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Peripheral immune cell-mediated analgesia in inflammation is an important endogenous 
mechanism of pain control. Opioid receptors localized on peripheral sensory nerve 
terminals are activated by endogenous opioid peptides released from immune cells to 
produce significant analgesia. Following transendothelial migration of opioid-containing 
leukocytes into peripheral sites of inflammation, opioid peptides are released into a 
harsh milieu associated with an increase in temperature, low pH, and high proteolytic 
activity. Together, this microenvironment has been suggested to increase the activity of 
opioid peptide metabolism. Therefore, the proximity of immune cells and nerve fibers 
may be essential to produce adequate analgesic effects. Close associations between 
opioid-containing immune cells and peripheral nerve terminals have been observed. 
However, it is not yet determined whether these immune cells actually form synaptic-like 
contacts with peripheral sensory terminals and/or whether they secrete opioids in a 
paracrine manner. This review will provide novel insight into the peripheral mechanisms 
of immune-derived analgesia in inflammation, in particular, the importance of direct 
interactions between immune cells and the peripheral nervous system.
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inTRODUCTiOn

Peripheral opioid mechanisms of endogenous pain control are potent and of clinical relevance. 
In addition to animal studies, a sizeable body of clinical literature has clearly shown that opioid 
receptors localized on peripheral sensory nerve terminals can be activated by both exogenous 
opioid agonists, as well as by endogenous opioid peptides expressed in immune cells, to produce 
significant analgesia (1–8). This local opioid-mediated analgesia is devoid of the central side effects 
of systemic opioid administration (e.g., respiratory depression, sedation, and nausea) and has a 
relative lack of tolerance after repeated administration of peripheral opioid agonists in inflamed 
tissue (1, 9, 10). In the early stage of inflammation, granulocytes (esp. neutrophils) are the major 
opioid-containing leukocyte, whereas at later stages of inflammation, monocytes/macrophages 
and lymphocytes (esp. activated T- and B-cells) predominate (11–14). Inflammation increases the 
expression of opioid peptides as well as their mRNA transcripts encoding their precursor proteins 
within these immune cells (14,  15), with β-endorphin (β-END) from pro-opiomelanocortin 
(POMC) being the most prominent (7, 16, 17). Studies to date suggest that only a finite number of 
the total immune cell population actually produce opioid peptides and home to lymph nodes. This 
is supported by the observation that β-END and POMC mRNA were less abundant in circulating 
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FiGURe 1 | Migration of opioid-containing immune cells and opioid release within inflamed tissue. Adhesion molecules interact with their respective 
ligands to facilitate endothelial transmigration of immune cells. In response to stress or releasing agents (e.g., CRF, IL-1, and CXCL8), the immune cells secrete 
opioid peptides. Opioid peptides or exogenous opioids bind to opioid receptors on primary afferent neurons, leading to analgesia. The immune cells, depleted of 
opioids, then migrate to regional lymph nodes. The arrows denote an increased expression within inflamed tissue of cell adhesion molecules, opioid receptors, 
endogenous opioid peptides, and receptors for ligands that trigger opioid release on the surface of immune cells (e.g., CXCR2, IL-1 receptors, and CRF receptors). 
All these enhance the analgesic activity of the peripheral opioid pathway in inflammatory conditions. Figure adapted from Ref. (2).
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lymphocytes than in those in lymph nodes (14, 18). Ongoing 
research is focused on  differentiating this sub-population of 
opioid-producing leukocytes for the design of novel targeted 
therapies. Of even greater interest is what happens once the 
immune cells enter the inflamed tissue, especially the interaction 
between the immune cells and peripheral sensory nerve fibers. 
The proximity of immune cells and nerve fibers may be essential 
in inflammation, as the overall increased metabolic environment 
within inflamed tissue increases the activity of opioid peptide 
metabolism (19–22). As a result, successful pain control may 
rely on the immune system being even more selective about the 
location at which opioid peptides are released for efficient and 
effective pain control (21, 23, 24). This review will provide novel 
insight into the peripheral mechanisms of immune-derived 
analgesia in inflammation, in particular, the importance of 
direct interactions between immune cells and the peripheral 
nervous system.

