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Objectives: The association between obstructive sleep apnea (OSA) and mortality or serious cardiovascular events over a 
long period of time is not clearly understood. The aim of this observational study was to estimate the clinical effectiveness 
of continuous positive airway pressure (CPAP) treatment on an outcome variable combining mortality, acute myocardial in-
farction (AMI), and cerebrovascular insult (CVI) during a follow-up period of 15.5 years (186 ± 58 months). Methods: The 
data set consisted of 978 patients with an apnea-hypopnea index (AHI) ≥5.0. One-third had used CPAP treatment. For the 
first time, a data-driven causal Bayesian network (DDBN) and a hypothesis-driven causal Bayesian network (HDBN) were 
used to investigate the effectiveness of CPAP. Results: In the DDBN, coronary heart disease (CHD), congestive heart failure 
(CHF), and diuretic use were directly associated with the outcome variable. Sleep apnea parameters and CPAP treatment had 
no direct association with the outcome variable. In the HDBN, CPAP treatment showed an average improvement of 5.3 per-
centage points in the outcome. The greatest improvement was seen in patients aged ≤55 years. The effect of CPAP treatment 
was weaker in older patients (>55 years) and in patients with CHD. In CHF patients, CPAP treatment was associated with an 
increased risk of mortality, AMI, or CVI. Conclusions: The effectiveness of CPAP is modest in younger patients. Long-term 
effectiveness is limited in older patients and in patients with heart disease (CHD or CHF). 
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I. Introduction

Obstructive sleep apnea (OSA) is a common nocturnal 
breathing disorder affecting about 8% of the Finnish adult 
population [1]. Several studies have reported an association 
between OSA and increased mortality [2,3]. OSA has been 
shown to increase the risk of stroke or death from any cause 
[4]. 
 Continuous positive airway pressure (CPAP) is a standard 
treatment for OSA [5]. CPAP treatment, for example, is 
shown to improve results in Epworth sleepiness scale ques-
tionnaires, quality of life, and subjective sleepiness [6]. 
 The aim of this study was to assess the clinical effectiveness 
of CPAP treatment on an outcome variable combining all-
cause mortality, acute non-fatal myocardial infarction (AMI), 
and non-fatal cerebrovascular insult (CVI) during a follow-
up period (186 ± 58 months). This analysis was done using a 
default hypothesis that CPAP has an effect on the mentioned 
combined outcome. This combined outcome was chosen be-
cause all-cause mortality, stroke, and coronary heart disease 
are the most important clinical consequences of OSA [7].
 In this study, a Bayesian network model was chosen as a 
tool for analysis. The Bayesian network approach affords 
certain advantages over standard frequentist methods in 
analyzing data collected in real practice. For example, Bayes-
ian network analysis provides a transparent representation of 
relationships between system variables using different sourc-
es of data. It can handle complicated data sets with missing 
data, outliers, and nonlinear relationships, and the results of 
the analysis can be presented in a visual form that is easy to 
interpret [8-11]. The visual form uses directed acyclic graph 
(DAG), from which direct and indirect effects, common 
causes and effects can be discovered and mathematically ex-
pressed [12].

II. Methods

1. Novel Sleep Apnea Parameters
Diagnosis of OSA is based on daytime symptoms (e.g., day-
time sleepiness) and an apnea-hypopnea index (AHI) or an 
oxygen desaturation index (ODI) [13]. We previously intro-
duced novel desaturation severity (DesSev) and obstruction 
severity (ObsSev) parameters that account for the severity 
aspect of individual apnea, hypopnea, and desaturation 
events [14,15]. The definitions of the novel parameters are 
presented in Table 1.

