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Abstract: Resistance to carbapenems due to carbapenemase-producing Enterobacteriaceae (CPE)
is an increasing threat to human health worldwide. In recent years, CPE could be found only
sporadically from livestock, but concern rose that livestock might become a reservoir for CPE. In 2019,
the first GES carbapenemase-producing Escherichia coli from livestock was detected within the German
national monitoring on antimicrobial resistance. The isolate was obtained from pig feces and was
phenotypically resistant to meropenem and ertapenem. The isolate harbored three successive blaGES

genes encoding for GES-1, GES-5 and GES-5B in an incomplete class-I integron on a 12 kb plasmid
(pEC19-AB02908; Acc. No. MT955355). The strain further encoded for virulence-associated genes
typical for uropathogenic E. coli, which might hint at an increased pathogenic potential. The isolate
produced the third carbapenemase detected from German livestock. The finding underlines the
importance CPE monitoring and detailed characterization of new isolates.
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1. Introduction

Carbapenemase-producing Enterobacteriaceae (CPE) are a global threat to human health.
Carbapenemases are often associated with nosocomial infections (esp. KPC) but are also disseminated
in the community [1]. While OXA-48, VIM, NDM and KPC carbapenemases are detected frequently
from human infections in Germany, GES carbapenemase-producing bacteria were only isolated
sporadically [2]. In 2018, blaGES carbapenemase genes were recovered from 5 Enterobacteria and 14
Pseudomonas aeruginosa isolates from human infections, representing ~1% of detected CPE from human
infections in Germany [2]. GES enzymes are serine proteases of the Ambler class A [3]. GES-1 was
first described in Klebsiella pneumoniae. It exhibits strong activity against most β-lactams and results
in an extended-spectrum β-lactamase (ESBL) phenotype [4]. Point mutations can lead to increased
hydrolyzing activity and carbapenem substrate utilization (i.e., GES-5) [5].

While the carbapenemases VIM-1 and OXA-48 had been reported sporadically from German pig
production in recent years [6,7], other carbapenemases have not been observed in German livestock
so far. Here, we report the phenotypic and genotypic properties of the first GES-5-producing E. coli
from livestock.
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2. Materials and Methods

The E. coli isolate 19-AB02908 was obtained within the German national monitoring on
antimicrobial resistance from a fecal sample of a fattening pig following the protocol of the European
Reference Laboratory for Antimicrobial Resistance (EURL-AR) for selective CPE isolation (Available
online: https://www.eurl-ar.eu/protocols.aspx). Phenotypic resistance was confirmed by determining
minimal inhibitory concentration (MIC) values using the broth microdilution method according to
CLSI guidelines (CLSI M07-A9). MIC values were interpreted according to EUCAST epidemiological
cut-off values defined in 2013. Initial determination of the genotype was carried out by routine
real-time PCR adapted from van der Zee et al. [8] and Swayne et al. [9], followed by diagnostic PCR for
blaGES (F: 5′-ATGCGCTTCATTCACGCAC-3′/R: 5′-TCCGTGCTCAGGATGAGTTG-3′) and subsequent
Sanger sequencing of the PCR products. For genetic in-depth dissection, the isolate was subjected
to long-read (Nanopore) and short-read (Illumina, PRJNA660949) sequencing. Hybrid assembly
of the plasmid was carried out using Unicycler v.0.44 (provided by PATRIC 3.6.6). The complete
plasmid sequence of pEC19-AB02908 is available under the GenBank Acc.No MT955355. Genome
characterization was conducted with our in-house developed pipeline Bakcharak v1.0.0 (Available
online: https://gitlab.com/bfr_bioinformatics/bakcharak) which implements ABRicate v1.0.1 (Available
online: https://github.com/tseemann/abricate) for screening of antimicrobial resistance genes (using
the NCBI amrfinder database [10]), plasmid markers (using the PlasmidFinder database [11]) and
virulence factors (using the VFDB [12]). Plasmid contig identification was performed using platon
(Available online: https://github.com/oschwengers/platon). Furthermore the MLST sequence type
was inferred using mlst (Available online: https://github.com/tseemann/mlst) based on the pubmlst
database [13].

3. Results

The isolate 19-AB02908 was obtained from a fecal sample of a fattening pig, which was taken in
the course of the German resistance monitoring on CPE. Phenotypic antimicrobial resistances were
detected for all tested penicillins and cephalosporins, as well as for tetracycline (MIC ≥ 64 mg/L),
trimethoprim (MIC > 32 mg/L), and sulfamethoxazole (MIC > 1024 mg/L) (Table 1). The isolate further
showed resistance to meropenem (MIC ≥ 0.25 mg/L) and ertapenem (MIC ≥ 0.25 mg/L), but only
slightly reduced susceptibility to imipenem (MIC ≥ 0.5 mg/L).

Table 1. Main characteristics of the GES-producing E. coli isolate 19-AB02908. Abbreviations
of antimicrobials: AMP—ampicillin; ETP—ertapenem; FEP—cefepime, FOT—cefotaxime;
FOX—cefoxitin; MERO—meropenem; SMX—sulfamethoxazole; TAZ—ceftazidime;
TET—tetracycline; TMP—trimethoprim.

