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Abstract
Yager has proposed the decision making under measure-based granular uncertainty, which can make decision with the aid
of Choquet integral, measure and representative payoffs. The decision making under measure-based granular uncertainty
is an effective tool to deal with uncertain issues. The intuitionistic fuzzy environment is the more real environment.
Since the decision making under measure-based granular uncertainty is not based on intuitionistic fuzzy environment,
it cannot effectively solve the decision issues in the intuitionistic fuzzy environment. Then, when the issues of decision
making are under intuitionistic fuzzy environment, what is the decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets is still an open issue. To deal with this kind of issues, this paper proposes the decision
making under measure-based granular uncertainty with intuitionistic fuzzy sets. The decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets can effectively solve the decision making issues in the intuitionistic fuzzy
environment, in other words, it can extend the decision making under measure-based granular uncertainty to the intuitionistic
fuzzy environment. Numerical examples are applied to verify the validity of the decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets. The experimental results demonstrate that the decision making under
measure-based granular uncertainty with intuitionistic fuzzy sets can represent the objects successfully and make decision
effectively. In addition, a practical application of applied intelligence is used to compare the performance between the
proposed model and the decision making under measure-based granular uncertainty. The experimental results show that
the proposed model can solve some decision problems that the decision making under measure-based granular uncertainty
cannot solve.

Keywords Measure · Decision making · Granular uncertainty · Intuitionistic fuzzy sets · Applied intelligence

1 Introduction

In the real world, there are plenty of uncertainties [1],
and many issues about uncertainty [2]. To address those
situations, many mathematical theories and models are
proposed. Pan et al. [3] combined the fuzzy sets and
Dempster-Shafer evidence theory to improve the bayesian
network and applied it to analysis risk. Gao and Deng [4]
proposed the Pseudo-Pascal triangle of maximum Deng
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entropy. Fujita et al. [5] proposed a temporal-spatial
composite sequential approach under granular computing
environment. Athira et al. [6] proposed a new entropy
model with the aid of Pythagorean fuzzy soft sets. Mohd
et al. [7] extended the application scope of Pythagorean
fuzzy sets into the green supplier development field. Jiang
et al. [8] proposed a novel network model, which can
combine bayesian network with Z-number.

Among these algorithms and theories, the intuitionis-
tic fuzzy sets is an extent of fuzzy sets, which consist of
intuitionistic fuzzy numbers [9, 10]. It means that intuition-
istic fuzzy sets is made up of membership degree, non-
membership degree and hesitancy degree, which is more
flexible than fuzzy sets in representing the uncertainties.
When it is not sure whether the value belongs to mem-
bership degree or non-membership degree, it is considered
hesitancy degree, which gives more scope to represent the
uncertainty. Relying on the advantages on indicating vague
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information, the intuitionistic fuzzy sets has been applied
on many fields widely by scholars at home and abroad [11].
Wang et al. [12] proposed an new reasoning method, which
is based on the intuitionistic fuzzy sets. Garg and Rani [13]
found not only an new ranking method but also some novel
aggregation operators under complex intuitionistic fuzzy
environment. Zhou and Xu [14] analyzed the envelopment,
fused preference and improved the membership of intuition-
istic fuzzy sets. Alcantud et al. [15] proposed a new method
to aggregate of infinite chains of intuitionistic fuzzy sets.
Ngan et al. [16] applied the quaternion numbers to indicate
complex intuitionistic fuzzy sets. Among all the applica-
tions of intuitionisitic fuzzy sets, the most representative
one is the application of intuitionisitic fuzzy sets in decision
making. Song et al. [17] improve the intuitionistic fuzzy sets
with the aid of divergence-based cross entropy to address the
issues of decision making. Son et al. [18] proposed a new
representation of intuitionistic fuzzy sets and applied it to
solve critical decision making. Garg and Singh [19] applied
the similarity measurement theory and intuitionistic fuzzy
sets to solve decision making problems. Meng et al. [20]
introduced the linguistic intuitionistic fuzzy preference rela-
tions and applied it to address the multi-criteria decision
making issues. Zhou and Xu [21] extended the intuitionis-
tic fuzzy sets and applied it to deal with issues of decision
making with risk preference.

When the space of uncertain variables is large, how to
express uncertain variables is a very time-consuming and
laborious problem. When uncertain variables are evaluated
in large space, we can simplify the knowledge acquisition
process by using space granulation. This process of sim-
plifying knowledge acquisition is also very beneficial
for decision-making. Then, using granulation to simplify
knowledge acquisition can introduce inaccuracies into the
relevant decision making process. Recently, Yager proposed
the decision making under measure-based granular uncer-
tainty [22], which has promising aspects. The decision
making under measure-based granular uncertainty is a very
flexible and efficient way to make decision, which repre-
sents uncertain information in the granulation of space, and
potential uncertainty is generally expressed as measure. In
this way, the space of the issues of decision making and
granulation of this space need be determined. Then the
measure corresponding to the granulation is given. Hence,
analyze the actual problem and give the payoffs of each can-
didate solution. Then the payoff bags of the issue according
to payoffs and granulation will be calculated. Hence, the
corresponding representative payoff from each payoff bag
will be obtained, and then obtain a representative of each
alternative. Based on the representative payoff of each alter-
native, the final decision result is obtained. The decision
making under measure-based granular uncertainty can not

only simplify the decision-making process, but also effec-
tively hold uncertain information. Although the decision
making under measure-based granular uncertainty is a very
efficient decision-making method based on unknown infor-
mation, it cannot deal with the decision problem based on
intuitionistic fuzzy environment. As the intuitionistic fuzzy
environment is more general, there is an urgent need to put
forward the decision making under measure-based uncer-
tainty with intuitionistic fuzzy sets. However, what is the
decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets is still an open issue to be
addressed.

