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Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families,
and society. The associated and recurring sleep disturbances further reduce patient’s quality of life. However, therapeutic sleep
deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated
role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic
sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development
of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity
caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression.
Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.

1. Introduction

Depression, which is characterized by a pervasive and per-
sistent low mood and anhedonia, greatly impacts patients,
their families, and society. It contributes largely to the global
disease burden [1] and is associated with increased risks of
several other diseases, which can further increase the eco-
nomic burdens of individuals [2, 3]. In clinical practice, sleep
disturbances are among the common complaints of
depressed patients and negatively affect the quality of their
lives. Studies demonstrated that sleep can facilitate neural
plasticity, and changes in plasticity have been observed in
depressed patients. However, therapeutic sleep deprivation
exerts a rapid and robust antidepressant effect in patients
with broadly defined depression. These facts raise the pos-
sibility that depression and accompanying sleep distur-
bances share a common origin. In other words, they may
represent different phenotypes of the same pathophysio-
logical process. To address this question, we first examine
the macro- and microstructures of sleep and present evi-
dence of how sleep facilitates neural plasticity. Then, we list

the sleep disturbances and changes in neural plasticity in
depression, including studies on humans and animals, and
explain the common mechanisms. Next, we analyze the
effects of antidepressants on neural plasticity and their mech-
anisms. Finally, we consider sleep deprivation as a therapy
for depression and explain the consequences and mechanism
in detail.

2. Sleep and Neural Plasticity

2.1. The Overall Structure of Sleep. Sleep or sleep-like state is
ubiquitous to most living organisms. While awareness of the
surroundings seems to be deliberately lowered or even
blocked during the deepest stage of sleep, many processes
continue to function. In terms of characteristics of the elec-
troencephalogram (EEG), sleep in mammals can be divided
into two distinct stages: rapid eye movement (REM) sleep
and non-REM (NREM) sleep. NREM sleep in humans can
be categorized further into 3 stages: stage 1 (N1), stage 2
(N2), and stage 3 (N3) [4]. N1 represents the transition from
wake to sleep since predominant EEG activities shift from 14
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to 30Hz in wakefulness or 8–12Hz in quiet rest to 4–7Hz
oscillations [5], while κ-complex events and sleep spindles
occur in N2. κ-Complexes protect sleep from outside inter-
ference [6] and facilitate generation of sleep spindles [7],
which usually last no more than 2 s and range from 11 to
15Hz [8]. N3, which is a deeper NREM sleep stage compared
with N1 and N2, is dominated by slow wave activity (SWA)
ranging from 0.5 to 4Hz that includes neocortical slow oscil-
lations ranging generally from 0.5 to 1Hz [5]. In addition, a
special type of oscillation, known as sharp wave ripple
(SWR) complexes, can be observed at the level of the hippo-
campus mainly during N3 [9, 10]. These SWR complexes,
which range from 100 to 250Hz, consist of sharp waves that
originated in the CA3 region of the hippocampus and pro-
duce fast ripples in the CA1 region. In contrast, REM sleep
is dominated by theta activity ranging from 4 to 8Hz [11]
and is associated with persistent muscle atonia and bursts
of eye movement.

2.2. Generation of Different EEG Characteristics in Sleep. Our
knowledge of intrinsic networks underlying different EEG
activities grows as methodologies develop. For instance,
SWA is a consequence of autonomous neocortical slow oscil-
lations that result from interactions between excitatory and
inhibitory neurons in the cortex [12]. Intracellular and extra-
cellular recordings have demonstrated that the slow oscilla-
tion, which consists of up and down states, enters up state
if an inside or outside signal stimulating the local cortical net-
work is strong enough to counter local inhibition [13, 14] and
the local network has passed its refractory period [14–16].
This local excitation spreads as positive feedback and leads
to the synchronization visible in the EEG [12]. The thalamo-
cortical neurons, which in vitro show strong intrinsic
rhythms similar to the up and down states [8, 17, 18], are
reciprocally connected with the cortex and depolarize in
advance of the up states [14, 19–21]. Recent studies using
optogenetics revealed that selective activation of thalamocor-
tical neurons can induce the up state in the slow oscillation
[22] and SWA [23]. These findings indicate that the thalamus
is crucial in generating SWA [18] and implicate the thalamo-
cortical network as an inseparable structure in regulating
SWA [24]. Sleep spindles are generated by an interaction
between thalamocortical relay cells and GABAergic neurons
in the thalamic reticular nucleus [25–27]. Generation of theta
activity, which is usually recorded at the hippocampus,
involves the projection from the brainstem containing the
center responsible for REM sleep [28] to the medial septum
(MS) via the hypothalamus [29]. Pacemaker cells in the
MS, which spontaneously fire in the valley of theta activity
[30], provide inhibitory input to CA1 pyramidal cells [29].
The hippocampus also sends feedback to the medial and lat-
eral septum [31], which synchronizes between the 2 struc-
tures. Conversely, the entorhinal cortex (EC) excites the
hippocampus with cortical information via its direct gluta-
matergic projections to the CA1, CA3, and dentate gyrus
[32, 33]. Recent studies showed that only the medial EC
(MEC) appears related to generation of theta activity [34]
and is also under control of GABAergic neurons in the MS
[35]. Within the hippocampus, the oscillatory activation of