MeCHAniSMS OF PeRiPHeRAL  
OPiOiD-MeDiATeD AnALGeSiA

With the duration of inflammation, the number of infiltrating 
immune cells as well as total opioid peptide content increases 
steadily at the site of tissue injury. Leukocyte homing, in gen-
eral, is a multistep process involving the sequential activation 
of various adhesion molecules located on immune cells and on 
the vascular endothelium (1, 2) (Figure 1). Initially, circulating 
leukocytes tether and roll along the vascular endothelial cell wall, 
a process mediated by selectins on leukocytes (L-selectin) and 
endothelial cells (P- and E-selectin) (6, 25). Leukocytes are then 
activated by chemokines released from inflammatory cells and 
presented on the luminal surface of the endothelium (26, 27). 
This subsequently leads to upregulation and increased avidity of 
leukocyte integrins, in particular CD49d/CD29 and CD18, which 
mediate the firm adhesion of leukocytes to endothelial cells by 
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FiGURe 2 | The inflammatory milieu is associated with an increase in temperature, low pH, and high proteolytic activity, which together has been 
suggested to increase the degradation of opioid peptides (1, 23). Therefore, direct adhesion between opioid-containing immune cells and peripheral sensory 
neurons, via adhesion molecules (e.g., ICAM-1 and/or NCAM), may be necessary to release opioid peptides within the effective range of peripheral opioid receptors 
to produce adequate analgesia. On activation by opioid agonists, opioid receptors undergo conformational changes allowing intracellular coupling of inhibitory G 
proteins to the C terminus of opioid receptors. This leads to inhibition of calcium and/or sodium channels and a decrease in the level of neuronal cAMP. In addition, 
opioids reduce the excitability of nociceptors, the propagation of action potentials, and the release of excitatory and/or pro-inflammatory factors (e.g., substance P, 
TNF-α, and NA) from peripheral sensory neurons.

3

Hua Neuroimmune Interaction in Peripheral Analgesia

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 293

interacting with members of the immunoglobulin  superfamily 
(e.g., ICAM-1) (26,  27). Thereafter, the cells transmigrate 
through the endothelium directed predominantly by PECAM-1 
expressed on endothelial cells at intercellular junctions and are 
then directed to the sites of inflammation. All these molecules 
are constitutively expressed and are upregulated in inflammation, 
except L-selectin, which is rapidly shed upon activation (26, 28). 
The relatively low expression of L-selectin on opioid-containing 
leukocytes is most likely due to its shedding required for leuko-
cyte extravasation (26, 28).

In peripheral inflammatory states, opioid-containing immune 
cells “home” to the inflamed tissue where they release opioid pep-
tides and then travel to local lymph nodes (1, 16). In particular, 
CD4+ T cells are able to recirculate from the blood, through 
tissues, into the lymphatic system, and back to the blood. These 
immune cells exit from the vascular compartment via specialized 
high endothelial venules (HEV) in lymphoid organs. Lymphocyte 
traffic across the HEV may increase substantially within 3 h fol-
lowing an immune response and by as much as 10-fold over the 
first 48 h of the response (29, 30). Multiple endogenous factors are 
able to trigger the release of opioid peptides from immune cells, 
including environmental stimuli [e.g., stress-induced release of 

sympathetic neuron-derived noradrenaline (NA)] (31) and local 
inflammatory factors [e.g., corticotropin-releasing factor (CRF), 
interleukin-1β (IL-1β), and chemokine CXCL8 (also known as 
IL-8)] (Figure 1) (2, 18, 21). It has been observed that inflam-
mation upregulates the production of endogenous CRF, IL-1β, 
and CXCL8 in inflamed tissue as well as the expression of their 
respective receptors on leukocytes (32). In addition, adrenergic 
α1, β2, and to a lesser degree, α2 receptors are expressed on 
β-END-containing inflammatory cells located in close proximity 
to sympathetic nerve fibers in inflamed paws (31). It should be 
noted that these factors can also affect other cells at the site of tis-
sue injury to further promote inflammation, thus contributing to 
the dynamic pro-inflammatory and anti-inflammatory balance. 
Opioid release from immune cells has been demonstrated to be 
calcium dependent, which is consistent with a regulated pathway 
of release from secretory vesicles, similar to neurons and endo-
crine cells (16, 33). Subsequently, the opioid peptides penetrate 
the damaged perineurial sheath and activate opioid receptors on 
peripheral terminals of sensory neurons to produce endogenous 
analgesia (6, 8) (Figure 2). Increasing studies have also suggested 
an anti-inflammatory role for peripheral opioids (4, 34). Several 
mechanisms have been postulated, including inhibition of NA, 
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substance P, and TNF-α release from neuronal cells (35, 36). The 
function of NA in inflammation is contested with evidence being 
provided for both a positive role (37) and a negative role (38).