This paper proposes the decision making under measure-
based granular uncertainty with intuitionistic fuzzy sets,
which can apply the decision making under measure-
based granular uncertainty to solve the problems under
intuitionistic fuzzy environment, with the aid of Choquet
integral, representative payoffs and measure. The flow
of the decision making under measure-based granular
uncertainty with intuitionistic fuzzy sets in this article
requires the decision makers to determine how many
candidate alternatives there are and the space . The
granulation of the space should be determined. Moreover,
relying on the actual problem, the payoffs of each
alternative are given. The corresponding intuitionistic fuzzy
sets of pasyoffs are also obtained. Membership degrees
and non-membership degrees in intuitionistic fuzzy sets
are integrated to obtain the integrated value. Then, the
measure corresponding to the granulation will be obtained.
The payoff bags of the problem based on the integrated
value and granulation will be calculated. Hence, the
corresponding representative payoff for each payoff bag
can be obtained. According to the representative payoff
of each payoff bag, get the representative payoff of each
alternative. Based on the representative payoff of each
alternative, the final decision result is obtained. In order
to extend decision making under measure-based granular
uncertainty with intuitionistic fuzzy sets to intuitionistic
fuzzy environment, this model uses intuitionistic fuzzy set
to represent payoffs of alternatives. If the intuitionistic fuzzy
set is not used to express the payoffs of the alternatives, then
decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets will degenerate into the
decision making under measure-based granular uncertainty.
Obviously, from the previous discussion, we know that
the proposed model in this paper can be applied to the
intuitionistic fuzzy environment, but the decision making
under measure-based granular uncertainty cannot. This is
the key difference between the model in this paper and his
method is that the proposed model in this paper extends the
decision making under measure-based granular uncertainty
to the intuitionistic fuzzy environment, which is also the
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advantage of the proposed model in this paper. It means
that the proposed model can handle the situation what the
decision making under measure-based granular uncertainty
can not.

The rest of the paper is structured as follows. Section 2
introduces the preliminary. Section 3 presents the decision
making under measure-based granular uncertainty with
intuitionistic fuzzy sets. Section 4 illustrates the flexibility
and accuracy of the decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets. Section 5
summarizes the whole paper.

2 Preliminaries

Nowadays, there are a lot of uncertain issues [23–26]. The
real world is very complicated [27–29]. The unknown is
everywhere, just like no one knows why there will be
an outbreak of COVID-19 in early 2020, no one knows
when the next earthquake will come, no one knows when
the next tsunami will come. To deal with these issues,
many models and theories has been proposed and plenty of
problems has been solved, such as decision making [30],
resilience analysis [31], probability transform [32], pattern
classification [33].

In this section, representative payoffs [22], intuitionistic
fuzzy sets [34], measure [35] are briefly introduced.

2.1 Measure

Given a space X, the definition of measure is defined as
follows:

Definition 1 (Measure) [36] Assume μ on X is a mapping
μ: X → [0, 1] and satisfies the follow conditions:

μ (X) = 1 (1)

μ (∅) = 0 (2)

μ (A) ≤ μ (B) if A ⊆ B (3)

Where, A and B are subsets of X.
Hence, μ is a measure.
The fuzzy measure is an effective tool to represent

uncertainties, which can be combined with many other
algorithms and models.

2.2 Intuitionistic fuzzy sets

There are many models to deal with uncertain information
[37]. Intuitionistic fuzzy sets is an efficiency tool to rep-
resent uncertainty [38, 39]. Assume � = {z1, z2, . . . , zn}
is a frame of discernment and the power set of � is 2� =

{∅, {z1}, . . . , {zn}, {z1, z2}, . . . , {z1, z2, . . . , zi}, . . . , �}.
The definition of an intuitionistic fuzzy set on � is as
follows:

Definition 2 (Intuitionistic Fuzzy Sets) [34]

B = {〈zi, μB (zi) , νB (zi) |zi ∈ �〉} (4)

Where, μB (zi) and νB (zi) : 2� → [0, 1] are member-
ship degree and non-membership degree respectively, for
any element of 2�, B.

Intuitionistic fuzzy sets is the most famous extension of
fuzzy sets. It is an expression of the real world [40]. So
far, the research on this model has been very popular and
mainstream at home and abroad [41].