the EC transmitted by the perforant path generates promi-
nent theta activity in the dentate gyrus and then excites the
CA3 and CA1 regions to compete with oscillatory inhibition
driven by the MS. Furthermore, several other brain regions,
such as the dorsal raphe nucleus (DRN), are also involved
in control of theta generation through connections with the
septal complex, which is composed of the MS as well as the
vertical and horizontal limbs of the diagonal band of Broca
[36]. In addition, pyramidal cells and interneurons in the
medial prefrontal cortex (mPFC) can be excited by CA1
pyramidal cells from the ventral part of the hippocampus
[37], and the amygdala complex, which is a critical interface
for emotional responses, is reciprocally connected with the
regions that are implicated in theta generation.

2.3. Implications of EEG Changes in Neural Plasticity. While
the mechanisms of specific EEG activities have been eluci-
dated, we still lack a universal theory to answer the mysteri-
ous question of why we sleep. One intriguing possibility is
that sleep is needed because of neural plasticity, which is a
process that fundamentally decides how we interact with
the world [38, 39]. Neural plasticity is an umbrella term that
may refer to structural alterations in the brain on a large
scale, such as cortical remapping and changes in total weight,
or on a microscopic scale, such as changes in size and density
of neurons and glia. At the single cell level, synaptic plasticity
describes the changes in strength of existing synapses, in syn-
apse number or size, or in morphological structures that con-
tain synapses [40].

The first line of evidence supporting a relationship
between sleep and neural plasticity comes from patients suf-
fering from insomnia. They exhibit reduced gray matter in
subregions of the prefrontal cortex (PFC) [41, 42] and a
smaller hippocampal volume [43, 44]. In addition, patients
with primary insomnia show decreased sleep-dependent
memory consolidation, which is commonly considered an
indicator for neural plasticity, in procedural and declarative
learning [45, 46].

Deeper examination of EEG studies, which directly and
accurately reflect collective changes in the brain, reveals a
profound link between sleep and neural plasticity. SWA is
recognized as a measure of sleep need [47]. It increases with
the prolongation of wakefulness and decreases gradually dur-
ing sleep [48]. The increase of SWA during sleep has been
shown to be directly associated with long-term potentiation
(LTP) rather than prolonged wakefulness, since areas with
increased LTP exhibit enhanced SWA while a reduction in
LTP-related molecules blunts the SWA peak [49, 50]. Several
studies have demonstrated that enhanced SWA is spatially
and temporally associated with LTP during wakefulness
[51, 52]. Computational studies indicate a relationship
between stronger synaptic connections and higher SWA
[53, 54]. Furthermore, studies found that approximately 5%
of gene transcription in the rat cortex is under control of
the sleep-wake cycle [55]. In particular, mRNA levels of
genes associated with building new synapses and strength-
ening existing synapses increase in both cortical and hip-
pocampal [55]. In addition, adenosine, which is closely
associated with homeostatic regulation of sleep [56, 57],
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has been reported to impact neural plasticity via adenosine
A1 receptors (A1Rs) [58]. This is especially true in the hip-
pocampus where extracellular levels of adenosine increase
[59], and these increases colocalize with A1Rs [60]. When
the increase of extracellular levels of adenosine is attenu-
ated, hippocampal LTP, which is low after sleep depriva-
tion returns to normal. The same effect is observed when
8-cyclopentyl-1,3-dimethylxanthine, an A1R antagonist, is
chronically infused into the brain, which suggests that
adenosine may play a role in regulation of hippocampal
plasticity [61–63].