2. Patients
The database used in this study consisted of 2,037 consecu-
tive patients referred for night polygraphy in the Department 
of Clinical Neurophysiology at Kuopio University Hospital 
(a large referral hospital in Eastern Finland) between 1992 
and 2003. The original data set consisted of 119 variables, 
e.g., variables from polygraph recordings, treatments, and 
medications. There were 984 subjects omitted from the study 
from the study due to having an AHI lower than 5.0. In ad-
dition, 51 subjects were removed due to several missing val-
ues, and 24 subjects were removed due to having oral device 
treatment, leaving 978 patients for the analysis.
 All the recordings were registered using a custom-made 
ambulatory device, Unisalkku [2,14-16], and they were re-
analyzed using standard respiratory rules developed by the 
American Academy of Sleep Medicine (AASM) [13], as in 
our previous studies [14-19]. 
 In the present study, the follow-up time was defined as the 
time between the polygraph recording and death, AMI, or 
CVI; for the rest of the patients, it was the time between the 
polygraph recording and June 2014. Causes of death were 
acquired from Statistics Finland (Helsinki, Finland) in June 
2014, and information about diseases, morbidities, and treat-
ments was collected from the patients’ medical records at 
Kuopio University Hospital. The subpopulations of the data 
set have been used previously [14-19]. More detailed infor-

Table 1. Definitions of the novel parameters

Parameter Definition

Obstruction severity (s%) ∑L (ApDurn × DesArean) + ∑ L (HupDurm × DesAream)n=1 m=1

Indextime

Desaturation severity (%) ∑L DesAreann=1

Indextime

Individual apnea and hypopnea durations are denoted as ApDurs and HypDurs, respectively, and the individual desaturation area as 
DesArea (5%). Indextime denotes the total analyzed time of the polygraph recording, and L is the number of events in question.
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mation about data collection and measurements is available 
in previous papers.

3. Bayesian Network Analysis
The statistical analysis was performed with Bayesian net-
works by using the BayesiaLab 5.3.3 tool [20]. A Bayesian 
network can be described as a DAG. It determines the fac-
torization of a joint probability distribution over the vari-
ables (nodes of the DAG), where the factorization is defined 
as directed arcs of the DAG. A Bayesian network structure 
(i.e., a DAG) is constructed either manually or with machine 
learning based on observational data, for example, by a 
domain expert. We introduce a third alternative for struc-
tural learning—enabled by the tool we used—called expert-
assisted machine learning, where the expert sets restrictions 
for the structural learning algorithm. Of the two main 
structural learning alternatives, constraint-based search and 
score-based learning [21], we applied the latter method. The 
search algorithm was Taboo [22], and the scoring method 
was two-stage minimum description length (MDL) [23]. 
 A trade-off exists in MDL between the model’s complexity 
and the model’s fit to the data. The optimum model is one in 
which MDL (Model|Data) is at its minimum; in other words, 
simple model structures are preferred. The tool we used also 
offered the possibility to weigh the complexity part with a 
structural coefficient (SC) for situations in which the default 
value (SC = 1) does not produce credible results from the 
structural learning according to the experts’ prior knowledge 