If A is an orthopair fuzzy set [42] and q is the minimal
value such that all (A+(z)q + A−(z)q) ≤ 1, then A is
called q-rung orthopair fuzzy set(q-ROFS). The definition
of a mate interval value fuzzy set D such that DL(z) =
A+(z) and DU(z) = (1 − (A−(z))q)1/q . Given a q-ROFS
A (z) = 〈

A+ (z) , A− (z)
〉
, Yager et al. [43] has proposed the

following approach to obtain a possible membership grade
of standard fuzzy subsets:

V (zi) = (
(1 − λ) (DL (zi))

q + λ (DU (zi))
q
)1/q (5)

Where, λ ∈ [0, 1].

2.3 Representative payoffs

Given a space X with granular sets F . Meanwhile, λ is a
measure based on F . The definition of an representative
payoffs of alternative Ak is as follows:

Definition 3 (Representative payoffs) [22]

Rep(Ak) = Choqλ(Rep(Bkj ) for j = 1 to q) (6)

Where, Bkj = 〈bkjr for r = 1 to nj 〉 with each bkjr =
aki for xi ∈ Fj . nj is the number of payoffs in Bkj .

We use ordered weighted averaging operator to obtain
Rep(Ak) by integrating Rep(Bkj ) for j = 1 to q. So in
fact, other ordered weighted averaging methods clustering
operator can be used to replace the Choquet integral in this
definition.

3 The proposedmethod

Given a space X with granular sets F . λ is a measure
based on F . Alternatives Ak be represented as Ak =
{〈akr , μ(akr ), ν(akr )〉, r = 1 to nk}. The definition of an
representative payoffs of alternative Ak is as follows:
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Definition 4 (Decision making under measure-based gran-
ular uncertainty with intuitionistic fuzzy sets)

Rep(Ak) = Choqλ(Rep(Bkj ) for j = 1 to q) (7)

Where, Bkj = 〈bkjr for r = 1 to nj 〉 with each bkjr is the
grade of aki for xi ∈ Fj obtained by (5). nj is the number
of payoffs in Bkj .

With ρ is an index function such that ρ(i) is the index of
granular set with the ith largest value for Rep(Bkj ), then

Choqλ(Rep(Bkj ) for j = 1 to q) =
q∑

i=1

(λ(Hi)

−λ(Hi−1))Rep(Bkρ(i)) (8)

Where Hi = {Fρ(1), Fρ(2), . . . , Fρ(i)}, the collection of
the i granular sets with the ith largest values for Rep(Bkρ(i)).

In particular, the representative value of Bkj can be
represented as follows:

Rep(Bkj ) = min
r=1 to nj

[bkjr ] (9)

Rep(Bkj ) = max
r=1 to nj

[bkjr ] (10)

Rep(Bkj ) = 1

nj

nj∑

r=1

bkjr (11)

Rep(Bkj ) = Middle(bkjr ) (12)

Theorem 1 Assume λ is a probability measure such that
λ({Fj }) = pj . Then Rep(Ak) = ∑q

i=1 piRep(Bki).

Proof Since λ is a probability measure, for any subset D

of F , we have λ(D) = ∑
Fj ∈D pj such that λ(Hi) −

λ(Hi−1) = pρ(i).
Relying on the equations of (8), we have equations as

follows:

Choqλ(Rep(Bkj ) for j = 1 to q)

=
q∑

i=1
(λ(Hi) − λ(Hi−1))Rep(Bkρ(i))

=
q∑

i=1
pρ(i)Rep(Bkρ(i))

=
q∑

i=1
piRep(Bki)

Hence, we obtain

Rep(Ak) =
q∑

i=1

piRep(Bki)

Theorem 2 Assume λ is a cardinality-based measure with
parameters 1 = aq ≥ . . . ≥ a1 ≥ a0 = 0. Then Rep(Ak) =∑q

i=1 (ai − ai−1)Rep(Bkρ(i)).

Proof Since λ is a cardinality-based measure, so, for any
subset B of F , we have λ(B) = a|B| so that λ(Hi) −
λ(Hi−1) = ai − ai−1.

Relying on the equations of (8), we have equations as
follows:

Choqλ(Rep(Bkj ) for j = 1 to q)

=
q∑

i=1
(λ(Hi) − λ(Hi−1))Rep(Bkρ(i))

=
q∑

i=1
(ai − ai−1)Rep(Bkρ(i))

Hence, we obtain

Rep(Ak) =
q∑

i=1

(ai − ai−1)Rep(Bkρ(i))

Theorem 3 Assume λ is a maxitive measure with λ({Fj })
= πj . Then Rep(Ak) = ∑q

i=1(0 ∨ (πρ(i) − maxd=1 to i−1

[πρ(d)]))Rep(Bkρ(i)).

Proof Since λ is a maxitive measure with λ({Fj }) = πj ,
so, for any subset D of F , λ(D) = maxFj ∈D[πj ] so that
λ(Hi) − λ(Hi−1) = maxFj ∈Hi

[πj ] − maxFj ∈Hi−1[πj ].
Relying on the equations of (8), we have equations as

follows:

Choqλ(Rep(Bkj ) for j = 1 to q)

=
q∑

i=1
(λ(Hi) − λ(Hi−1))Rep(Bkρ(i))

=
q∑

i=1
(maxFj ∈Hi

[πj ] − maxFj ∈Hi−1 [πj ])Rep(Bkρ(i))

=
q∑

i=1
(0 ∨ (πρ(i) − maxd=1 to i−1[πρ(d)]))Rep(Bkρ(i))

Hence, we obtain

Rep(Ak)=
q∑

i=1

(0 ∨ (πρ(i)− max
d=1 to i−1

[πρ(d)]))Rep(Bkρ(i))

The flow of decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets can be
shown as Fig. 1.