These lines of evidence give rise to the synaptic homeo-
stasis hypothesis (SHY), which was developed by Tononi
and Cirelli [64–66]. The main claims of the SHY are as fol-
lows: (1) Wakefulness is related to synaptic potentiation
and increases in synaptic weight. (2) The amount of SWA
during sleep adjusts according to the level of synaptic poten-
tiation during preceding wakefulness in a spatiotemporal
manner. (3) The increased SWA represents a generalized
depression, namely downscaling [64–66]. This third claim
is supported by reduced expression of synaptic markers [67,
68] and a net elimination of dendritic spines [69–71] during
sleep. Indeed, when animals are placed in an enriched envi-
ronment before sleep, expression of the immediate early
gene, zif-268, is enhanced in REM and NREM sleep [72].
However, in comparison with activity-dependent synaptic
scaling, this downscaling process should only affect recently
potentiated synapses [65], which is conceptually different
from long-term depression. A recent convincing study by
de Vivo [73] using three-dimensional electron microscopy
showed that the axon-spine interface (ASI) decreased by
approximately 18% after sleep compared with during wake-
fulness. The animals were divided into 3 groups: (1) the
spontaneous wake group in which brain tissues were
obtained at 03:00, (2) the enforced wake group that was
exposed to novel objects during day in which brain tissues
were obtained at 15:00, and (3) the spontaneous sleep group
in which brain tissues were obtained at 15:00. The ASI of ani-
mals in the spontaneous sleep group exhibited a significant
reduction compared with the ASI of animals in the spontane-
ous wake and enforced wake groups, and the reduction was
proportional to ASI size. This evidence is considered solid
proof of the third claim in the SHY. Although some studies
using sleep deprivation failed to find changes in markers of
neuronal degeneration, stress, or apoptosis [74–76], there is
certainly a mutual relationship between sleep and neural
plasticity. However, a more elegant explanation is required
to form a universal theory.

3. Mutual Mechanisms Underlying Sleep
Disturbances and Neural Plasticity
Anomalies within Depression

3.1. Sleep Disturbances and Neural Plasticity Anomalies
within Depression. Depression is strongly associated with
sleep disturbances [77]. Sleep disturbances are common
complaints of patients suffering from depression, ranging
from problems with falling asleep, frequent nocturnal

awakenings, early morning awakenings, or a disturbed sleep
duration [78, 79]. In turn, an epidemiological study showed
that compared with persons free from sleep problems, indi-
viduals with insomnia are more likely to develop depression.
The persistence of insomnia is associated with progress of
new depressive episodes [80, 81].

Sleep EEG recordings provide more details on anomalies
in sleep architecture. Delays in sleep onset, decreases in REM
latency, and increases in REM sleep amounts along with sleep
fragmentation are observed [82]. The cost of an increase in
REM sleep is a reduction in NREM sleep, especially N3
[78]. Moreover, as an indicator of NREM sleep intensity,
SWA should be highest in the first sleep cycle, and this is
the case in the control subjects. However, in depressed
patients, SWA is higher in subsequent sleep cycles [83],
which suggests a suppressed generation of SWA.

In line with these findings, other studies indicate that
depression is associated with changes in neural plasticity.
The most concordant one is the observed decreased volume
of the PFC and hippocampus [84–87]. Studies using rodent
models revealed that stress can lead to atrophy and loss of
neurons and glia in the PFC and hippocampus [88, 89],
which is consistent with a decrease in synapse number in
the PFC of patients with depression as demonstrated in post-
mortem studies [90]. In addition, repeated restraint stress
induces a decrease in number and length of apical dendrites
and spine synapses in pyramidal neurons of the mPFC [91].
Sleep fragmentation, which is a common sleep problem in
depressed patients, causes a loss of N-methyl-d-aspartate
(NMDA) receptor-dependent LTP in the hippocampal CA1
region [92]. Similarly, electrophysiological and immunoblot-
ting studies indicate that insufficient sleep can impair LTP
and facilitate LTD in the hippocampal CA1 area of mice,
which is associated with selective augmentation of the num-
ber of NMDA receptor NR2A subunits and an increase in the
NR1A/NR2B ratio [93, 94].

Recent studies suggest that the infralimbic PFC, which is
responsible for processing emotional information, regulates
the ventral tegmental areas (VTA) via the amygdala and ven-
tral subiculum [95]. Thus, impaired functional connectivity
of this circuit may lead to improper responses to rewards
and anhedonia [96]. The ventral striatum is particularly cru-
cial in coding and updating predictions about a reward based
on previous experience, while the dorsal striatum is involved
in defective action-reward contingency learning [97]. There-
fore, it is not surprising to find aberrant activity in these 2
areas in depressed patients [98]. Interestingly, a recent study
conducted by Oishi et al. using chemogenetics demonstrated
that activation of VTA dopaminergic neurons induced a
robust increase in wakefulness [99]. In contrast, the ventral
striatum nucleus accumbens (NAc), which plays a key role
in reward functions, has been found to increase sleep via
dopamine D2 receptors [100]. Moreover, the amygdala com-
plex is known to regulate REM sleep based on reciprocal con-
nections with ventrolateral periaqueductal gray (vlPAG) in
the midbrain and the lateral pontine tegmentum (LPT) and
sublaterodorsal nucleus (SLD) in the brainstem [101–103].
This overlap in neural circuitry of depression and sleep
regulation may shed light on the mutual mechanisms that
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account for genesis of depression, depressive sleep distur-
bance, and neural plasticity [58].

