug response

at MTD, is an intrinsic property of the drug and cannot be compensated by alteringg the drug

dose. On the other hand, the potency of a drug, which corresponse to the inverse of the EC50,

is a property that can be compensated by altering drug dose: a low-potency drug can achieve

the same response as a high-potency drug, but at a higher drug dose.

The unknown then is how the relation between rate of induction of the resistant phenotype,

kSR(m), and the “kill curves,” dS(m) and dS(m), shape tP as a function of drug dose m. The

coarse-grained, but comprehensive, sensitivity analysis of our model model is achieved by

Fig 2. A coarse-grained sensitivity analysis of the effect of drug-induced resistance on treatment outcome. The

parameters given in S1 Table are held fixed, while the EC50 and efficacy of resistance induction are varied in the above

four cases. Efficacy increases as the parameter ESR increases, whereas potency decreases as the EC50 value (PSR)

increases. A. Case A: high efficacy, low potency (ESR = 0.2, PSR = 50). B. Case B: high efficacy, high potency (ESR = 0.2,

PSR = 10). C. Case C: low efficacy, low potency (ESR = 0.02, PSR = 50). D. Case D: low efficacy, high potency (ESR = 0.02,

PSR = 10).

https://doi.org/10.1371/journal.pcbi.1010319.g002
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altering the values of PSR and ESR, relative to the two fixed kill curves pharmacodynamics

curves (Fig 2). The following four canonical cases represent qualitatively distinct, plausible

pharmacodynamical relationships between killing and induction of resistance due to

treatment.

Case A: High efficacy, low potency of resistance induction. We first consider a drug

with a high efficacy and low potency (i.e., high ESR and PSR) for inducing resistance (Fig 2A).

For such a drug, tP is not monotone increasing in drug dose. Instead, it first increases before

decreasing to a plateau (Fig 3A). Thus, increasing drug dose past a certain point significantly

worsens the treatment outcome.

We observe that tP increases with drug dose when an increase in dose corresponds to a sig-

nificant decrease in the total growth rate relative to the total switching rate (Fig 3A). On the

other hand, tP decreases with drug dose when an increase in drug dose corresponds to a signif-

icant increase in the total switching rate relative to the total growth rate (Fig 3A). The fact that

the transition dynamics dominate the growth dynamics at high drug doses indicates that

under cytotoxic stress, tumor recurrence is not driven by cell growth (Fig 3). Instead, it is

driven by the ability of the tumor cells to evade extinction by transitioning to a stem-like,

drug-resistant state.

Returning to our analysis of the saddle point dynamics, the positive eigenvalue λ1 is also

non-monotonic in drug dose, first decreasing to a minimum before increasing to a plateau

(Fig 3). This inverse relationship between λ1 and tP agrees with the above observation that λ1

roughly corresponds to the rate of tumor growth during recurrence.

Fig 3. Summary of model behavior for Cases A, B, C, and D as a function of drug dose m. The net growth rates of sensitive and resistant cells are

defined as gS≔ bS − dS and gR≔ bR − dR, respectively. First row: Total growth and transition rates, gS + gR and kSR + kRS, respectively. Second row:

Eigenvalues of the matrix A in Eq 1. The inset in cases A and C highlight the non-monotonic behavior of the eigenvalue λ1. Third row: Time to

progression tP plotted alongside its asymptotic approximation t�P.

https://doi.org/10.1371/journal.pcbi.1010319.g003
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Case B: High efficacy, high potency of resistance induction. We now consider a drug

with the same efficacy in inducing the stem-like state as in Case A but with higher potency (Fig

2B). Unlike Case A, tP is now monotone increasing in drug dose (Fig 3B). Therefore, if the

drug dose is sufficiently high, the treatment outcome in Case B is not sensitive to fluctuations

about a dosage. This robustness is favorable to the sensitivity observed under Case A, in which

a small fluctuation in drug dose can significantly worsen the tP. On the other hand, the maxi-

mum tP in Case B is low compared to that in Case A (Fig 3A and 3B). A treatment that is

robust to variation in drug dose is not necessarily a good one if progression is only, at most,

slightly delayed.