Based on the Fig. 1, the steps of the proposed model in
this paper are as follows:

step 1 Determine how many candidate alternatives there
are and the space.

step 2 The granulation of the space should be determined.
step 3 Relying on the actual problem, the possible

payoffs of each alternative are given.
step 4 Obtaining the corresponding intuitionistic fuzzy

sets of possible payoffs.
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Fig. 1 The flow of decision making under measure-based granular uncertainty with intuitionistic fuzzy sets

step 5 Integrating these membership degrees and non-
membership degrees in intuitionistic fuzzy sets to
obtain the integrated values by (5).

step 6 Obtaining the measure corresponding to the
granulation.

step 7 Calculating the payoff bags of the problem based
on the integrated values and granulation.

step 8 Obtaining the corresponding representative payoff
for each payoff bag by (8).

step 9 Relying on the representative payoff of each pay-
off bag and measure, get the representative payoff
of each alternative by (7).

step 10 Relying on the representative payoff of each
alternative, the final decision result is obtained.

The decision making under measure-based granular
uncertainty with intuitionistic fuzzy sets converts possible
payoffs of the alternatives in issues into the form of
intuitionistic fuzzy sets, which is a very flexible model.
That is to say, the decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets extends
decision making under measure-based granular uncertainty
to the intuitionistic fuzzy environment, which is both a
generalization and an innovation of decision making under
measure-based granular uncertainty with intuitionistic fuzzy
sets. Since the intuitionistic fuzzy environment represented
by the intuitionistic fuzzy set is an environment more close
to the real world, the decision making under measure-based
granular uncertainty with intuitionistic fuzzy sets is more

widely applied than decision making under measure-based
granular uncertainty. If the intuitionistic fuzzy set is not
used to express the payoffs of the alternatives, then decision
making under measure-based granular uncertainty with
intuitionistic fuzzy sets will degenerate into the decision
making under measure-based granular uncertainty.

4 Numerical examples

Example 1 Assume A1 and A2 are two alternatives with
a space X = {x1, x2, x3, x4}. The possible payoffs of two
alternatives A1 and A2 are as follows:

a11 = 10 , a12 = 30 , a13 = 15 , a14 = 20
a21 = 12 , a22 = 24 , a23 = 18 , a24 = 22

The related intuitionistic fuzzy sets under two alterna-
tives are as follows:

A1 = {〈a11, 0.3, 0.5〉, 〈a12, 0.5, 0.2〉, 〈a13, 0.7, 0.1〉,
〈a14, 0.2, 0.2〉}

A2 = {〈a21, 0.5, 0.2〉, 〈a22, 0.2, 0.4〉, 〈a23, 0.5, 0.3〉,
〈a24, 0.5, 0.4〉}

Relying on the (5), the grades of A1 and A2 are as
follows:

V (a11) = 0.4 , V (a12) = 0.65 , V (a13) = 0.8 ,
V (a14) = 0.5

V (a21) = 0.65 , V (a22) = 0.4 , V (a23) = 0.6 ,
V (a24) = 0.55
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The granulation of X, F = {F1, F2, F3}, is as follows:

F1 = {x1, x2} , F2 = {x2, x3} , F3 = {x1, x3, x4}
The measure on F , λ, is as follows:

λ(∅) = 0 , λ(F1) = 0.2 , λ(F2) = 0.3 , λ(F3) = 0.3
λ({F1, F2}) = 0.4 , λ({F1, F3}) = 0.4 , λ({F2, F3}) = 0.5,

λ(F ) = 1

The payoffs bags are as follows:

B11 =〈0.4, 0.65〉 , B12 =〈0.65, 0.8〉 , B13 =〈0.4, 0.8, 0.5〉
B21 = 〈0.65, 0.4〉 , B22 = 〈0.4, 0.6〉 ,
B23 = 〈0.65, 0.6, 0.55〉

Calculate the values of Rep(Bkj ), as follows:

Rep(B11)=0.525 , Rep(B12)=0.725 , Rep(B13)=0.567
Rep(B21) = 0.525 , Rep(B22) = 0.5 , Rep(B23) = 0.6

Hence, calculate Rep(A1) and Rep(A2) as follows:

Rep(A1) = Choqλ(Rep(B11), Rep(B12), Rep(B13))

= 0.3 × 0.725 + 0.2 × 0.567 + 0.5 × 0.525
= 0.5934

Rep(A2) = Choqλ(Rep(B21), Rep(B22), Rep(B23))

= 0.3 × 0.6 + 0.1 × 0.525 + 0.6 × 0.5=0.5325

Since Rep(A1)>Rep(A2), the A1 is the best alternative.