3.2. Mutual Underlying Mechanisms. Depression is classified
as a neurochemical disorder and has long been considered a
mood disorder in which stress plays a vital role via an
impaired monoaminergic neurotransmitter, usually seroto-
nin (5-HT) [104–106]. The serotonergic system in the brain
is located at the DRN and median raphe nucleus (MRN).
These 2 nuclei project to many wake-promoting brain
regions such as the basal forebrain, thalamus, hypothalamus,
and cortex [107]. In addition, the extended amygdala and
PFC are also innervated by the DRN and MRN [107]. Recent
studies utilizing optogenetics found that activation of 5-HT
neurons induced an increase in wakefulness and sleep frag-
mentation [108] partially due to corelease of glutamate
[109]. Moreover, the DRN and MRN inhibit the SLD during
NREM sleep and wakefulness, while this inhibition with-
draws during REM sleep and gives rise to the glutamatergic
projection in the SLD to generate muscle atonia [110, 111].
In addition, the decreased inhibitory inputs from the DRN
and MRN also disinhibit the pedunculopontine and latero-
dorsal tegmental nuclei (PPT/LDT) [28] and result in gener-
ation of theta activity via the ascending pathway targeting the
MS [29]. 5-HT also participates in tuning the balance
between excitation and inhibition [112]. In the brain, 16
types of 5-HT receptors have been identified [113], and the
metabotropic 5-HT1A receptors (5-HT1ARs) are the domi-
nant type in the PFC [114]. The layer 5 pyramidal neurons
(L5PyNs) of the PFC express 5-HT1ARs in both soma, initial
parts of axons and dendrites [114–116]. Moreau et al. showed
that 5-HT1ARs in L5PyNs play an important role in control-
ling output signals of the PFC. Although most postsynaptic
5-HT1ARs are expressed in glutamatergic neurons in the
PFC, GABAergic neurons also express 5-HT1ARs and project
onto the dendrites of pyramidal cells [114]. This appears to
explain the anomaly of SWA in depression, which may be
due to an imbalance of 5-HT1AR modulation of excitation
and inhibition [117, 118].

Dopamine is another monoaminergic neurotransmitter
that has attracted much attention. As the last fully developed
monoaminergic system in the brain [119], the dopamine
system plays roles in many brain functions including loco-
motion, reward, motivation, learning, and cognition [120].
Although 5-HT is traditionally linked with the pathophysiol-
ogy of depression, it may not account for other key character-
istics of depression, such as anhedonia and amotivation
[121], whereas dysfunction in the dopamine system is consis-
tent with these characteristics [122]. Excessive physiological
or emotional stress and subsequent anxiety can give rise to
major psychiatric disorders such as depression [123]. When
subjects are exposed to transient stressors, dopaminergic
neurons in the medial VTA exhibit short-term inhibition
[124]. However, following exposure to a prolonged stressor,
activity of dopaminergic neurons in the medial-lateral VTA
increases briefly before a prolonged suppression, and the
level of dopamine in the PFC and NAc increases [125, 126].
Abnormal neuronal activity of the dopaminergic system
can be normalized by inhibiting the hippocampus, and

decreased responsivity of the dopaminergic system is driven
by the amygdala [127, 128]. Further investigations revealed
that in animal depression models utilizing stress factors, the
hyperactive infralimbic PFC activates the amygdala, which
then suppresses the VTA, especially the medial part, through
GABAergic neurons in the ventral pallidum and reduces nor-
mal reward-related activity in this brain region [95, 129, 130].
In addition, stressors, such as forced swimming, increase the
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/NMDA ratio of excitatory synapses on VTA dopa-
minergic neurons [131, 132]. This process of potentiation is
initiated as soon as 2 h after stressor delivery and maintained
at least 1 d [132], and blockade of both AMPA and NMDA
receptors in the VTA can prevent increased dopamine levels
in the PFC [133]. However, the reaction of VTA dopaminer-
gic neurons to stress differs based on the projection site of
these neurons. An increased firing rate is only found in neu-
rons projecting to the NAc [134–137], while those projecting
to the PFC decrease firing rate in the social defeat animals
[138]. Nonetheless, when firing rate is restored to normal,
social interaction behaviors also normalize [135, 136, 138].
A study by Tye et al. [129] using optogenetics to stimulate
VTA dopaminergic neurons while blocking the dopamine
receptors in the NAc failed to reverse depressive behaviors
induced using a chronic mild stress model, which suggests
an essential role of the VTA-NAc circuit in stress- and
depression-related behaviors such as anhedonia [139].
Interestingly, the same VTA-NAc circuit also plays an
important role in the mesolimbic dopamine system in regu-
lating the sleep-wake cycle as mentioned above. Substantial
evidence has shown that the VTA promotes wakefulness
by modulating the NAc and receives glutamatergic,
GABAergic, serotoninergic, and cholinergic modulation
from other brain regions such as the LDT, PAG, and
DRN [100]. Sleep-wake regulation of the NAc is under con-
trol of the PFC, ventral hippocampus, VTA, thalamus, and
amygdala and is achieved by traditional direct/indirect
pathways of the basal ganglia [100].