or research data. The structural coefficient is discussed more 
in Kekolahti et al. [24].
 The objective in expert-assisted machine learning is to pro-
duce a Bayesian network in which arc directions correspond 
to causal assumptions of the data-generating model. In other 
words, when an arc exists from variable A to B, variable A is 
the cause of variable B, but if no arc exists, no direct causal 
relationship exists between them. Expert-assisted machine 
learning was used in the study in two ways, which are sum-
marized below.
 (1) A causal DAG is consistent with the research data. This 
structure is called a data-driven causal Bayesian network 
(DDBN). The restrictions set for the learning are the follow-
ing. First, temporal indexes (relative temporal order between 
variables in the research data) are defined for variables that, 
based on the learning algorithm, can construct a structure 
in which the time-wise arc direction is from the older to the 
newer variable. Thus, situations in which a newer variable 
points to an older variable are blocked. Second, the number 
of variables can be limited in the model if they do not form 
any kind of dependency with other variables or if the vari-
ables are not relevant to the study. Third, the learning algo-
rithm is informed that the learned arc direction between two 
variables is prohibited if the direction proposed by the Ta-
boo algorithm does not make logical sense. In this case, two 
other alternatives, namely, the arc is missing and an opposite 
arc direction, are still allowed. This phase also contains dis-
cretization of the numerical values into meaningful intervals 
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Figure 1.  Process used to construct a hypothesis-driven (solid line) and a data-driven structure (dotted line). SC: structural coeffi-
cient, DAG: directed acyclic graph.
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[25].
 (2) A causal DAG is consistent with the hypothesis regard-
ing the research question. We call this structure, simply, a 
hypothesis-driven causal Bayesian network (HDBN). The 
restrictions set for the learning are as follows. First, temporal 
indexes are defined for the variables. Second, variables can 
be excluded from the model if they do not form any kinds 
of dependency with other variables or if the variables are 
not relevant to the study. For example, the Markov blanket 
can be used for this phase. Third, the SC is adjusted if its 
default value does not produce credible structures according 
to the hypothesis, and the numerical values are discretized 
into meaningful intervals. Fourth, based on the hypothesis 
and prior knowledge, an arc is drawn manually and fixed 
between two variables to indicate their causal relation if the 
learning does not produce it automatically. Fifth, the learn-
ing algorithm is informed that the learned arc direction 
between two variables is prohibited if the direction does 
not make logical sense. In this case, two other alternatives, 
namely, the arc is missing and the arc direction is opposite, 
are still allowed.
 Figure 1 describes the two expert-assisted learning process-
es, DDBN and HDBN, used in the study. Once the structural 
learning has been completed, parameter learning focuses 
on how the variables quantitatively relate to each other. For 
each variable in a DAG, conditional probability tables are 
estimated with the maximum likelihood method from the 
frequencies observed in the research data. This information 
is used to define the causal strength between two variables 
as information gain, i.e., as Kullback–Leibler divergence 
(DKL). It provides a natural method for this study to compare 
distributions of two connected variables [26]. That is to say, 
we estimate the strength of a specific arc as DKL in the con-
text of the entire DAG. What if this arc were removed but 
all the others remained? Furthermore, direct effect (DE) is 
calculated between each variable and the outcome variable 
to compare the causal strength of the variables on the out-
come variable. DE is based on Jouffe’s proprietary likelihood 
matching algorithm [12], and it estimates the causal depen-
dency between two variables by measuring the impact of a 
conditional mean of each state of variable A on the mean 
of variable B (outcome variable) with Kullback’s minimum 
cross-entropy method MinxEnt [27] and by keeping the val-
ues of all other variables fixed. DE is especially suitable for 
situations where the dependency between two variables is 
linear.
 The research data contained 3.02% missing data (total data 
before excluding variables), whose type was missing at ran-

dom (MAR). To maintain the number of samples, samples 
with missing data were kept, and the missing data were esti-
mated by using a structural equation model (EM) algorithm 
[28].
 The number of variables was reduced from 119 to 19 using 
an augmented Markov blanket algorithm. In this prelimi-
nary analysis, the SC value was set to 0.6 to find all poten-
tially affecting variables. Variables connected to the variable 
Outcome total were included in the analysis. Sleep apnea pa-
rameters and CPAP treatment were selected by using a local 
SC value of 0.4 for them. 
 The discretization of the numerical variables was per-
formed manually by using two alternative methods: (1) a 
decision tree algorithm, setting the variable Outcome total as 
the target, or (2) clinically commonly used thresholds (when 
using a decision tree algorithm was not possible). The dis-
cretized values as well as the total data set are presented in 
Table 2. 
 A temporal index (TI) was assigned to each variable to 
indicate the relative temporal order between variables, as 
seen in Table 2. To do this, the variables were divided into 
eight time categories according to knowledge about the vari-
ables’ appearance. Thus, the variable age had a TI = 1 (oldest 
known measured value), and Outcome total had a TI = 8 
(last measurement at the end of the follow-up period), for 
instance.
 Arcs between the nodes indicate causality fulfilling the 
temporality criterion (newer variable cannot point to older 
variable as a function of time). However, arcs between vari-
ables having the same TI show no causality. For example, 
arcs between sleep apnea parameters like DesSev→AHI do 
not indicate causality because both variables were measured 
at the same time and they have the same TI value. Expert 
opinion was used to determine causality in a case with an 
obvious wrong direction of the arc. As an example, an arc 
direction of CHD→Diabetes was manually forbidden, but the 
opposite direction and no arc were allowed. 
 In the next step, the modeling process was changed from 
a DDBN to an HDBN. According to the default hypothesis, 
CPAP was considered to have a DE on Outcome total, even 
though this hypothesis was not supported by the DDBN. The 
model was simplified by limiting the number of variables to 
include only the most prominent ones (nine variables). The 
variable Diuretic was dropped because it was considered to 
be a marker, not a causal factor for Outcome total. 
 In the HDBN approach, an arc was manually added from 
variable CPAP to Outcome total. In the inference phase (i.e., 
when the constructed model was used), the variable CPAP 
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was set to be an intervention. In this way, real causal depen-
dencies between CPAP and the outcome variable could be 
identified when this model was purged of unwanted associa-
tional backdoor paths between them [12]. 
 Figures 2–4 were drawn with DAGitty software [29].
 The Research Ethics Committee of the Hospital District of 
Northern Savo, Kuopio, Finland approved the protocol, and 
all the subjects gave written informed consent (No. 127/2004 
and 14/2013).