Phylogeny Phenotypic
Resistance Resistance Genes Plasmids Virulence

Associated Genes

-ST1084
-phylogenetic

group B1

AMP, ETP, FEP,
FOT, FOX, MERO,

SMX, TAZ, TET,
TMP

aac(6’)-Ib3, ant(3′’)-Ia,
aph(3”)-Ib, aph(6)-Id, blaGES-1,
blaGES-5, blaGES-5B, blaTEM-1B,

dfrA1, mph(B), sul-1, sul-2,
tet(A)

12 kb
(pEC19-AB02908)

227 kb

afaA, afaD, cma,
cvaC, hlyF, hra, iroN,
iss, lpfA, ompT, sitA,

terC, traT

The results of PCR sequencing indicated the presence of a GES-5 carbapenemase. Based on
competing nucleotides at defined positions in the sequence chromatograms, the presence of up to two
more GES variants seemed to be likely. The hybrid assembly of whole-genome sequencing revealed
that there are three copies of the blaGES genes separated by 157 bp intergenic regions on a 12 kb plasmid
(GenBank Acc.No MT955355). The three-fold repetition of the blaGES genes was verified by PCR using
reverse complementary primers. As initially predicted, the prevailing blaGES genes differed in one to
two nucleotide positions from each other. One is the ESBL-encoding gene blaGES-1, followed by blaGES-5

and a second blaGES-5 with a silent mutation on nucleotide position 54 (G54A) (Figure 1). This gene
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variant was formerly named blaGES-3 (AY494717) [14], but was later renamed to blaGES-5 on the basis of
its amino acid sequence relationship [15]. The current blaGES-3 gene (AB113580.1) was described by
Wachino et al. [16]. We suggest naming the GES-5 variant with a silent mutation GES-5B according
to the classifications of blaTEM variants. Similar structures of class-I integrons with duplicated blaGES

variants have been found in Pseudomonas aeruginosa (GQ337064) and Enterobacter cloacae (KX230795)
(Figure 1) [17,18].
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Figure 1. Comparison of the sequence organization of the blaGES region with similar integrons available
at GenBank [17,18]. The reading frames are presented with arrows; arrowheads indicate the direction
of transcription.

Here, the unusual formation of three successive blaGES variants was part of an incomplete integron,
as the conserved CS3′ region was missing. In 2018, an incomplete class-1 integron with a quadruple of
blaGES-5 gene cassettes was reported [19]. The authors suggested that the blaGES gene cassettes tend to
duplicate by site-specific recombination. Apart from antimicrobial resistances, the plasmid backbone
is represented by a DNA region of 4.7 kb that can be found in several Enterobacteriaceae, like Klebsiella
pneumoniae (e.g., LN824137) or Salmonella Typhimurium (e.g., CP050743). It is likely that a class-I
integron with two GES variants has been integrated into this small plasmid. The presence of the third
blaGES gene might be a result of gene duplication by a recombination event in which the CS3′ site of the
integron was deleted. Viedma et al. [18] suggested a direct repeat sequence (5′-ACAAA-3′) that might
be involved in the gene duplication. In silico analysis revealed that this sequence is present 17 times on
the pEC19-AB02908 plasmid, indicating that this recognition sequence might not be specific enough.

Besides the blaGES carrying plasmid, the isolate harbored an additional 227 kb IncF plasmid
conferring resistance to a variety of antimicrobials (aminoglycosides, beta-lactams, macrolides,
and sulfonamides) as well as heavy metal resistance (Table 1). Therefore, a co-selection for the
carbapenemase resistance can occur even if carbapenems or cephalosporins are not applied to
the animals.

To determine a potential persistence of the plasmid in livestock, the farm was investigated
comprehensively three months after the isolate was detected within the German national monitoring
of antimicrobial resistance. Livestock and farm surrounding samples were taken and processed as
described [20]. Additionally, real-time PCR from the enrichment cultures targeting the blaGES gene
was performed. However, no CPE could be detected in the samples indicating that a further spread of
GES-producing enterobacteria did not occur.

Besides others, the isolate harbored a variety of virulence-associated genes typical for
uropathogenic E. coli (i.e., afaA, afaD, hylF, sfaX, iroN, iss) suggesting an increased pathogenic
potential [21]. This is untypical for phylogenetic group B1 as this phylogenetic group is often
associated with high resistance while exhibiting only low virulence [22].
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After VIM-1 and OXA-48, GES-5 is the third carbapenemase, which could be detected in German
pig production. The entry source of these isolates remains speculative but the set of different
carbapenemases found in livestock reflects the increasing diversity reported for CPE from human
sources in Germany. The repeated detection of carbapenemases with presumed human origin in pig
production shows that hygiene concepts should be followed. These are necessary not only to facilitate
animal welfare, but also to prevent the transfer of zoonotic bacteria from humans to animals and vice
versa. The newly reported isolate combines the zoonotic potential of a probable pathogenic E. coli
with the limited therapeutic options due to its broad resistance features. This finding confirms the
need for continuous monitoring in order to detect any spread of new resistance mechanisms in animal
populations immediately.
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