Adenosine, as an endogenous sleep promoter, is also
involved in neural plasticity, and activation of A1Rs sup-
presses LTP [140]. Zgombick et al. [141] proposed that since
A1Rs and 5-HT1ARs are colocalized and share G proteins in
several brain regions, they may affect intracellular signaling
cascades together. These effects are mediated by the cyclic
adenosine monophosphate (cAMP) signaling pathway since
A1Rs are inhibitory G protein-coupled receptors. The
cAMP-response element binding protein (CREB), which
can be activated by the cAMP-protein kinase A (PKA) signal-
ing pathway [9, 142], is vital to long-lasting hippocampal
synaptic plasticity [143, 144]. In addition, expression of
brain-derived neurotrophic factor (BDNF), which is a critical
promoter of neurogenesis, neuronal survival and synaptic
plasticity [145, 146], is under control of CREB [147]. BDNF
decreases in expression and function in the PFC and hippo-
campus in animal models, which is crucial in the genesis of
depression, as well as in the blood of patients with depression
[148–150]. Blockade of BDNF release causes atrophy of neu-
rons in the hippocampus [151] and mPFC [152] in mice,
while heterozygous deletion of BDNF reduces spine density
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and dendrite of neurons in the hippocampus and PFC along
with a decreased volume of the hippocampus [153, 154].
Recent research suggests that adenosine A2A receptors
(A2ARs) are arguably more important than A1Rs in homeo-
static regulation of sleep [56]. However, little is known about
their role in neural plasticity. Our work has demonstrated
that increased REM sleep induced by bilateral olfactory
bulbectomy is associated with A2ARs in the olfactory bulb
and can be normalized by acute administration of fluoxetine,
but depressive behaviors remain the same [155, 156].
While the REM-suppressing role of A2ARs in the olfactory
bulb can be explained by mutual connections with REM-
regulating nuclei in the brainstem via the piriform cortex
and amygdala, depressive behaviors induced by bilateral
olfactory bulbectomy seem to be long-lasting and need
further investigation. Answering this question should
increase our understanding of how adenosine regulates
neural plasticity.

The largely overlapping mechanisms of sleep regulation
and genesis of depression suggest that they may share com-
mon mechanisms, one of which, as we suggest in the current
review, may be neural plasticity. Sleep dysfunction impairs
neural plasticity and vice versa. Human patients who suffer
from depression, as well as animal depression models, show
changes in neural plasticity. However, it is unlikely that sleep
disturbances lead to genesis of depression, because many
other neurological disorders also involve sleep disturbance.
In our point of view, genesis of depression changes neural
function in regions of the brain that are important for sleep
regulation. This then leads to sleep disturbances, which
reduces sleep quality and further facilitates depression.

4. Neural Plasticity Involved in Antidepressant
Treatment

4.1. Typical Antidepressants Restore Neural Plasticity.Despite
the high rate of resistance and notably long delay before tak-
ing effect, typical monoamine-based antidepressants are still
the first choice in treatment of depressed patients since they
were discovered fortuitously more than 50 years ago [157].
Their appearance provided a possible interpretation of the
biological basis of depression and guided development of a
series of more specific medications in the following decades,
including tricyclic antidepressants (TCAs), monoamine-
oxidase inhibitors (MAOIs), selective norepinephrine reup-
take inhibitors (NARIs), selective 5-HT reuptake inhibitors
(SSRIs), 5-HT/NE reuptake inhibitors (SNRIs), and 5-HT2
receptor antagonist/reuptake inhibitors. However, the dis-
crepancy between acute changes of extrasynaptic mono-
amine levels and their delayed onset of action implicates
other more direct and rapid changes in addition to the
altered monoamine neurotransmitter system in the neuro-
biological basis of depression.

Growing evidence indicates that chronic treatment with
antidepressants enhances neural plasticity at both cellular
and functional levels. Chronic treatment with the SSRI,
fluoxetine, enhances LTP and synaptic transmission in the
dentate gyrus of the hippocampus, upregulates dendritic
spine density in the cerebral cortex and hippocampal CA1

and CA3 fields, and blocks atrophy of dendrites and spines
caused by chronic stress exposure [158–160]. It also restores
neuronal plasticity in the adult visual system of rats [161].
The change in synaptic plasticity may act through local
BDNF and contribute to extinction of conditioned fear by
remodeling memory circuitry [162]. Administration of fluox-
etine and imipramine has been reported to remodel dendritic
and synaptic contacts in the hippocampus and PFC after
chronic stress exposure [163]. In addition, evidence suggests
that treatment with tianeptine overcomes blocking of LTP
induction caused by inescapable stress [164]. Moreover,
amitriptyline and mianserin have been reported to reverse
bulbectomy-induced reduction in dendritic spine density
in the hippocampus [165]. These studies implicate an
important role of neural plasticity in antidepressant effects
of these conventional medications.