III. Results

The variables with values, distributions, discretizations, tem-
poral indices, and number of missing data are presented in 
Table 2. 
 The mean length of the follow-up period was 186 months 
(standard deviation 58 months, variation 0–276 months). 
During the follow-up period, altogether 185 patients died 
(18.9%), of which 154 were men and 31 were women. In ad-
dition, 55 men (8.5%) and 12 women (8.2%) had AMI, CVI, 
or both during the follow-up period. 
 A total of 252 patients died or had AMI, CVI, or both 
during the follow-up period. The 209 men (26.12%) and 
43 women (24.3%) comprised 25.8% of all patients. Of the 

patients, 343 (35.1%) had used CPAP treatment for at least 6 
months or had continued CPAP at the end of the follow-up. 
 The DDBN model made by the Taboo algorithm (SC = 
1) for the outcome variable Outcome total is presented in 
Figure 2. In the DDBN model, variables CHD, Diuretic, and 
CHF were causally associated with the outcome. No causal 
association between sleep apnea parameters or CPAP and 
the outcome variable was seen. Instead, there was a path 
between CPAP and Outcome total consisting of associational 
dependencies. There was a weak association between AHI 
and Outcome total due to common causes BMI and Gender. 

Outcome total

HF

Age

CPAP

Diabetes

Gender

BMI

AHI

CHD

Figure 4.  Simplified hypothesis-driven model with target vari-
able Outcome total. According to the hypothesis, CPAP 
was set to an intervention mode and separated from 
associative paths. Blue node with vertical bar indicates 
outcome variable; yellow node with triangle, exposure 
variable; yellow nodes, ancestors of exposure variable; 
blue nodes, ancestors of outcome; green arrow, causal 
path; and black arrows, other connections.

Gender

BMI

Outcome total

HF

Age

ObssevDesSevAHI

CPAP

Investigation_time

Diabetes

Diuretic

CHD

ODI

Figure 2.  Data-driven model of factors associated with target 
variable Outcome total. Nodes are presented in tempo-
ral index order, with parent nodes at the top and child 
nodes at the bottom. Other variables were dropped 
from the analysis. Blue node with vertical bar indicates 
outcome variable; green node with triangle, exposure 
variable; green nodes, ancestors of exposure variable; 
red nodes, common ancestors of both exposure and 
outcome; blue nodes, ancestors of outcome; green ar-
row, causal path; red arrow, biasing path; and black ar-
rows, other connections.