As before, the behavior of tP is well summarized by the positive eigenvalue λ1 and the differ-

ence between the total growth and switching rates (Fig 3B). In particular, the latter shows how

increased drug potency to induce stemness affects tP. As EC50 for kSR is closer to that for dS
and dR than it is in Case A, the total growth and state-switching rates saturate at roughly the

same drug dose (Fig 3B). Therefore, the difference between the two rates only increases over a

small range of doses, in which in tP increases monotonically (Fig 3B). Cases A and B reveal

that the relative potency of a given drug to induce resistance versus kill cells determines

whether tP is monotone increasing in drug dose or not.

Case C: Low efficacy, low potency of resistance induction. For a drug with the same low

potency as in Case A, but with lower efficacy, tP is again, as in Case A, a non-monotonic func-

tion of drug dose (Figs 2C and 3C). However, the difference between the maximum possible tP
and tP at MTD is much smaller for the drug than in Case A, since the maximum difference

between the total growth and switching rates is smaller than in Case A (Fig 3A and 3C). In

terms of treatment outcomes, we can think of this drug as an improvement from Cases A and

B: tP is overall less sensitive to variation in drug dose than in Case A, and the maximum possi-

ble tP is greater than that in both Cases A and B.

The overall increase in tP is also reflected in saddle point dynamics of the system. In Case C,

the magnitude of the negative eigenvalue λ2 is overall lower than in Case A (Fig 3C). This

decrease in magnitude agrees with the increase in tP, as λ2 roughly corresponds to the rate of

tumor remission in the early stages of treatment. That is, the remission stage is prolonged

under treatment by a low-efficacy drug, as compared to a high-efficacy drug (S1–S4 Figs).

Case D: Low efficacy, high potency of resistance induction. Finally, we consider a drug

that is a “combination” of Cases B and C; that is, the drug has low efficacy but high potency in

inducing resistance to cell killing (Fig 2D). Under this drug, tP is a similar “combination” of

Cases B and C: it is monotone increasing in drug dose, and its value at MTD is the same as in

Case C (Fig 3D). Therefore, a drug with low efficacy and high potency for drug-induced resis-

tance relative to killing produces a treatment scheme that effectively delays tumor progression

for a wide range of drug doses. Compared to case C, the higher potency in inducing stemness

at low dose abrogates the optimal dose window, i.e., the counterintuitive peak in tP at lower

dose.

Parameter search

In order to determine how well Cases A, B, C, and D capture the dependence of tP on drug

potency (PSR) and efficacy (ESR) of resistance induction, we perform a broad parameter search.

Specifically, we compute tP over a wide range of PSR and ESR beyond the four representative

cases from the previous section (Fig 2). Instead of plotting tP as a function of drug dose m, we

plot three quantities of interest as a function of PSR and ESR: the drug dose at which tP attains

its maximum, the maximum value of tP, and the value of tP at MTD (Fig 4). Doing so, we

find that tP attains its maximum at MTD (i.e., is monotonic in drug dose) when PSR is low
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regardless of the value of ESR (Fig 4A). Therefore, tP is indeed a non-monotonic function of

drug dose only when the potency to induce resistance is low. Furthermore, the maximum

value of tP shows little sensitivity to either ESR or PSR, and instead appears to depend on

whether tP is monotone increasing in drug dose or not (Fig 4B). We also find that the value of

tP at MTD decreases as ESR increases independent of the value of PSR (Fig 4C).

The results of this finer-grained parameter search indicate that the four cases given in the

main text indeed characterize the dependence of tP on the parameters PSR and ESR: the non-

monotonic dependence of tP on drug dose is governed by PSR, whereas the value of tP at MTD

is governed by ESR. This parameter search, however, is still limited to the two parameters PSR
and ESR. Taken together, a key finding is that at low potency (high EC50) for inducing resis-

tance, where higher drug doses m are needed to trigger this cell state transition, increasing the

dose past a certain point reduces tP. A further evaluation of the parameter space, paired with

rigorous sensitivity analysis, is required to characterize how tP depends on the complete set of

model parameters.

Virtual cohort simulations

In statistical analysis of clinical studies, individual patient measures, such as PFS time and

TTP, are typically not displayed directly; instead, the data are often presented in the form of

Kaplan-Meier curves, which show the fraction of surviving and progression-free patients as a

function of time [2, 3]. The process of calibrating mathematical models of cancer dynamics to

clinical data typically involves applying regression, or some other parameter-fitting method, to

a Kaplan-Meier curve from observed cancer patient cohorts [45, 46]. Doing so requires gener-

ating a “virtual patient cohort” from the model, usually by assuming some statistical distribu-

tion of a set of the model parameters, and sampling individual “patients” from this

distribution [45, 46]. As a step towards grounding our model in clinical data, so as to make

meaningful predictions about treatment courses, we generate virtual patient cohorts and pres-

ent an analysis of the resulting Kaplan-Meier curves.