4.2. Mechanisms Underlying Changed Neural Plasticity

4.2.1. BDNF. BDNF is thought to play a pivotal role in the
pathophysiology of depression and the neuroprotective
effects of conventional antidepressants. It has been shown
clearly that stress and glucocorticoids downregulate the
expression of neurotrophins including BDNF and their
receptors in the hippocampus [166, 167]. Postmortem stud-
ies also showed a decrease of BDNF protein and mRNA
expression in the hippocampus of depressed suicide patients
[168, 169], and this decrease can be reversed after chronic
treatment with many different classes of antidepressants,
including MAOIs, NARIs, SSRIs, and some atypical antide-
pressants [170, 171]. Furthermore, reduction of serum levels
of BDNF in depressed patients can be partially normalized
after administration of antidepressants [172, 173].

It is expected that BDNF can affect neural plasticity.
Haploinsufficient BDNF mice have shorter and simplified
CA3 dendrite spines [153]. Mice with a human loss-of-
function BDNF gene variant, Val66Met, exhibit an impaired
synaptogenesis in the PFC [152] and more prominent
changes in dendritic spine density in the PFC and amygdala
after stress [174]. In addition, their anxiety-related behaviors
are increased and cannot be normalized by treatment with
the antidepressant fluoxetine [174, 175]. Volunteers with
the Val66Met polymorphism are more vulnerable to depres-
sive symptoms if they are exposed to early-life stress [176].
Furthermore, heterozygous BDNF knockout mice show a
blunted antidepressant effect of imipramine in the forced
swim test [177]. Taken together, these studies support BDNF
involvement in antidepressant effects and modulation of
neural plasticity by conventional antidepressants.

4.2.2. Neuroplasticity-Related Signaling Pathways. The
delayed action of typical antidepressant treatments suggests
a role of receptor-coupled signal transduction proteins and
their genes. Stress and depression disrupt BDNF, and tyro-
sine kinase B (TrkB) receptor mediated extracellular signal-
regulated kinase (ERK) and thymoma viral proto-oncogene
(Akt) pathways in the hippocampus and PFC [178]. Admin-
istration of antidepressants can rapidly activate TrkB, which
is required for behavioral effects [179], and increase levels of
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ERK1 and ERK2 in the hippocampus and PFC [180, 181].
Reduction in Akt activity in ventral tegmental dopamine
neurons is associated with increased susceptibility to
social defeat stress, while chronic antidepressant treatment
increases active Akt levels [182]. Furthermore, evidence
suggests that mitogen-activated protein kinase (MAPK)
modulation plays an important role in the antidepressant
response. Administration of a MAPK pathway inhibitor
produces depressive-like behavior and blocks effects of anti-
depressants in rodents [183]. Postmortem studies revealed
increased expression of a negative regulator of MAPK,
MAPK phosphatase-1, in the hippocampus of patients with
major depressive disorder. Similar results were observed in
rat and mouse models of depression, and levels could be nor-
malized by chronic antidepressant treatment [184].

Postmortem studies on depressed suicide patients have
suggested a significant reduction in mRNA and protein levels
of PKA and CREB in the hippocampus and orbitofrontal
cortex [185]. Overexpression of CREB in the hippocampus
of rats produces an antidepressant effect in learned helpless-
ness and forced swimming tests [186]. Chronic administra-
tion of different classes of antidepressants increases levels of
cAMP production, PKA activation, and expression of CREB
in the PFC and hippocampus [171, 187, 188]. In addition,
CREB phosphorylation and CREB-mediated gene transcrip-
tion are upregulated by chronic antidepressant treatment
[180, 189]. These observations suggest an important role of
the cAMP-PKA-CREB pathway in antidepressant effects.

4.2.3. Glutamate Receptors (GluRs). Stress and depression can
cause dendritic remodeling and reduction in synaptic spines,
while enhancement of glutamate seems crucial for these
structural and functional changes [190]. GluRs are involved
in modulation of neural plasticity after chronic treatment
with antidepressants. Chronic administration of antidepres-
sants fluoxetine, desipramine, and reboxetine reduces
depolarization-evoked glutamate release in the hippocampus
[191]. Fluoxetine increases the phosphorylation of the
AMPA receptor GluR1 subunit [192] and upregulates the
expression of the NMDA receptor NR2A subunit, GluR1,
and GluR2 in the forebrain [159]. An AMPA receptor antag-
onist can reverse most antidepressant actions of fluoxetine in
stressed mice [193]. A similar effect was found in the
antidepressant-like effect caused by administration of lithium
in the mouse tail suspension and forced swimming tests
[194]. Imipramine alters ligand binding to the NMDA recep-
tor complex in the cerebral cortex and enhances the synaptic
expression of GluR1 in the hippocampus, but attenuates
glutamatergic transmission and field potentials in ex vivo
rat frontal cortex slices [195–198]. These data suggest an
important involvement of the glutamatergic system in anti-
depressant action. Therefore, GluRs may represent promis-
ing targets for antidepressant development.