Outcome total

HF

Age

CPAP

Diabetes

Gender

BMI

AHI

CHD

Figure 3.  Simplified hypothesis-driven model with target variable 
Outcome total. Nodes are presented in temporal index 
order, with parent nodes at the top and child nodes at 
the bottom. According to the hypothesis, an arc from 
CPAP to Outcome total is added and fixed to the model. 
Blue node with vertical bar indicates outcome variable; 
green node with triangle, exposure variable; red nodes, 
common ancestors of both exposure and outcome; blue 
nodes, ancestors of outcome; green arrow, causal path; 
and black arrows, other connections.
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 The variable Recruitment time was included in the DDBN 
model (Figure 2) because the patient recruitment period 
was long (11 years), and Recruitment time was considered a 
potential source of bias. There was an association between 
Recruitment time and the variable CHF, indicating that con-
gestive heart failure was a more common finding in patients 
before the year 2000 than after. However, there was no DE 
between Recruitment time and Outcome total.
 The relationship analysis of the DDBN model with Kull-
back–Leibler divergence and Pearson correlation is pre-
sented in Table 3. Sleep apnea parameters were strongly 
associated with each other (for example, AHI→ODI had the 
strongest association). 
 Analysis of DE on the target outcome variable Outcome to-
tal is presented in Table 4. Variables CHF, CHD, and Diuretic 
have strong direct effects on Outcome total. Sleep apnea pa-
rameters and CPAP have only a minimal DE on the target. 
In other words, based on the DDBN approach, there is no 

Table 3. Relationship analysis for the DDBN presented in Figure 2

Parent Child

Kullback–

Leibler  

divergence

Pearson  

correlation

AHI ODI 1.18 0.96
DesSev ObsSev 0.59 0.87
DesSev AHI 0.49 0.66
CHF Diuretic 0.11 0.40
BMI DesSev 0.08 0.28
ODI CPAP 0.08 0.31
BMI Diabetes 0.06 0.29
Diabetes Diuretic 0.06 0.26
Recruitment time IT 0.04 –0.22
Age CHF 0.04 0.22
Gender DesSev 0.03 –0.13
CHD Outcome total 0.03 0.26
CHF CHD 0.03 0.25
Diuretic Outcome total 0.03 0.29
Age CHD 0.03 0.22
Gender CHD 0.02 –0.13
CHF Outcome total 0.02 0.32
Gender BMI 0.01 0.14
DDBN: data-driven causal Bayesian network, AHI: apnea-hy-
popnea index, ODI: oxygen desaturation index, DesSev: desatu-
ration severity, ObsSev: obstruction severity, CHF: congestive 
heart failure, BMI: body mass index, CPAP: continuous positive 
airway pressure, CHD: coronary heart disease.

Table 4. Direct effects on the target Outcome total in the DDBN 
presented in Figure 2

Node
Standardized direct  

effect
Contribution (%)

CHF 0.20 33.8
CHD 0.19 33.0
Diuretic 0.19 32.6
Diabetes 0.02 0.3
Age –0.00 0.1
Recruitment time –0.00 0.0
ObsSev 0.00 0.0
BMI –0.00 0.0
Gender 0.00 0.0
CPAP 0.00 0.0
DesSev –0.00 0.0
ODI 0.00 0.0
AHI –0.00 0.0
DDBN: data-driven causal Bayesian network, CHF: congestive 
heart failure, CHD: coronary heart disease, ObsSev: obstruc-
tion severity, BMI: body mass index, CPAP: continuous positive 
airway pressure, ODI: oxygen desaturation index, AHI: apnea-
hypopnea index.

Table 5. Relationships between variables in the HDBN presented 
in Figure 3

Parent Child
Kullback–Leibler 

divergence

Pearson  

correlation

AHI CPAP 0.08 0.31
BMI AHI 0.07 0.28
BMI Diabetes 0.06 0.29
Heart failure Outcome total 0.05 0.32
Age CHD 0.04 0.22
CHD Outcome total 0.03 0.28
Age Heart failure 0.03 0.25
Diabetes CHD 0.03 0.18
Gender CHD 0.02 –0.13
Gender AHI 0.02 –0.12
CHD Heart failure 0.02 0.24
Gender BMI 0.01 0.14
CPAP Outcome total 0.01 –0.03
HDBN: hypothesis-driven causal Bayesian network, AHI: 
apnea-hypopnea index, CPAP: continuous positive airway pres-
sure, BMI: body mass index; AMI: acute myocardial infarction, 
CHD: coronary heart disease.
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causal relationship between CPAP and the outcome variable. 
 The HDBN model is presented in Figure 3. The relation-
ship analysis of this model is presented in Table 5, and direct 
effects on the target are presented in Table 6. In this model 
several paths from CPAP to the target were found; only one 
path is causal, i.e., the direct link from CPAP to Outcome 
total. All other paths from CPAP to Outcome total are associ-
ated with BMI or Gender as a common cause. 
 The HDBN model with the variable CPAP set as an inter-
vention is presented in Figure 4. When CPAP is an interven-
tion, this intervention variable is separated from all non-
causal associations. This model was fixed independently for 
each value of the variables, and the results are presented in 
Table 7. In general, CPAP treatment showed a 5.3 percentage 
points improvement in Outcome total in comparison with no 
treatment. The most improvement was seen in patients aged 
55 years or less (8.4% improvement with CPAP in compari-
son with no treatment). In patients with CHF, CPAP treat-
ment showed a 10.2% increase in risk of mortality, AMI, or 
CVI (HDBN models number 16–17 in Table 7).