To generate virtual patient cohorts, we assume that the basal rates of cell birth, death, and

state transition, as well as the fraction of resistant cells at tumor detection, vary from patient to

patient (S2 Table). For simplicity, we assume that each of these parameters are uniform ran-

dom variables. One possible way of updating this assumed prior with a more appropriate pos-

terior distribution based on clinical data would be to use an expectation-maximization

approach [46]. We assume that the remaining parameters, tumor size at diagnosis and the

Fig 4. Analysis of time to progression (tP) over a wide range of values for potency (PSR) and efficacy (ESR) of inducing resistance. Plotted values are indicated by the

colorbar on each plot. All other parameters are fixed at the values given in S1 Table. A. Drug dose m at which tP attains its maximum. B. Maximum value of tP over all

drug doses. C. Value of tP at MTD.

https://doi.org/10.1371/journal.pcbi.1010319.g004
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pharmacodynamic constants, remain fixed across all patients, as they are intrinsic properties

of standard clinical practice and a given drug, respectively (S1 Table).

Keeping with our previous analysis, we generate nc = 100 virtual patient cohorts of np = 103

patients each, and compute the TTP curve tP(m) for each patient at values of ESR and PSR given

by the four previous cases A, B, C and D (Fig 2). Once we have tP(m) for each patient in a

given cohort, we can compute the progression-free fraction for a range of possible drug doses,

where we treat tP as a progression event for each patient. We then take the mean progression-

free fraction across all cohorts, giving us a set of Kaplan-Meier curves (Fig 5). Our aim is to see

if the non-monotonic dependence of treatment outcome on drug dose m is manifest at the

ensemble level of the patient cohort. Whereas for an individual patient, an improved treatment

outcome is indicated by an increased TTP, an improved outcome for an entire cohort is indi-

cated by an upward and/or rightward shift in the Kaplan-Meier curve.

Comparing the resulting Kaplan-Meier curves for cases A-D, we find that the mean behav-

ior of the survival fraction mirrors that of tP. As before, in cases A and C, where potency to

induce resistance is low, the overall treatment outcome is non-monotonic in drug dose: as m
increases from 0 to MTD, the Kaplan-Meier curve shift upwards, then downwards (Fig 5).

Also in line with our TTP analysis is the observation that in cases C and D, where efficacy to

induce resistance is low, the overall treatment outcome is better than that for cases A or B: the

upwards shift of the Kaplan-Meier curves going from low to high drug doses is much larger in

the former cases than in the latter (Fig 5). Thus, our conclusions about the qualitative behavior

of the model at the level of the individual “patient’s” tumor cell population scale up to the level

of the statistical ensemble (i.e., the cohort), replicating both the “expected” as well as the

“counterintuive” effects of increasing drug dose. This result is significant as it demonstrates

Fig 5. Kaplan-Meier curves averaged over nc = 100 virtual cohort simulations of np = 103 patients each, plotted for

fixed drug doses m. Error bars denote plus and minus one standard deviation. The x-axis denotes time t, and the y-

axis denotes the fraction of patients in a cohort who are progression free by time t (i.e., tP> t). Each curve is colored

according to the fixed drug dose m applied to each cohort, indicated by the color bar in each plot. Panels A, B, C, and

D correspond to varying the parameters PSR and ESR according to the four cases shown in Fig 2. Unless specified as

being drawn from the uniform distributions given in S2 Table, all other parameters are held fixed at the values given in

S1 Table.

https://doi.org/10.1371/journal.pcbi.1010319.g005
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that our analysis is in some sense robust to noise. The next logical step would be to see if our

analysis still holds, and is therefore clinically meaningful, after fitting our parameters to actual

patient data.

Discussion and conclusion

In advanced tumors, post-treatment recurrence is almost an intrinsic feature in the course of

tumor progression. It is increasingly acknowledged that even if an untreated tumor would

result in rapid progression and death, recurrence after treatment is causatively or mechanisti-

cally linked to the act of treatment. The traditional explanation for recurrence after initial

remission invokes selection of preexisting mutant cells in which genetic mutations confer the

resistance phenotype.