4.3. Rapid-Acting Antidepressant Ketamine. Discovery of
the noncompetitive NMDA receptor antagonist, ketamine,
urges us to conduct further research on the mechanisms
involved in depression and to develop novel fast-acting
antidepressants. Compared with classical antidepressants,

ketamine exerts a robust, rapid (within a few hours), and
sustained (lasts for 1 week) antidepressant effect that can
be induced by a single dose in patients with treatment-
resistant depression [199, 200] and in animal models of
depression [177, 201, 202].

4.3.1. Increased Neural Plasticity Caused by Ketamine and
the Underlying Mechanism. Compared with traditional
monoamine-based antidepressants, ketamine has a more
direct and rapid influence on the glutamatergic system and
synaptic plasticity. Ketamine rapidly reverses decreased
expression of synaptic proteins and spine numbers as well
as the frequency and amplitude of excitatory postsynaptic
currents in PFC neurons caused by chronic stress expo-
sure [203, 204]. Stimulus-evoked somatosensory cortical
responses increase after ketamine infusion in patients with
treatment-resistant depression, which suggests increased
cortical excitability [205, 206].

Antidepressant effects of ketamine might be related to
enhanced expression of AMPA receptors and BDNF
[207, 208]. It was reported that ketamine reduced phosphor-
ylation of eukaryotic elongation factor 2 kinase and disinhib-
ited translation of BDNF [202]. However, another study
showed that ketamine produced similar antidepressant-like
responses in wildtype and heterozygous BDNF knockout
mice, and it did not influence levels of BDNF or TrkB phos-
phorylation in the hippocampus [177]. The mammalian tar-
get of rapamycin (mTOR) pathway, as a downstream
signaling cascade of BDNF, has been implicated in protein
synthesis-dependent synaptic plasticity and can be inter-
rupted in depression. Compared with healthy controls,
expression levels of mTOR and its core downstream signal-
ing target proteins, p70S6K, elF4B, and p-elF4b, are reduced
significantly in depressed individuals [209]. Levels of regu-
lated in development and DNA damage responses-1, an
inhibitor of mTOR, increase in the PFC of patients with
depression, along with a concurrent decrease in phosphor-
ylation of signaling targets of mTOR [210]. Ketamine can
activate the mTOR pathway, which leads to an increase in
synaptic signaling proteins and new spine synapses. Blockade
of mTOR signaling can completely block ketamine-induced
synaptogenesis and behavioral responses in models of
depression [203].

As a key component of theWnt pathway and upstream of
the mTOR signaling cascade, glycogen synthase kinase 3-β
(GSK3-β) plays major roles in gene expression, cell behav-
iors, neurodevelopment, and regulation of neuronal plasticity
[211]. It contributes to synaptic deconsolidation and shows
increased levels in brains of patients with major depressive
disorder [212]. A promoter single nucleotide polymorphism
of GSK3-β (rs334558) is associated with delayed onset of
depression [213] and an improved response to lithium salt
therapy [96]. Antidepressant effects of ketamine require an
inhibitory phosphorylation of glycogen synthase kinase-3
(GSK3) and can be potentiated when administered with the
nonselective GSK3 inhibitor lithium chloride [154, 214].

4.3.2. SWA Changes as a Predicator of Ketamine-Induced
Plasticity and Antidepressant Effects. SWA is considered a
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sensitive marker of cortical synaptic strength and synchroni-
zation [215–217]. In patients with depression, SWA and
delta sleep ratio (DSR, the ratio of SWA between the first 2
NREM sleep episodes) tend to be lower [83, 218]. Reduction
in delta power during NREM sleep is linearly associated with
improved negative affect in major depressive disorder [219].
The measure of distribution of SWA and DSR might be a
more robust predictor of clinical response and recurrence
to antidepressant therapy than REM sleep latency. A higher
DSR may indicate more favorable therapeutic outcomes
[83, 218]. Similar to some conventional antidepressants
[218, 220], administration of ketamine increases SWA
and DSR in rats [221] and individuals with depression
[222, 223]. It is noteworthy that the decrease in plasma
BDNF levels of depressed patients is proportional to the
change in EEG parameters [223]. These studies suggest a
role of SWA and DSR in predicating ketamine-induced
neural plasticity changes and antidepressant effects.

5. Neural Plasticity Involved in Antidepressant
Effects of Therapeutic Sleep Deprivation (SD)

5.1. SD Therapy for Depression. Since it was first found to
benefit depressed patients in the 1970s, therapeutic SD has
been widely used as a rapid antidepressant treatment. SD
shows a rapid and robust antidepressant effect in patients
with broadly defined depression, including some difficult-
to-treat conditions [224, 225]. The effect of therapeutic SD
is highly reproducible and substantial, but transient. Most
patients relapse after 1 night of sleep or even short naps
[225, 226], which limits SD as the first-line treatment for
depression. Some new clinical strategies have been developed
to sustain the efficacy of SD, including combining SD with
chronobiological techniques (light therapy and sleep-phase
advance) or antidepressants [227–229].