Example 2 Recently, there was a robbery in a mall. If there
are three suspects, and one of them is a criminal, it is
impossible to tell which of the three is guilty according to
the existing model. So we have invited four decision experts
to use the proposed model in this paper to determine who
is the real criminal at this time. Assume there are three
suspects A1, A2 and A3 with a space X = {x1, x2, x3, x4}
in a case. The possible payoffs of three alternatives are as
follows:

a11 = 24 , a12 = 25 , a13 = 12 , a14 = 18
a21 = 15 , a22 = 18 , a23 = 27 , a24 = 32
a31 = 29 , a32 = 32 , a33 = 6 , a34 = 12

The related intuitionistic fuzzy sets under three alterna-
tives are as follows:

A1 = {〈a11, 0.2, 0.5〉, 〈a12, 0.4, 0.3〉, 〈a13, 0.8, 0.1〉,
〈a14, 0.3, 0.3〉}

A2 = {〈a21, 0.5, 0.3〉, 〈a22, 0.3, 0.1〉, 〈a23, 0.4, 0.2〉,
〈a24, 0.1, 0.4〉}

A3 = {〈a31, 0.1, 0.6〉, 〈a32, 0.6, 0.4〉, 〈a33, 0.3, 0.3〉,
〈a34, 0.2, 0.5〉}

Relying on the (5), the grades of these suspects are as
follows:

V (a11) = 0.35 , V (a12) = 0.55 , V (a13) = 0.85 ,
V (a14) = 0.5

V (a21) = 0.6 , V (a22)=0.6 , V (a23)=0.6 , V (a24)=0.35
V (a31) = 0.25 , V (a32) = 0.6 , V (a33) = 0.5 ,

V (a34) = 0.35

The granulation of X, F = {F1, F2, F3}, is as follows:

F1 = {x1, x3} , F2 = {x2, x4} , F3 = {x1, x2, x3}
The measure on F , λ, is as follows:

λ(∅) = 0 , λ(F1) = 0.4 , λ(F2) = 0.2 , λ(F3) = 0.5
λ({F1, F2}) = 0.6 , λ({F1, F3}) = 0.8 , λ({F2, F3})
= 0.7 , λ(F ) = 1

The payoffs bags are as follows:

B11 =〈0.35, 0.85〉 , B12 = 〈0.55, 0.5〉 ,
B13 = 〈0.35, 0.55, 0.85〉

B21 =〈0.6, 0.6〉 , B22 = 〈0.6, 0.35〉 , B23 =〈0.6, 0.6, 0.6〉
B31 =〈0.25, 0.5〉 , B32 =〈0.6, 0.35〉 , B33 =〈0.25, 0.6, 0.5〉

Calculate the values of Rep(Bkj ), as follows:

Rep(B11) = 0.6 , Rep(B12) = 0.525 , Rep(B13) = 0.583
Rep(B21) = 0.6 , Rep(B22) = 0.475 , Rep(B23) = 0.6
Rep(B31)=0.375 , Rep(B32)=0.475 , Rep(B33)=0.675

Hence, calculate Rep(A1), Rep(A2) and Rep(A3) as
follows:

Rep(A1) = Choqλ(Rep(B11), Rep(B12), Rep(B13))

= 0.4 × 0.6 + 0.4 × 0.583 + 0.2 × 0.525
= 0.5782

Rep(A2) = Choqλ(Rep(B21), Rep(B22), Rep(B23))

= 0.4 × 0.6 + 0.4 × 0.6 + 0.2 × 0.475 = 0.575
Rep(A3) = Choqλ(Rep(B31), Rep(B32), Rep(B33))

= 0.5 × 0.675 + 0.2 × 0.475 + 0.3 × 0.375
= 0.545

Since Rep(A1) > Rep(A2) > Rep(A3), the A1 is the
most likely culprit.

5 Application

In order to compare the advantages and disadvantages of
decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets with decision making under
measure-based granular uncertainty, the following practical
application of applied intelligence is given in this paper.
Since the beginning of 2020, COVID-19 has been ravaging
the human earth, and human life has been severely affected.
In order to treat COVID-19, suppose that two drugs have
been developed, and each drug is scored by four experts.
The scoring of four experts constitutes the space for
this question. We are now evaluating both drugs using
decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets and decision making under
measure-based granular uncertainty, respectively. First, we
evaluated the two drugs using the decision making under
measure-based granular uncertainty, and the evaluation
process is as follows:
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According to the previous explanation, A1 and A2 are
two drugs with a space X = {x1, x2, x3, x4}. The possible
payoffs of two drugs A1 and A2 are as follows:

a11 = 15 , a12 = 30 , a13 = 20 , a14 = 10
a21 = 10 , a22 = 24 , a23 = 15 , a24 = 20.