IV. Discussion

This analysis is, as far as we know, the first study in which 
an expert-assisted Taboo learning process with MDL scor-
ing and causal Bayesian networks have been used to estimate 
clinical effectiveness. No causal query can be answered from 
data alone, without causal information that lies outside the 
data. Therefore, expert knowledge is required to comple-
ment the analysis [12]. This knowledge was exploited in the 
study in multiple ways, e.g., defining the known temporality 
between the variables, blocking non-relevant links from a 

causal point of view, and adding causal links based on the 
default hypothesis. But are the discovered dependences re-
ally causal in the sense in which it is defined in [12] as do-
calculus-equation? The implemented causal analysis follows 
the guidelines in [30]. Therefore, we can claim that, within 
the observed variables, the dependences are causal. However, 
due to weak dependences between multiple variables, causal 
dependences similarly are weak. Therefore, this has led to 
some differences between data-driven and hypothesis-driven 
networks when MDL scoring has been used. 
 This analysis used patient data obtained from a large refer-
ral hospital. We consider the data, which included informa-
tion about diagnosis of sleep apnea as well as deaths and se-
rious complications, to be very reliable and almost free from 
information bias. 
 To avoid modeling biases, several alternative versions were 
used for discretization and temporal indices, and expert 
knowledge was used to set arcs and variables for the final 
analysis. An analysis for mortality alone was also done. The 
differences between the models were minor. 
 In a study by Kendzerska et al. [31], the following factors 
were prognostic factors for cardiovascular disease in sleep 
apnea patients: time spent with oxygen saturation, sleep 
time, awakenings, periodic leg movements, heart rate, and 
daytime sleepiness. In our study, the same factors were not 
associated with the combined outcome. In our study, all-
cause mortality was 18.9%, which is line with the results of 
Marshall et al., [32] who found 20-year all-cause mortality to 
be 19.4%.
 In the DDBN, no direct association between sleep apnea 
parameters or CPAP treatment and the outcome variable 
was found. A weak non-causal association between AHI 
and Outcome total can explain the results reported by Rich 
et al. [3]. BMI was clearly a common cause for both CPAP 
treatment (and for all the variables in the path from BMI to 
CPAP) and Outcome total. 
 In this study, the follow-up time was long, at an average of 
15.5 years. The weak effect of sleep apnea parameters and 
CPAP treatment on the outcome variable might be explained 
by the long follow-up period. According to Meinow et al. 
[33], health-related indicators are unstable, and their effect is 
strongest in a 1–2-year follow-up. In a longer follow-up, all 
health-related factors become weaker predictors of mortality.
 In the HDBN, a long-term beneficial effect of CPAP treat-
ment was found. This effect was generally a 5.3 percentage 
points improvement in the risk of death, AMI, or CVI. This 
result suggests that the dependency between CPAP and 
Outcome total consists of a causal dependency and spurious 

Table 6. Direct effects on the target Outcome total in the HDBN 
presented in Figure 3

Node Standardized direct effect Contribution (%)

Heart failure 0.28 47.2
CHD 0.23 38.6
CPAP –0.03 5.7
BMI 0.01 2.0
Diabetes 0.01 1.7
Age 0.01 1.7
AHI 0.01 1.6
Gender 0.01 1.5
HDBN: hypothesis-driven causal Bayesian network, CHD: cor-
onary heart disease, CPAP: continuous positive airway pressure, 
BMI: body mass index, AMI: acute myocardial infarction.
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Table 7. Fixation table of the HDBN with CPAP set to the intervention 