5.2. SD and Neural Plasticity

5.2.1. Changed Sleep Homeostasis and Neural Plasticity. Sim-
ilar to other rapid-acting antidepressant treatments such as
rapid-acting NMDA receptor antagonist or electroconvulsive
therapy, SD regulates neuronal inhibition-excitation balance
in the brain. Nocturnal sleep following SD in patients who
respond positively to SD therapy show a higher rebound of
sleep wave sleep (SWS) compared with those that respond
negatively [88]. Studies have suggested that changes in
SWA may be associated with the therapeutic outcome of
SD, and a high baseline DSR is a positive predictor for SD
response [230]. A SWS deprivation test proved that a reduc-
tion in depressive symptoms was correlated with overnight
dissipation of frontocentral SWA on baseline sleep, rebound
in right frontal all-night SWA on recovery sleep, and amount
of REM sleep on the deprivation night [231]. These data
indicate a change in sleep homeostasis of depressed
patients during SD therapy.

Neuroplasticity also contributes to antidepressant effects
of therapeutic SD. SD was reported to increase dendritic
spine density in the dentate gyrus of the hippocampus, which
was associated with upregulation of Wnt signaling gene Wnt

7a and activation of the innate immune system of the brain.
Increased expression of the immediate early Arc/Arg3.1 sug-
gests an increased neuroplasticity [232]. In addition, similar
to the rapid-acting NMDA receptor antagonist ketamine,
an increase in inhibitory phosphorylation of the signaling
protein GSK3-β contributes to the antidepressant effect and
synaptic potentiation of therapeutic SD [67]. Its single nucle-
otide polymorphism, rs334558, influenced acute antidepres-
sant response of SD and showed a better mood elevation
[233]. A role for glutamatergic neurotransmission has also
been reported. A molecular imaging study demonstrated that
therapeutic SD induced an increase of cerebral functional
mGluR5 availability, which is consistent with reduced den-
sity of mGluR5 in depressed patients [234]. Moreover,
increased cortical plasticity, indicated by increasing cortical
excitability, was reported during repeated SD in patients
with bipolar disorder, which paralleled and predicted the
antidepressant response to SD. This may be a major effect
of successful antidepressant treatments, and patients who
do not respond may experience persistent impairment in
neuroplasticity mechanisms [235].

5.2.2. A Synaptic Plasticity Model of SD in Depression.
According to the classic 2-process model of sleep regulation,
depression develops because of a deficient build-up of
homeostatic process S with an unaffected circadian process
C. Therapeutic SD benefits from a transient increase of
process S [236]. When linked to the recent SHY where
synaptic strength changes during the sleep/wake cycle,
the therapeutic effect of SD is likely due to changed synaptic
potentiation [65, 71].

A rat study showed that electrically induced LTP was
occluded partially during prolonged SD and restored after
sleep [237]. However, prolonged wakefulness beyond a
physiological duration did not further increase spine density
[69]. Therefore, Wolf et al. [238] concluded that SD might
lead to excessively high cortical excitability and saturation
of synaptic strength and, consequently, to partial occlusion
of LTP inducibility. They further postulated a window of
optimal associative synaptic plasticity (LTP inducibility)
during wakefulness. After sleep (insufficient upscaling) and
extended periods of sleep deprivation (saturation), LTP
inducibility is reduced. Based on this, a synaptic model was
proposed. It was hypothesized that in patients with depres-
sion, LTP inducibility is impaired and the window of optimal
associative plasticity may not extend through a normal
waking period because the ability to generate cortical LTP
diminishes. Therapeutic SD enhances cortical synaptic
strength and therefore shifts deficient LTP inducibility in
depressed patients to a more favorable window of associative
plasticity. Namely, in healthy controls, SD leads to synaptic
saturation and deficient LTP inducibility, but it compensates
for attenuated synaptic plasticity in the brains of patients
with depression and finally evokes an antidepressant effect.
The model builds on changed synaptic strength and cortical
excitability in healthy people and depressed patients during
different stages of wake/sleep cycles. It explains the paradox-
ical role of SD in dampening neural plasticity in healthy con-
trols and improving clinical symptoms in patients with
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depression. Further research must be done to evaluate the
validity of this model.

6. Conclusion

In this review, we summarize the latest progress on the mech-
anisms of interactions between sleep, depression, and neural
plasticity. Although there have been much excitements with
recent progress in sleep-related methods to treat depression
via regulation of neural plasticity, further development and
clinical application are needed to elucidate the mechanisms
and their effects.
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