More recently, the “competitive release” of the resistant cells, when these cells expand into

the niche freed by the killing of sensitive cells by treatment, has been proposed as mechanism

of tumor recurrence, adding the non-intuitive twist that “more killing” is not better [4, 10–13,

39]. Nonlinear models of competition between sensitive and resistant subpopulations, such as

that presented by Kozlowska et al., lead to similar saddle-point dynamics of tumor depletion

and progression as our model, albeit at a longer time scale that encompasses multiple cell gen-

erations [46].

Another interesting fundamental similarity between genetic and non-genetic mechanisms,

at least in terms of a possible formal generalization, pertains to an additional layer of non-lin-

earity that we have not considered here: a multi-step process that gives rise to a progressive

increase (‘gradual evolution’) in resilience. Increasing genomic instability with tumor progres-

sion not only decreases the threshold for cell death exploited by many therapies, but also accel-

erates mutational exploration of new phenotypes in an evolutionary process. A well-studied

case of self-propelling increase in resistance is the amplification of the DHFR gene repeats that

confers resistance to methotrexate. Once amplified, the locus is even more prone to undergo

genomic recombinations and to further amplify, including in response to treatment stress that

promotes chromosomal breakage [47]. The non-genetic equivalent is that with increasing

malignancy (“stemness”), the barrier for cell type transitions is reduced, evident in the increas-

ing phenotypic plasticity of advanced tumors, and hence, the chance of the tumor cell to enter

an even more dedifferentiated, resilient stem-like cells in response to treatment stress [47].

The oft observed re-sensitization of recurrent tumors, rapid rate for appearance of resis-

tance markers, and ubiquitous cell phenotype plasticity, however, suggest a role for non-

genetic, reversible phenotype switching in tumor recurrence [14–19, 48–50]. Most recently,

the induction of cells to transition into a stem- or mesenchymal-like resilient state by the cell

stress imparted by treatment has received increasing acceptance and has been confirmed by

single-cell resolution measurements [19–30]. Population-wide resistance to treatment induced

by the same perturbation intended to kill and eradicate tumor cells thus poses a conflicting sit-

uation: a double-edged sword that complicates treatment response.

The mechanisms that allow a cell to be either fated to death or to enter a resistant state fol-

lowing the same perturbation may depend on the initial microstate due to stochastic gene

expression [38]. This uncertainty is here modeled by the sigmoidal shape of the pharmacody-

namical functions, which represents the cumulative probability of the dispersed propensity of

cells to respond in either way to treatment. We used a minimal model to characterize how the

“relative strength” (potency and efficacy) of a drug to either kill tumor cells or convert them

into resistance cells affects the population dynamics, as measured by the time it takes for the

cell population to recover and grow to its pre-treatment size (time to progression tP). We

focused on four qualitatively distinct scenarios (A, B, C, and D) that correspond to all possible
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combinations of high versus low potency and high versus low efficacy of the treatment to

induce the resistant state relative to killing.

Despite the elementary form of the model, interesting behaviors emerge: the four scenarios

produced robust, prototypic behaviors for the dependence of tP on drug dose (Fig 4). The two

cases (A and C) in which the potency of the drug (dose for half-maximal effect, EC50) to

induce the resistant phenotype was substantially lower (high EC values) than the potency to

kill cells produced a non-monotonic tP-to-drug dose relationship. In such a scenario, there is

an optimal window of dose for maximal tP: drug doses higher than the optimal dose will have

lower benefits in terms of tP.

The efficacy of the drug (the amplitude of the dose-response curve) also affected tP by deter-

mining its plateau value at high drug doses. High efficacy of the drug to induce the resistant

state (Cases A, B) resulted, as expected, in a low value of tP at high doses, independent of

whether the dose-dependence is monotonic (Case B) or non-monotonic (Case A). On the

other hand, a drug with low efficacy to induce treatment resistance (Cases C, D) resulted in a

high value of tP at high doses. Sensitivity of tP to changes in drug efficacy means that drug dose

optimization is paramount in the case where the potency of the drug to induce resistance is

low relative to the potency of cell killing—parameters that could be determined in preclinical

studies.