The granulation of X, F = {F1, F2, F3}, is as follows:

F1 = {x1, x2} , F2 = {x2, x3} , F3 = {x1, x3, x4}
The measure on F , λ, is as follows:

λ(∅) = 0 , λ(F1) = 0.2 , λ(F2) = 0.3 , λ(F3) = 0.3
λ({F1, F2}) = 0.4 , λ({F1, F3}) = 0.4 , λ({F2, F3})

= 0.5 , λ(F ) = 1

The payoffs bags are as follows:

B11 = 〈15, 30〉 , B12 = 〈30, 20〉 , B13 = 〈15, 20, 10〉
B21 = 〈10, 24〉 , B22 = 〈24, 15〉 , B23 = 〈10, 15, 20〉

Calculate the values of Rep(Bkj ), as follows:

Rep(B11) = 22.5 , Rep(B12) = 25 , Rep(B13) = 15
Rep(B21) = 17 , Rep(B22) = 19.5 , Rep(B23) = 15

Hence, calculate Rep(A1) and Rep(A2) as follows:

Rep(A1) = Choqλ(Rep(B11), Rep(B12), Rep(B13))

= 0.3 × 25 + 0.1 × 22.5 + 0.6 × 15 = 18.75
Rep(A2) = Choqλ(Rep(B21), Rep(B22), Rep(B23))

= 0.3 × 19.5 + 0.1 × 17 + 0.6 × 15 = 16.55

Since Rep(A1) > Rep(A2), the A1 is a better drug than
A1.

Then, we evaluated the two drugs using the decision
making under measure-based granular uncertainty with
intuitionistic fuzzy sets, and the evaluation process is as
follows:

According to the previous explanation, we know that A1

and A2 are two drug with a space X = {x1, x2, x3, x4}. The
possible payoffs of two drugs A1 and A2 are as follows:

a11 = 15 , a12 = 30 , a13 = 20 , a14 = 10
a21 = 10 , a22 = 24 , a23 = 15 , a24 = 20

The related intuitionistic fuzzy sets under two alterna-
tives are as follows:

A1 = {〈a11, 0.2, 0.3〉, 〈a12, 0.3, 0.4〉, 〈a13, 0.6, 0.1〉,
〈a14, 0.2, 0.2〉}

A2 = {〈a21, 0.5, 0.3〉, 〈a22, 0.5, 0.4〉, 〈a23, 0.7, 0.3〉,
〈a24, 0.3, 0.3〉}

Relying on the (5), the grades of A1 and A2 are as
follows:

V (a11) = 0.25 , V (a12) = 0.35 , V (a13) = 0.35 ,
V (a14) = 0.2

V (a21) = 0.4 , V (a22)=0.45 , V (a23)=0.5 , V (a24)=0.3

The granulation of X, F = {F1, F2, F3}, is as follows:

F1 = {x1, x2} , F2 = {x2, x3} , F3 = {x1, x3, x4}

The measure on F , λ, is as follows:

λ(∅) = 0 , λ(F1) = 0.2 , λ(F2) = 0.3 , λ(F3) = 0.3
λ({F1, F2}) = 0.4 , λ({F1, F3}) = 0.4 , λ({F2, F3})

= 0.5 , λ(F ) = 1

The payoffs bags are as follows:

B11 = 〈0.25, 0.35〉 , B12 = 〈0.35, 0.35〉 ,
B13 = 〈0.25, 0.35, 0.2〉
B21 = 〈0.4, 0.45〉 , B22 = 〈0.45, 0.5〉 ,
B23 = 〈0.4, 0.5, 0.3〉

Calculate the values of Rep(Bkj ), as follows:

Rep(B11) = 0.3 , Rep(B12) = 0.35 , Rep(B13) = 0.266
Rep(B21) = 0.425 , Rep(B22) = 0.475 , Rep(B23) = 0.4

Hence, calculate Rep(A1) and Rep(A2) as follows:

Rep(A1) = Choqλ(Rep(B11), Rep(B12), Rep(B13))

= 0.3×0.35+0.1×0.3+0.6 × 0.266=0.2946
Rep(A2) = Choqλ(Rep(B21), Rep(B22), Rep(B23))

= 0.3×0.475 + 0.1×0.425 + 0.6×0.4=0.425

Since Rep(A2)>Rep(A1), the A2 is a better drug than A1.
Above all, we can see that the experimental result obtained

by the decision making under measure-based granular uncer-
tainty with intuitionistic fuzzy sets is different from that
obtained by the decision making under measure-based gran-
ular uncertainty. At the same time, the decision making
under measure-based granular uncertainty with intuitionis-
tic fuzzy sets can accurately predict the second drug than
the first one is more suitable for treatment of COVID-19,
which is consistent with the effect predicted by experts. This
not only indicates that the decision making under measure-
based granular uncertainty with intuitionistic fuzzy sets is
an extension of the decision making under measure-based
granular uncertainty in the intuitionistic fuzzy environment,
but also indicates that the decision making under measure-
based granular uncertainty with intuitionistic fuzzy sets is
more effective than the decision making under measure-
based granular uncertainty in dealing with issues of decision
making.