inFLAMMATiOn enHAnCeS 
DeGRADATiOn OF OPiOiD PePTiDeS

The precise interaction occurring between opioid-containing 
immune cells and peripheral sensory neurons is only begin-
ning to be elucidated. Inflamed tissues have been shown to 
have increased metabolic breakdown rates for opioid peptides 
(19–22). Hence, it is likely that, for adequate analgesia to occur, 
direct interaction between these cells are required to allow the 
release of opioid peptides in close proximity to peripheral opioid 
receptors on sensory neurons (Figure 2). Following tissue injury, 
the extracellular matrix comprises a myriad of inflammatory 
mediators (e.g., hydrogen ions, cytokines, and chemokines) and 
enzymes (39, 40). Activated leukocytes may modify the com-
position of the extracellular matrix by secreting cytokines and 
degradative enzymes such as matrix metalloproteinases (MMPs), 
heparanases, and serine proteases (40). Therefore, following the 
transendothelial migration of opioid-containing leukocytes into 
peripheral sites of inflammation, opioid peptides are released 
into a harsh milieu associated with an increase in temperature 
(21, 39, 41), low pH (21, 39, 41, 42), and high proteolytic activity 
(19, 20, 22, 40, 43). Together, this microenvironment has been 
suggested to increase β-END degradation, which is supported 
by the short-lasting antinociceptive effect following a single local 
injection of an exogenous opioid peptide (21).

Endogenous opioid peptides are rapidly degraded by human 
peripheral blood proteases, giving a half-life of approximately 
5  min for enkephalins and 40  min for β-END (19, 22, 24). 
However, within peripheral inflamed tissue, opioid peptides are 
exposed to hydrolysis by additional groups of enzymes, including 
plasma soluble peptidases, peptidases present in the membrane of 
immune cells, and peptidases released by immune cells (19). In 
addition, peptidases bound to the extracellular surface of neurons 
(44) and those associated with opioid receptors (45) degrade opi-
oids in their microenvironment. Consequently, pro-enkephalin 
(PENK)-derived peptides are very susceptible to proteolytic 
action resulting in short-lasting central and peripheral antinoci-
ceptive actions (19, 46). Endothelial cell enzymes have also been 
shown to degrade human β-END into various peptide fragments 
(43). Administration of inhibitors of enzymatic degradation of 
these peptides, including enkephalinase and amino-peptidase 
inhibitors, has been shown to augment the duration of action of 
opioid peptides (46).

Furthermore, tissue acidosis may be responsible for the 
enhanced activity of various enzymes and the breakdown of sub-
stances, including denaturation of proteins and peptides (47). In 
fact, average proton concentrations as acidic as pH 5.5 have been 
observed in inflamed tissues, although this may, however, under-
estimate the true degree of tissue acidification in the inflamma-
tory foci (39). Several inflammatory processes are responsible for 
this localized acidosis, including the release of various chemical 
mediators of pain such as hydrogen ions and the local production 

of lactic acid (39, 42). In addition, activated neutrophils have been 
suggested to generate large amount of metabolic acids (e.g., suc-
cinic, butyric, propionic, hydrobromic, and hypochlorous acid) 
(40, 42, 48) and to release an estimated 150 mmol H+ ions/liter 
cells (42). These immune cells further enhance the extrusion of 
acid and thus contribute to tissue acidosis through the activation 
of various H+ transport processes, in order to maintain their 
cytosolic pH within physiological limits (42).