Model number Fixed values Number of cases involved

Values of Outcome total

Alive, no AMI or CVI = 0

Dead, AMI or CVI = 1

1 No fixation 978 0 = 74.2%
1 = 25.8%

2 CPAP 0 = 100% 635 0 = 72.4%
1 = 27.6%

3 CPAP 1 = 100% 343 0 = 77.7%
1 = 22.3%

4 Age ≤ 55 yr = 100%
CPAP 0 = 100%

427 0 = 74.3%
1 = 25.7%

5 Age ≤ 55 yr = 100%
CPAP 1 = 100%

230 0 = 80.4%
1 = 19.6%

6 Age > 55 yr = 100%
CPAP 0 = 100%

208 0 = 68.5%
1 = 31.5%

7 Age > 55 yr = 100%
CPAP 1 = 100%

113 0 = 72.0%
1 = 28.0%

8 AHI ≤ 15 = 100%
CPAP 0 = 100%

375 0 = 72.6%
1 = 27.4%

9 AHI ≤ 15 = 100%
CPAP 1 = 100%

97 0 = 77.9%
1 = 22.1%

10 AHI 15.1–30.0 = 100%
CPAP 0 = 100%

163 0 = 72.3%
1 = 27.7%

11 AHI 15.1–30.0 = 100%
CPAP 1 = 100%

52 0 = 77.6%
1 = 22.4%

12 AHI > 30 = 100%
CPAP 0 = 100%

166 0 = 71.9%
1 = 28.1%

13 AHI > 30 = 100%
CPAP 1 = 100%

52 0 = 77.1%
1 = 22.9%

14 CHF 0 = 100%
CPAP 0 = 100%

570 0 = 76.5%
1 = 23.5%

15 CHF 0 = 100%
CPAP 1 = 100%

308 0 = 83.5%
1 = 16.5%

16 CHF 1 = 100%
CPAP 0 = 100%

65 0 = 36.6%
1 = 63.4%

17 CHF 1 = 100%
CPAP 1 = 100%

35 0 = 26.4%
1 = 73.6%

18 CHD 0 = 100%
CPAP 0 = 100%

536 0 = 77.6%
1 = 22.4%

19 CHD 0 = 100%
CPAP 1 = 100%

288 0 = 81.8%
1 = 18.2%

20 CHD 1 = 100%
CPAP 0 = 100%

99 0 = 46.5%
1 = 53.5%
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associational dependencies enabled by BMI and Gender as 
common causes. This result can be compared with the study 
by Jennum et al. [34] who found that CPAP therapy is as-
sociated with reduced all-cause mortality in males, but not 
significantly in females.
 Besides the long follow-up, our results differ from analyses 
done using conventional methods in two other ways. First, 
our study aimed to estimate clinical effectiveness, which 
differs from efficacy measurement in randomized trials. Sec-
ondly, most conventional methods in sleep apnea research 
using observational data are unable to distinguish direct ef-
fects from associational effects.
 In addition, in patients with CHF, an increased risk of 
death, AMI, or CVI was seen when CPAP was used. This 
result is opposite to the findings of previous studies [35,36], 
which indicated a beneficial effect of CPAP on CHD and 
CHF. This result suggests that an unknown factor exists that 
mediates the association between CPAP and CHF. The result 
can be compared to those of some studies that have shown 
a detrimental effect of CPAP in CHF patients [37-39]. The 
divergence between DDBN and HDBN may be due to differ-
ences between subgroups.
 We consider that the methodology used in this study gives 
a realistic view of treatment effectiveness. Bayesian methods 
also have potential value in analyzing similar problems in 
other contexts. The prognosis of OSA and the effectiveness 
of CPAP can be estimated on an individual level using prog-
nostic factors in patients’ demographic factors, comorbid-
ity, and the results of sleep polygraphs. The effectiveness of 
CPAP is seen in patients without other diseases, but in more 
severely ill patients, the prognosis is determined by the un-
derlying diseases. CPAP is an effective treatment that loses 
its effectiveness in patients with serious cardiovascular dis-
ease.
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