6 Discussion

In real world, there are many uncertainties [44, 45]. Mean-
while, many scholars proposed a lot of effective meth-
ods and theories to address these problems [46, 47]. The
intuitionistic fuzzy sets is an extent of classical fuzzy
sets [48, 49]. Intuitionistic fuzzy set is an effective means
to reflect the real world [50]. It divides the information con-
tained in an unknown event into membership degree, non-
membership degree and hesitation degree, which are also
the original representation methods of the real world [51].
For example, if a person has a cough or fever, the doctor
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will determine whether the person has COVID-19 or not. At
this point, the membership degree is the probability that the
person will get COVID-19. Non-membership degree is the
probability that the person does not have COVID-19. Hesi-
tancy degree is the probability that the doctor can’t tell if the
person has COVID-19. Yager proposed the decision mak-
ing under measure-based granular uncertainty [22], which
has promising aspects [52]. However, the decision mak-
ing under measure-based granular uncertainty can not hold
the decision making issues under intuitionistic fuzzy envi-
ronment. This paper proposes the decision making under
measure-based granular uncertainty with intuitionistic fuzzy
sets, which is an extent of the decision making under
measure-based granular uncertainty under the intuitionis-
tic fuzzy environment. The proposed model is based on
the intuitionistic fuzzy sets, which is an effective tool to
represent uncertainties. On the other hand, if a system is
under intuitionistic fuzzy environment, then the proposed
model can deal with these issues of this system. The pro-
posed model process in this article requires the decision
maker to determine how many alternatives there are and the
granulation of space. Then, the practical problems are ana-
lyzed and the payoffs of each alternative are given. Based
on the payoffs, the corresponding intuitionistic fuzzy sets
are also obtained. The integrated values are obtained by
integrating the membership degrees and non-membership
degrees of these intuitionistic fuzzy sets. Relying on the
granulation, the measure corresponding to granulation is
given. Then, the payoff bags are obtained based on these
integrated values and granulation of space. Representative
payoffs for these payoff bags can be obtained. Hence, based
on the representation payoffs, the representative payoffs of
these alternatives respectively are obtained. Finally, the final
decision making result is obtained according to the repre-
sentative payoffs of these alternatives. We can notice that
the fundamental difference between the proposed model in
this paper and the decision making under measure-based
granular uncertainty is that the proposed model in this paper
will convert the possible payoffs of each candidate into
the corresponding intuitionistic fuzzy set, and integrate the
membership degrees and non-membership degrees of the
intuitionistic fuzzy sets by relevant methods. The integrated
values will be aggregated by OWA operator, such as Cho-
quet integral. In fact, Choquet integrals can be replaced by
other OWA operators. This shows that the model in this
paper can adapt to the real world, because the intuitionis-
tic fuzzy sets can perfectly reflect the unknown informa-
tion in the real world. So extending the decision making
under measure-based granular uncertainty to an intuitionis-
tic fuzzy environment also means that the proposed model
in this paper is more flexible than the decision making under
measure-based granular uncertainty. Numerical examples
are applied to verify the validity of the decision making

under measure-based granular uncertainty with intuitionis-
tic fuzzy sets. The experimental results demonstrate that
the decision making under measure-based granular uncer-
tainty with intuitionistic fuzzy sets can represent the objects
successfully and make decision effectively. In addition, a
practical application of applied intelligence is used to com-
pare the performance between the proposed model and the
decision making under measure-based granular uncertainty.
The experimental results show that the proposed model
can solve some decision problems that the decision mak-
ing under measure-based granular uncertainty cannot solve.
In the future, we will extend the application of the pro-
posed model to more wide scope, such as Pythagorean fuzzy
environment, orthopair fuzzy environment.

7 Conclusion

This paper proposes the decision making under measure-
based granular uncertainty with intuitionistic fuzzy sets,
which can handle the issues under intuitionistic fuzzy
environment. It means that the proposed model is an extend
of the decision making under measure-based granular
uncertainty. When the environment of the proposed model
degenerate into the normal environment, the proposed
model will degenerate into the decision making under
measure-based granular uncertainty. The proposed model
can represent the alternatives as possible payoffs. Then, the
related intuitionistic fuzzy sets of possible payoffs can be
obtained. The integrated values are obtained by integrating
the membership degrees and non-membership degrees
of these intuitionistic fuzzy sets. Then, the granulation
of space should be given. Then, the payoff bags are
obtained based on these integrated values and granulation
of space. Representative payoffs for these payoff bags
can be obtained. Hence, based on the representation
payoffs, the representative payoffs of these alternatives
respectively are obtained. Finally, the final decision making
result is obtained according to the representative payoffs
of these alternatives. This proposed model can combine
the advantages of the decision making under measure-
based granular uncertainty and intuitionistic fuzzy sets
and make an accurate estimation of the alternatives.
Numerical examples are applied to verify the validity of the
decision making under measure-based granular uncertainty
with intuitionistic fuzzy sets. The experimental results
demonstrate that the decision making under measure-
based granular uncertainty with intuitionistic fuzzy sets
can represent the objects successfully and make decision
effectively. In addition, a practical application of applied
intelligence is used to compare the performance between the
proposed model and the decision making under measure-
based granular uncertainty. The experimental results show
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that the proposed model can solve some decision problems
that the decision making under measure-based granular
uncertainty cannot solve.

Funding The work is partially supported by National Natural Science
Foundation of China (Grant No. 61973332).

Declarations

Ethics approval and consent to participate This article does not
contain any studies with human participants or animals performed by
any of the authors.