Taken together, the analgesic effects of endogenous opioid 
peptides may depend considerably on their site of secretion from 
immune cells. It is suspected that the “clouds” of endogenous 
opioid peptides released from immune cells within inflamed 
tissues are rapidly surrounded and hydrolyzed by peptidases, 
resulting in negligible peripheral antinociception (1). Therefore, 
the release of opioid peptides from immune cells in close apposi-
tion to peripheral sensory neurons would maximize the potential 
for analgesic effects (1, 23) (Figure 2).

inTeRACTiOn BeTween iMMUne  
CeLLS AnD neUROnS in PeRiPHeRAL 
AnALGeSiA

Increasing evidence indicates that the nervous and immune 
systems are not disparate entities. Immune cells have been shown 
to interact directly with neurons, with comparisons having been 
made in the literature between neuronal and immunological syn-
apses (49, 50). Previous studies have reported the innervation of 
lymphoid organs (51–53), skin (54, 55), eye (56), respiratory tract 
(57–59), gastrointestinal tract (60–64), liver (65), and the CNS 
(66, 67) by nerve terminals directly adhering or in close proxim-
ity to leukocytes. In line with these findings, close association 
between peripheral nerves and opioid-containing immune cells 
have previously been observed (1, 23, 68). In vitro studies have 
demonstrated consistent alliance between lymphocytes contain-
ing opioids and cultured DRG nerves (23), while in vivo studies 
have observed this same phenomenon in peripheral inflamed 
tissues with primary afferent nerves (68). It is plausible that this 
firm adherence between immune cells and primary afferent nerve 
fibers may have a functional role in releasing opioid peptides close 
to opioid receptors within inflamed tissue to provide adequate 
analgesia.

Anatomical and Functional  
neuroimmune interactions
Anatomical and functional relationships between nerve fibers 
and immune cells have been highlighted in the literature (49, 50, 
69–72). Reports have described the non-random spatial asso-
ciation and bidirectional communication of nerves and immune 
cells in a variety of tissues in which actual membrane–membrane 
contacts have been observed (51–53, 57, 58, 60, 65). This concept 
of a dialog between the immune and sensory nervous system has 
been based on three observations. First, nerve terminals have 
been found in direct contact with immune cells (50, 71, 73). 
Anatomical studies have reported origin, pattern of distribution, 
and targets of nerve fiber populations supplying lymphoid organs 
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(51–53, 74, 75). For example, electron microscopy has revealed 
direct contact between noradrenergic nerve terminals and 
lymphocytes in the spleen (53, 74, 76). The nerve endings were 
observed forming long smooth zones of contact with lymphocyte 
plasma membranes, creating a small cleft of only 6 nm (50, 76). It 
should be noted that gap junctions are generally 2 nm and clas-
sical synapses are 20 nm in width (50). In addition, many of the 
terminals were found to indent into a lymphocyte, and the appos-
ing membranes were often prominent or slightly thickened (76). 
These contacts have been suggested to promote bidirectional and 
chemically mediated transmission between nerves and immune 
cells with transmitter release and postsynaptic receptor activation 
(52, 53, 74, 75). In particular, cytokines and opioids released by 
macrophages and lymphocytes can alter neural NA release from 
presynaptic varicosities (53, 76). Thus, the likelihood of both local 
paracrine secretion of NA into the splenic parenchyma and true 
neuroimmune synapses with lymphocytes, exists, which may 
represent a key link between the autonomic and immune system.

Second, both organ systems share common receptors and 
ligands (50, 71, 73). In several studies, significant concentrations 
of binding sites for a number of neurotransmitters and peptides 
have been identified on the surface of immune cells and neurons. 
These receptors have been shown to respond in  vivo and/or 
in  vitro to the neural substances, and their manipulation can 
alter immune responses (71, 72, 75). This direct influence of the 
nervous system on cellular immune response is evident in the 
liver given that lymphocytes and other immune cells expressing 
opioid receptors were regularly found in close apposition to nerve 
fibers containing dynorphin (a high affinity endogenous kappa 
opioid receptor ligand) in the liver of both mice and rats (65). 
This neuroimmune interaction was suggested to have functional 
roles in inflammation.

Finally, mutual ligand–receptor interactions lead to significant 
changes in cellular functions in both systems (21, 39, 41). For 
example, interactions between nerves and inflammatory cells 
have been shown to lead to a number of important physiological 
responses in the lungs (57–59, 65, 77). Studies have suggested 
that contact between eosinophils and cholinergic nerves may 
be responsible for vagal hyperreactivity by triggering eosinophil 
degranulation and a subsequent increase in acetylcholine release 
from the nerves (57, 58). This direct adherence was dependent 
on the interaction between the eosinophil integrins CD11/18 
and VLA-4 with the neuronal adhesion molecules ICAM-1 and 
VCAM-1 (57, 58). These cell adhesion molecules are expressed in 
response to cytokines present in the inflammatory milieu, with 
inhibition of either adhesion molecule preventing eosinophil-
nerve binding (57, 58).