Unfortunately, fine-grained dose-escalation clinical trials (e.g. with at least three doses) are

generally not conducted that would expose the non-monotonic effect. To establish the connec-

tion between intrinsic biological properties of drugs in triggering state transition to the resis-

tant state and the clinical consequences as observed in drug trials, we performed virtual patient

cohort simulations. We found that the qualitative conclusions of the model about the effect of

induced resistance on treatment success are robust to variation in the other model parameters

and result in corresponding non-monotonic dependence of the progression free survival in

the simulated patient drug trial cohorts.

Adaptive therapy, in which treatment is stopped upon regression and re-started upon

regrowth, or metronomic therapy, which applies a low dose at regular intervals, may be worth-

while treatment schemes in cases A and C because there is an optimal drug dose below MTD

in these cases. The current rationale behind dose-minimization treatment strategies is to avoid

fixation of mutant resistant clones due to competitive release and selection [10–13, 40]. How-

ever, if resistance is inducible and reversible, the intended “containment” of the tumor (as

opposed to the harder-to-achieve “eradication”) is even more readily achieved than when

guided by the concept of competitive release of mutant resistant clones. Thus, if we consider

the new biological rationale of non-genetic, reversible dynamics of treatment-induced resis-

tance, a strategy such as adaptive or metronomic therapy may be further optimized to be more

effective. However, in order to make any meaningful predictions about optimal treatment

courses we must first ground our model in clinical data, either by using empirical estimates of

parameters from the literature, or by using a statistical learning framework to fit parameter

distributions from the data [45, 46, 51, 52].

Supporting information

S1 Text. Table A. Summary of all possible cases for the stability of the origin under the

ODE in Eq 1.

(ZIP)

S1 Fig. Dynamics of tumor population recovery for Case A. A. Left: Time-evolution of the

total population N(t) plotted on a logarithmic scale for drug doses m = 23, 35, 45, 85. The hori-

zontal dashed line indicates initial population size N(0). Right: Turning point tmin, at which
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N(t) reaches a minimum, as a function of drug dose m. Red markers indicate reference points

of m = 23, 35, 45, 85. B. Parametric curve (tmin(m), tP(m)) relating the turning point tmin and

the time to progression tP. Dashed lines of slope 2 (blue) and 3 (red) are given for reference.

(EPS)

S2 Fig. Dynamics of tumor population recovery for Case B. A. Left: Time-evolution of the

total population N(t) plotted on a logarithmic scale for drug doses m = 23, 35, 45, 85. The hori-

zontal dashed line indicates initial population size N(0). Right: Turning point tmin, at which

N(t) reaches a minimum, as a function of drug dose m. Red markers indicate reference points

of m = 23, 35, 45, 85. B. Parametric curve (tmin(m), tP(m)) relating the turning point tmin and

the time to progression tP. Dashed lines of slope 2 (blue) and 3 (red) are given for reference.

(EPS)

S3 Fig. Dynamics of tumor population recovery for Case C. A. Left: Time-evolution of the

total population N(t) plotted on a logarithmic scale for drug doses m = 23, 35, 45, 85. The hori-

zontal dashed line indicates initial population size N(0). Right: Turning point tmin, at which

N(t) reaches a minimum, as a function of drug dose m. Red markers indicate reference points

of m = 23, 35, 45, 85. B. Parametric curve (tmin(m), tP(m)) relating the turning point tmin and

the time to progression tP. Dashed lines of slope 2 (blue) and 3 (red) are given for reference.

(EPS)

S4 Fig. Dynamics of tumor population recovery for Case D. A. Left: Time-evolution of the

total population N(t) plotted on a logarithmic scale for drug doses m = 23, 35, 45, 85. The

horizontal dashed line indicates initial population size N(0). Right: Turning point tmin, at

which N(t) reaches a minimum, as a function of drug dose m. Red markers indicate reference

points of m = 23, 35, 45, 85. B. Parametric curve (tmin(m), tP(m)) relating the turning point

tmin and the time to progression tP. Dashed lines of slope 2 (blue) and 3 (red) are given for

reference.

(EPS)

S1 Table. Initial conditions, rate constants and pharmacodynamic parameters with fixed

values (units not specified).

(XLSX)

S2 Table. Parameter distributions used to general virtual patient cohorts.

(XLSX)
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