Conflict of Interests All the authors certify that there is no conflict of
interest with any individual or organization for the present work.

References

1. Dzitac I, Filip FG, Manolescu M-J (2017) Fuzzy logic is not fuzzy:
World-renowned computer scientist lotfi a. zadeh. Int J Comput
Commun Control 12(6):748–789

2. Deng Y (2020) Information volume of mass function. Int J
Comput Commun Control 15(6):3983

3. Pan Y, Zhang L, Li Z, Ding L (2019) Improved fuzzy bayesian
network-based risk analysis with interval-valued fuzzy sets and
d-s evidence theory. IEEE Trans Fuzzy Syst, 1–1

4. Gao X, Deng Y (2020) The pseudo-pascal triangle of maximum
deng entropy. Int J Comput Commun Control 15(1):1006

5. Yang X, Li T, Liu D, Fujita H (2019) A temporal-spatial composite
sequential approach of three-way granular computing. Inform Sci
486:02

6. Athira TM, John J, Garg H (2019) A novel entropy measure of
pythagorean fuzzy soft sets

7. Wan Mohd WR, Abdullah L, Yusoff B, Taib CMIC, Merigo JM
(2019) An integrated mcdm model based on pythagorean fuzzy
sets for green supplier development program. Malaysian J Math
Sci 13:23–37

8. Jiang W, Cao Y, Deng X (2019) A Novel Z-network Model Based
on Bayesian Network and Z-number. IEEE Transactions on Fuzzy
Systems

9. Xu Z, Yager R (2006) Some geometric aggregation operators
based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433, 08

10. Xu Z (2007) Some similarity measures of intuitionistic fuzzy sets
and their applications to multiple attribute decision making. Fuzzy
Optim Decis Making 6:109–121, 06

11. Liu P, Wang Y, Jia F, Fujita H (2020) A multiple attribute decision
making three-way model for intuitionistic fuzzy numbers. Int J
Approx Reason 119:177–203, 04

12. Wang X, Xu Z, Gou X et al (2020) A novel plausible reasoning
based on intuitionistic fuzzy propositional logic and its application
in decision making. Fuzzy Optimization and Decision Making,
1–24

13. Garg H, Kumar K (2019) A novel possibility measure to interval-
valued intuitionistic fuzzy set using connection number of set pair
analysis and its applications. Neural Computing and Applications,
1–12

14. Zhou W, Xu Z (2019) Envelopment analysis, preference fusion,
and membership improvement of intuitionistic fuzzy numbers.
IEEE Transactions on Fuzzy Systems

15. Alcantud JCR, Khameneh AZ, Kilicman A (2020) Aggregation of
infinite chains of intuitionistic fuzzy sets and their application to

choices with temporal intuitionistic fuzzy information. Inform Sci
514:106–117

16. Ngan RT, Ali M, Tamir DE, Rishe ND, Kandel A et al (2020)
Representing complex intuitionistic fuzzy set by quaternion
numbers and applications to decision making. Appl Soft Comput
87:105961

17. Song Y, Fu Q, Wang Y-F, Wang X (2019) Divergence-based cross
entropy and uncertainty measures of atanassov’s intuitionistic
fuzzy sets with their application in decision making. Appl Soft
Comput 84:105703

18. Son LH, Ngan RT, Ali M, Fujita H, Abdel-Basset M, Giang
NL, Manogaran G, Priyan MK (2020) A new representation
of intuitionistic fuzzy systems and their applications in critical
decision making. IEEE Intell Syst 35(1):6–17

19. Garg H, Singh S (2020) Algorithm for solving group decision-
making problems based on the similarity measures under type 2
intuitionistic fuzzy sets environment. Soft Comput 24(10):7361–
7381

20. Meng F, Tang J, Fujita H (2019) Linguistic intuitionistic fuzzy
preference relations and their application to multi-criteria decision
making. Inform Fus 46:77–90, 05

21. W Zhou ZXu (2018) Extended intuitionistic fuzzy sets based on
the hesitant fuzzy membership and their application in decision
making with risk preference. Int J Intell Syst 33(2):417–443

22. Yager RR (2018) Decision making under measure-based granular
uncertainty. Granul Comput 3(4):345–353

23. Wang H, Fang Y-P, Zio E (2019) Risk assessment of an electrical
power system considering the influence of traffic congestion on a
hypothetical scenario of electrified transportation system in new
york stat. IEEE Transactions on Intelligent Transportation Systems

24. Cheong KH, Koh JM (2019) A hybrid genetic-levenberg mar-
quardt algorithm for automated spectrometer design optimization.
Ultramicroscopy 202:100–106

25. Deng Y (2020) Uncertainty measure in evidence theory. Sci China
Inform Sci 63(11):210201

26. Li Y, Garg H, Deng Y (2020) A new uncertainty measure of
discrete Z-numbers. Int J Fuzzy Syst 22:760–776

27. Soo WWM, Cheong KH (2014) Occurrence of complementary
processes in parrondo’s paradox. Physica A: Stat Mech Applic
412:180–185

28. Li M, Huang S, De Bock J, De Cooman G, Pižurica A (2020)
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