This intimate association of immune cells and neurons in vari-
ous tissues has been proposed as one of the anatomical bases of 
communication between the immune and the nervous systems. 
However, the specificity of anatomical associations between these 
interactions is beginning to be understood. These synaptic-like 
contacts may provide the transmitter, or specifically opioid 
peptides, in even higher concentration for a more immediate 
effect than is available at a distance (49, 50, 70, 71). Therefore, 
a functional role following direct interaction between opioid-
containing immune cells and peripheral sensory neurons may be 

possible (23) with the enhanced recruitment of lymphocytes, the 
upregulation of opioid peptides, opioid receptors, and cell adhe-
sion molecules in inflammatory conditions (1, 6).

establishing Functional Connectivity 
between neuronal and immune Cells
Close associations between opioid-containing immune cells and 
peripheral nerve terminals have been observed (23, 68). However, 
it is not yet determined whether these immune cells actually form 
synaptic-like contacts with peripheral sensory terminals and/or 
whether they secrete opioids in a paracrine manner. In order to 
substantiate productive interactions at a cellular level between 
peripheral nerves and the immune system, evidence needs to be 
accumulated that the criteria established for synaptic connectiv-
ity are met (49, 50, 68, 70, 78).

A synapse is a stable adhesive junction between two cells 
across which information is relayed by directed secretion. 
Specific qualities of a synapse, irrespective of the cells involved, 
have previously been described (78). Synapses are utilized in 
both the nervous and immune systems to directly convey and 
transduce highly controlled secretory signals between their 
constituent cell populations. The neuroimmune synapse refers to 
specialized zones between neurons and immune cells or antigen-
presenting cells (APC), and, therefore, can be thought of as a 
hybrid structure between neuronal and immunological synapses 
(49, 70, 78). Reports in the literature have clearly established 
that the immune and nervous systems share common mediators 
(50, 71, 73). Not only can cells in both systems synthesize and 
release these mediators but also they both can show physiological 
responses based on the presence of specific receptors (49, 70, 78). 
For example, immune cell function within the spleen has often 
been the focus of neuroimmune research because this secondary 
lymphoid organ is densely innervated by the sympathetic nerv-
ous system. In particular, at the electron microscopic level, it has 
been shown that noradrenergic nerve terminals form intimate 
contact with the surface membrane of T-lymphocytes and 
APCs of the peri-arteriolar lymphoid sheath of the spleen, with 
thickening of presynaptic cellular membranes and concentration 
of vesicles containing neurotransmitters at neuron–immune cell 
junctions (52, 76). This neuroimmune junction meets the criteria 
for synaptically-mediated neurotransmission, including local 
bidirectionality through cytokines and neurotransmitters from 
immune cells that modulate the release of sympathetic neuro-
transmitters from nerve terminals (53, 74, 76).

Cell–cell interactions via adhesion molecules are important 
in the maintenance of communication between cells (49,  78). 
Evidence already exists for direct cell adhesion between 
neurons and immune cells involving cell adhesion molecules 
[e.g., ICAM-1 (23, 54, 58, 79), ICAM-5 (67), VCAM (54, 58), 
selectins (66), and NCAM (23)]. Although little is known of the 
consequences of this interaction, it is, however, expected to be 
relevant in inflammation (54, 58) and neuronal damage (67, 79). 
The nervous system and immune system utilize these special-
ized cell surface contacts to directly convey and transduce highly 
controlled secretory signals between their constituent cell popu-
lations. The synaptic structure comprises central active zones of 
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exocytosis and endocytosis encircled by adhesion domains (80). 
Surface molecules that may be incorporated into and around 
the active zones contribute to modulation of the functional state 
of the synapse (49). The potential roles of adhesion molecules 
at synapses include stability, target recognition, and synaptic 
differentiation (81, 82). However, the mechanisms that localize 
molecules to specific subdomains remain unclear. Therefore, 
the identity of the cell adhesion molecules on the apposed 
membranes and their local concentration may be important 
determinants on synapse numbers and their location (81, 82).

The release of chemical mediators into the inflammatory 
milieu has been reported to increase the expression of various 
adhesion molecules (6, 26, 28). In particular, NCAM and ICAM 
may be important in mediating adequate analgesia in inflamma-
tory pain by facilitating firm adhesion between opioid-containing 
immune cells and peripheral sensory neurons (23) (Figure  2). 
For example, intraplantar injection of the monoclonal antibody 
for NCAM, prior to the induction of inflammation, significantly 
reduced the antinociceptive response (paw pressure and paw 
thermal thresholds) produced by CRF or cold water swim stress 
in a dose-dependent manner (23). Anti-NCAM-treated rats 
responded normally to intraplantar fentanyl. In addition, β-END-
containing immune cells within treated and untreated rats were 
histologically verified to have similar densities, suggesting no 
effect on leukocyte extravasation into inflamed tissue. In vitro 
studies showed a significant reduction in the number of lympho-
cytes adherence to DRG neuronal cultures following anti-NCAM 
and anti-ICAM-1 treatment compared to untreated cultures, 
thus supporting the notion that opioid-containing immune cells 
must adhere to peripheral sensory neurons to provide effective 
analgesia (23).

MODULATiOn OF iMMUne CeLL 
ADHeRenCe BY OPiOiDS

Peripheral inflammatory pain can be effectively controlled by an 
interaction of opioids released by immune cells in close proxim-
ity to opioid receptors on peripheral sensory nerve terminals. 
Although direct contact between primary cultured DRG neurons 
and lymphocytes have been observed (23), whether this interac-
tion is of functional relevance in peripheral inflammation is not yet 
established. This adhesion may also be partly mediated by opioid 
receptors, as shown by the effects of β-END on adhesion between 
cultured DRG neurons and lymphocytes (23). Exogenous appli-
cation of β-END significantly attenuated lymphocyte adherence 
to nerve fibers compared to control, and this was completely and 
significantly reversed with naloxone. This may highlight an addi-
tional anti-inflammatory role for opioids in peripheral analgesia. 
Immune cell-derived opioids released locally may interfere with 
this direct neuroimmune interaction, resulting in dissociation 
and possibly migration of immune cells back to regional lymph 
nodes (1, 23). However, if direct cell adhesion itself does not elicit 

opioid release from immune cells, then it is expected that agents 
such as CRF will trigger such release.

There is growing evidence that opioid peptides are potent 
modulators of cellular immune response, which can enhance or 
inhibit immune functions (83–89). Opioids including β-END 
(85, 86, 90, 91), met-enkephalin (85, 86, 91), and morphine (84) 
have been shown to modulate the adherence of immune cells to 
the endothelium. In particular, β-END and met-enkephalin, at 
physiological concentrations (10−8 and 10−6  M), enhanced the 
adherence and migration of human monocytes and neutrophils 
across capillary endothelial cells into inflamed tissues (85, 87). 
However, at higher concentrations of β-END (10−3 M) and met-
enkephalin (10−5  M), chemotaxis of these immune cells into 
inflammatory sites decreased (85). The adherence of immune 
cell to the endothelium was suggested to involve opioid modula-
tion of the expression of adhesion molecules, with quantitative 
studies confirming an increased number of integrin (CD11b and 
CD18) receptors on neutrophils at lower opioid concentrations 
(85). Furthermore, morphine has been demonstrated to attenuate 
leukocyte rolling and adhesion in both arterioles and venules via 
stimulation of nitric oxide production, which, in turn, down-
regulates the expression of adhesion molecules (e.g., selectins 
and integrins) on endothelial cells (84). It is, therefore, likely that 
immune cell-derived opioids may attenuate the adherence of 
lymphocytes to DRG neurons following release within peripheral 
inflamed tissue (23).

COnCLUSiOn

Increasing evidence exists for a functional role in neuroim-
mune interactions between opioid-containing immune cells 
and peripheral sensory neurons within inflamed tissue. Since 
a fundamental goal is to understand synapse assembly at 
the molecular level, techniques such as electron microscopy, 
electrophysiology, and immunocytochemistry are powerful 
methods for characterizing structural, functional, and molecular 
attributes, respectively (92). This will provide novel insight into 
the peripheral mechanisms of immune-derived analgesia in 
inflammation, and the potential development of new therapeutic 
strategies utilizing this alternative analgesic pathway to counter-
act peripheral inflammatory pain.
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